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Essentially, all neonates are exposed to infections, antibiotics, or vaccines early in their 
lives. This is especially true for those neonates born underweight or premature. In con-
trast to septic adults and children who are at an increased risk for subsequent infections, 
exposure to infection during the neonatal period is not associated with an increased  
risk of subsequent infection and may be paradoxically associated with reductions in 
late-onset sepsis (LOS) in the most premature infants. Perinatal inflammation is also 
associated with a decreased incidence of asthma and atopy later in life. Conversely, 
septic neonates are at increased risk of impaired long-term neurodevelopment. While the 
positive effects of antibiotics in the setting of infection are irrefutable, prolonged adminis-
tration of broad-spectrum, empiric antibiotics in neonates without documented infection 
is associated with increased risk of LOS, necrotizing enterocolitis, or death. Vaccines 
provide a unique opportunity to prevent infection-associated disease; unfortunately, vac-
cinations have been largely unsuccessful when administered in the first month of life with 
the exception of vaccines against hepatitis B and tuberculosis. Future vaccines will require 
the use of novel adjuvants to overcome this challenge. This review describes the influence 
of infections, antibiotics, and vaccines during the first days of life, as well as the influence 
on future health and disease. We will also discuss potential immunomodulating therapies, 
which may serve to train the preterm immune system and reduce subsequent infectious 
burden without subjecting neonates to the risks accompanied by virulent pathogens.
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inTRODUCTiOn

Neonates, especially those born preterm (<37  weeks gestation), are prone to infections and sepsis 
given their diminished adaptive and innate immunity, decreased pro-inflammatory response, and 
attenuated antigen presentation and signaling (1). This unique immunological profile is possibly a 
result of the intrauterine fetal environment in which there is a need for immune tolerance to maternal 
antigens (2); however, this lack of a substantial immune response places the neonate at significant risk 
to microbes in the extrauterine environment. In the United States, early-onset sepsis (EOS; defined 
as sepsis occurring in the first 72 h of life) occurs at approximately 0.76–1 case per 1,000 live births 
with an increased incidence among very low birth weight (VLWB; <1,500 g) and preterm neonates 
(3–6). Due to concerns for infectious complications among preterm neonates, empiric antibiotics are  
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FigURe 1 | Impact of early-life exposures.

TAbLe 1 | Early-onset sepsis (EOS) and late-onset sepsis (LOS) characteristics.

eOS LOS

Age <72 h >72 h
Source Maternal genital tract Nosocomial
Pathogen GBS, Escherichia coli Coagulase-negative 

staphylococcus
Risk factors Maternal infections, prolonged 

ROM, chorioamnionitis
Prolonged mechanical ventilation 
and intravascular access

Incidence 1.7% among VLBW neonates 21% among VLBW neonates

GBS, group B streptococcus; ROM, rupture of membranes; VLBW, very low birth 
weight.
Incidence for EOS and LOS adapted from Ref. (3, 15), respectively.
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almost universally administered shortly after birth (7). Meanwhile, 
healthy term neonates are administered hepatitis B vaccination in 
the first month of life, generally during the birth hospitalization 
or first clinic visit. How the presence of infections as well as the 
use of antibiotics and vaccines in the early neonatal period influ-
ences future health and disease remains an extremely complex and 
expanding topic. Herein, we review the impact of early life immune 
system exposures and discuss the use of immunomodulatory thera-
pies to positively augment host protective immunity.

eARLY-LiFe eXPOSUReS

infections
Early-onset sepsis is generally acquired via maternal ascending 
vaginal infection (8) (Table 1). Untreated genital tract coloniza-
tion with group B streptococcus (GBS), prolonged rupture of 
membranes, and chorioamnionitis are known risk factors for the 
development of EOS (9–12). Importantly, two large, retrospective 
studies of very low birth weight (VLBW) neonates failed to identify 
an association between the development of EOS and the risk for 
subsequent or late-onset sepsis (LOS; defined as sepsis occurring 
after 72 h of life) (13, 14). Interestingly, neonates who were born 
at <25  weeks gestation and survived EOS showed a significant 
reduction in risk of LOS or death by 120  days (14). Extremely 
preterm neonates that are able to survive EOS may simply have 
a more robust immune response and thus, have a bias to equally 
fair well with subsequent infections. An alternative explanation 
offered by the authors is that the early immune stimulus may 
transform the preterm neonatal immune system from a relative 
state of tolerance to a level of competence that is better suited to 
defend against pathogens in the extrauterine environment (14).

