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Prediction of bacterial type IV secreted effectors
by C-terminal features
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Abstract

Background: Many bacteria can deliver pathogenic proteins (effectors) through type IV secretion systems (T4SSs) to
eukaryotic cytoplasm, causing host diseases. The inherent property, such as sequence diversity and global scattering
throughout the whole genome, makes it a big challenge to effectively identify the full set of T4SS effectors.
Therefore, an effective inter-species T4SS effector prediction tool is urgently needed to help discover new effectors
in a variety of bacterial species, especially those with few known effectors, e.g., Helicobacter pylori.

Results: In this research, we first manually annotated a full list of validated T4SS effectors from different bacteria
and then carefully compared their C-terminal sequential and position-specific amino acid compositions, possible
motifs and structural features. Based on the observed features, we set up several models to automatically recognize
T4SS effectors. Three of the models performed strikingly better than the others and T4SEpre_Joint had the best
performance, which could distinguish the T4SS effectors from non-effectors with a 5-fold cross-validation sensitivity of
89% at a specificity of 97%, based on the training datasets. An inter-species cross prediction showed that T4SEpre_Joint
could recall most known effectors from a variety of species. The inter-species prediction tool package, T4SEpre,
was further used to predict new T4SS effectors from H. pylori, an important human pathogen associated with
gastritis, ulcer and cancer. In total, 24 new highly possible H. pylori T4S effector genes were computationally
identified.

Conclusions: We conclude that T4SEpre, as an effective inter-species T4SS effector prediction software package,
will help find new pathogenic T4SS effectors efficiently in a