Chorioamnionitis likewise has been shown to be associated 
with reductions in respiratory distress syndrome, chronic lung 
disease, and mortality in preterm neonates (16–19) (Figure 1). 
The mechanism by which chorioamnionitis decreases the inci-
dence of pulmonary disease in preterm neonates is likely via 
increased levels of interleukin (IL)-1 and IL-6, which stimulate 
pulmonary surfactant production and promote fetal lung matu-
ration (20–23). Meanwhile, the observed difference in mortality 
among neonates born to mothers with chorioamnionitis may 
be explained in part by the fact that these neonates develop 
significantly fewer cases of LOS, which has been associated with 
prolonged hospital stays and death (15, 24).

The presence of early exposure to inflammation, bacteria, 
and infections may have lasting beneficial effects. Sepsis among 
preterm neonates appears protective to the development of  
childhood asthma (25). Birth cohort studies investigating the 
impact of endotoxin [bacterial lipopolysaccharide (LPS)] expo-
sure during infancy on the risk of later wheezing, atopy, and 
asthma have had largely mixed results (26–32). More recently, 
Lynch et al. demonstrated that children who had reduced bacte-
rial exposure in the first year of life were more likely to develop 
atopy at age 3 years (33). In the September 2015 issue of Science, 
Schuijs et al. published their results utilizing a murine model of 
asthma to investigate the impact of chronic exposure to low-dose 
endotoxin and concluded that endotoxin protects mice from 
asthma development by increasing the synthesis of the enzyme 
A20 (a nuclear factor-κB attenuator) in airway epithelial cells (34).

Early exposure to inflammation and infection is not without 
harmful and devastating effects. VLBW neonates with EOS are 
about threefold more likely to die than those without EOS with 
an overall mortality of 35–37% by 120 days (3, 35). Moreover, a 
meta-analysis of 17 studies demonstrated that sepsis was associ-
ated with poor long-term neurodevelopment among VLBW neo-
nates including cerebral palsy (36). Likewise, chorioamnionitis 
appears to be associated with cystic periventricular leukomalacia 
in preterm neonates, encephalopathy in term neonates, and 
cerebral palsy in both preterm and term neonates (37–41). 
Injury to the preterm brain is believed to result from a multi-hit 
mechanism in which the neonate is first exposed to inflammation 
and cytokine release in utero, leading to increased susceptibility 
to subsequent perinatal and postnatal insults (42). This model is 
supported by the work of Korzeniewski et al. who demonstrated 
the cumulative contributions of chronic placental inflammation, 
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acute fetal inflammation, and postnatal inflammatory events 
on neonatal white matter injury (43). Microglial activation has 
a central role in this process via excitotoxic, inflammatory, and 
free radical injury to the developing central nervous system (44). 
The aforementioned hypothesis has been further validated in rat 
models of the generation of neuroinflammation in which rat pups 
subjected to both endotoxin and hypoxic ischemia demonstrated 
white water injury but sham and endotoxin alone groups did 
not (45). The group that received both endotoxin and hypoxic 
ischemia notably had an increase in activated microglia and tumor 
necrosis factor (TNF)-alpha expression compared to the other 
groups. The investigation of potential therapies to treat theses 
prenatal insults by targeting activated microglia and astrocytes 
is ongoing and includes the administration of dendrimer-based 
N-acetyl-l-cysteine treatment in the postnatal period, which has 
been shown to suppress neuroinflammation and improve motor 
function in newborn rabbits with cerebral palsy (46).

Antibiotics
The first exposure to antibiotics often occurs prior to birth in the 
form of intrapartum antibiotic prophylaxis against GBS, treat-
ment of suspected chorioamnionitis, or antibiotic prophylaxis  
for women undergoing elective or emergency Cesarean sections. 
The use of intrapartum antibiotics is steadily increasing; for 
example, Van Dyke et  al. demonstrated that the percentage of 
pregnant women receiving intrapartum increased from 26.8% in 
1998–1999 to 31.7% in 2003–2004 (47). In an era of widespread 
prophylactic treatment of GBS for colonized pregnant women, 
the incidence of invasive early-onset GBS disease has decreased 
by more than 80%; however, the incidence of late-onset invasive 
GBS disease has remained unchanged (48). The use of maternal 
antibiotic prophylaxis is not without risks including the emer-
gence of antimicrobial resistance invasive GBS and other neonatal 
pathogens. Between 1996 and 2003, clindamycin and erythromy-
cin resistance has significantly increased in invasive GBS isolates 
(49). The incidence of early-onset Escherichia coli sepsis has also 
significantly increased in VLBW neonates with 64–85% of recent 
cases having resistance to ampicillin (35, 50). Not unexpectedly, 
neonates with ampicillin-resistant E. coli infections were more 
likely to be born from mothers who received intrapartum ampi-
cillin (35, 50–52). Moreover, a multicenter case–control study 
during 1995–1996 demonstrated that cases of resistance E. coli 
infection were more often preterm (91 vs 20%, p < 0.001) and had 
significantly greater morality (40.9 vs 0%, p = 0.017), compared 
to cases of susceptible E. coli infections (51).

Among underweight and preterm neonates, the use of empiric 
antibiotics has essentially become standard of practice with anti-
biotics being the most prescribed medications in the neonatal 
intensive care unit (53). This phenomenon is largely due to the 
difficulty of accurately diagnosing neonatal sepsis in symptomatic 
neonates with developmental immaturity. A retrospective cohort 
analysis of 5,693 extremely low birth weight (ELBW; <1,000 g) 
neonates demonstrated that 98% of neonates received antibiotic 
treatment in the first three postnatal days, while <2% of neonates 
had positive blood cultures and clinical symptoms of EOS (7). The 
majority of neonates in the cohort received >5 days of empiric 
antibiotics despite having negative cultures; each additional day 

of empiric treatment was associated with a 4% increase in the 
odds of necrotizing enterocolitis (NEC) and a 16% increase in 
the odds of death (7). Similarly, Kuppala et  al. demonstrated 
prolonged administration of empirical antibiotics was associated 
with increased LOS and the composite outcome of LOS, NEC, or 
death (54). These short-term deleterious outcomes, as well as an 
increased incidence of invasive candidiasis, may be the result of 
intestinal microbiome modification, including decreased micro-
bial diversity, which is associated with broad-spectrum antibiotic 
use in ELBW and preterm neonates (55–57). The disruption of the 
microbiome may lead to long-term health consequences includ-
ing decreased absorption of nutrients and vitamin production, as 
well as increased risk of infections, asthma, diabetes, and obesity. 
Further discussion on the effect of antibiotics on the microbiome 
and the role of dysbiosis in pediatric disease is beyond the scope 
of this mini review, but the interested reader is directed to a 
number of outstanding recent reviews (58–60).

vaccines
Vaccines provide a unique opportunity to prevent infection-
associated disease. Hepatitis B vaccine is the only vaccine 
currently recommended in the first month of life by the United 
States Department of Health and Human Services, Centers 
for Disease Control and Prevention and is often administered 
during the birth hospitalization for healthy, term neonates  
(61, 62). Essentiality, all infants administrated hepatitis B vaccine 
respond with hepatitis B surface antigen-specific humoral and 
cell-mediated immunity following completion of the primary 
vaccine series (63). Although antibody titers decrease over time, 
immunological memory persists with vaccinated responders 
mounting a rapid anti-hepatitis B surface antibody response to 
a vaccine challenge (63). This immunological memory has had 
a dramatic impact on reducing hepatitis B infection and disease 
worldwide. After the implementation of universal hepatitis 
B vaccination program in Taiwan, the seroprevalence rate of 
hepatitis B surface antigen in children decreased from 10 to 
0.7% (64). Likewise, universal vaccination significantly reduced 
the incidence of pediatric fulminant hepatitis and hepatocellular 
carcinoma (64). In addition to its clear beneficial effects, early 
vaccination for hepatitis B remains remarkably safe. Over one 
billion doses of hepatitis B vaccine have been administered 
worldwide with few true adverse reactions, and no evidence 
of an association with sudden infant death syndrome, multiple 
sclerosis, or chronic fatigue syndrome (65).

Contrasting with the success of the hepatitis B vaccine, the use of 
other vaccines early in life has been more challenging and frequently 
less successful. The administration of vaccines against influenza, 
measles, and mumps during infancy has been unsuccessful given 
the poor generation of host antibodies (66, 67). Likewise, infants 
demonstrate decreased cell proliferation and IFN-γ production in 
response to the polio vaccine, compared to adults (68). This rela-
tive resistance to the development of life-long adaptive immunity 
early in life has impeded the use of many current vaccines in 
neonates. Generally, this has been attributed to the absence of a 
strong type 1 T helper cellular response to the antigen. The use 
of immune adjuvants appears to be one of the best methods to 
elicit a stronger immune response and overcome this limitation. 
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Currently, aluminum salts, oil-in-water emulsions (MF59, AS03, 
AF03), virosomes, and AS04 [monophosphoryl lipid A (MPLA) 
preparation with aluminum salt] are being used as adjuvants in 
vaccines approved for use in the United States and/or Europe (69).

iMPLiCATiOnS FOR FUTURe THeRAPieS

The first step in being able to combat invading pathogens relies 
on their proper recognition by host cellular populations. This 
occurs via complement in blood and pattern recognition recep-
tors including toll-like receptors (TLRs), C-type lectin receptors, 
nucleotide-binding oligomerization domain (NOD)-like recep-
tors, beta integrins, and others on cells responsible for immune 
surveillance (70). Specifically, TLRs are located on and within 
numerous cell populations, including immune, epithelial, and 
endothelial cell populations. TLRs continuously survey the envi-
ronment to recognize microbial components and intracellular 
signals of infection and/or cellular damage. Activation leads to 
downstream signaling, transcriptional changes, and the eventual 
secretion of inflammatory cytokines, type I IFN, chemokines, 
and antimicrobial peptides, which together function to target, 
localize, and kill the invading pathogen (70). In neonatal murine 
models, CpG oligodeoxynucleotides (TLR 9 agonist) have 
shown promise in improving survival to Listeria monocytogenes, 
Cryptosporidium parvum, and neurotropic Tacaribe arenavirus 
infections (71–73). In addition, LPS (TLR 4 agonist) and 
resiquimod (TLR 7/8 agonist) were shown to augment innate 
immunity, reduce bacteremia, and improve survival to polymi-
crobial sepsis (74); nevertheless, LPS is highly toxic and thus not 
suitable for clinical use. In ex vivo human newborn cord blood 
studies, novel agonists VTX-294 (TLR 8 agonist) and Hybrid-2 
(TLR 7/8 agonist) demonstrated a greater cytokine-inducing 
potency compared to resiquimod (75, 76). Moreover, VTX-294 
acted in synergy with MPLA (TLR 4 agonist) to induce an even 
greater production of TNF and IL-1β (75). Finally, Dowling et al. 
recently demonstrated that the TLR 7/8 agonist 3M-052 syner-
gistically enhances type 1 immunity from newborn leukocytes 
when combined with pneumococcal conjugate vaccine (PCV13) 
in  vitro and accelerates neonatal serotype-specific antibody 
response and pneumococcal opsonophagocytic killing (77).

In addition to increasing the immune responsiveness to the 
targeted pathogen, the use of TLR agonists in vaccines may 
provide additional non-specific immune benefits. As a particular 
example, the bacillus Calmette–Guerin (BCG) vaccine against 
tuberculosis is the most commonly administered vaccine 
worldwide and possesses inherent TLR 2/4/8 activity (78). In 
under-resourced areas of the world, BCG vaccinations are fre-
quently given to neonates on the day of birth due to the absence 
of consistent postnatal care. Neonatal BCG vaccination has been 
shown to induce an adult-like immune response characterized 
by a predominant production of IFN-γ by CD4+ T lymphocytes 
(79). Administration of BCG vaccine at birth in Guinea-Bissau 
led to a 41% reduction in all-cause mortality at 12  months 
among VLBW neonates (80). This reduction was attributed not 
to reduced tuberculosis but to fewer cases of neonatal sepsis and 
respiratory infections. It is likely that the success of this vaccine in 
early life is due to the induction of a strong immune response by 

the engagement of multiple TLRs simultaneously by products of 
the Bacillus (81). These findings require further investigation and 
may lead to the development of novel immune agonists that can 
augment the host immune response early in life with an associ-
ated reduction in the infectious burden in neonates. The human 
adult literature on the use of TLR agonists as modulators of the 
innate immune response and as therapeutic strategies for the 
management of sepsis is vast and beyond the scope of this mini 
review, but there are several recent outstanding reviews (82–84).

The basal expression of TLRs, accessory proteins, and adaptor 
proteins on neonatal mononuclear cells is similar to adults; nev-
ertheless, the early gene activation secondary to ligation of these 
receptors appears to be reduced in neonates due to impaired 
MyD88 and p38 signaling (85, 86). Understanding TLR biology is 
important for developing new compounds and ligands, which can 
activate these receptors and their signaling pathways. Alternative 
approaches using activators of the inflammasome in combination 
with TLR agonists may be considered. Future TLR ligands must 
be able to induce a sufficient immune response while remain-
ing safe in newborns. This balance has made the development 
of innate immune agonists a difficult task. Therapeutic use of 
immunotherapies with agonists, which result in the develop-
ment of antimicrobial resistance, holds great promise to be used 
prophylactically in the most susceptible population (i.e., VLBW 
and preterm neonates), in combination with live attenuated 
organisms to foster development of long-lasting antigen-specific 
immunity. As mentioned previously, engagement of multiple 
TLRs at the same time brings greater proliferation and higher 
cytokine production; however, the clinical applications of 
TLRs agonists have been limited to local delivery to minimize 
immune response-related toxicity (87). New vaccine strategies 
taking advantage of the inclusion of TLR and NOD agonists are 
currently being investigated to activate dendritic cells, enhance 
antigen presentation, and improve the host protective immune 
response (88–93). These novel vaccines require further investiga-
tions particularly in the neonatal population to prevent and treat 
infectious diseases among our most vulnerable patients.

COnCLUSiOn

The impact of infections, antibiotics, and vaccines during the 
early neonatal period, and their influence on future health and 
disease remains an important and evolving area of research.  
A better understanding of the immediate and long-term effects of 
these exposures may lead to novel therapeutics with the ability to 
drastically reduce infectious complications and mortality in the 
neonatal period as well as promote longstanding health.
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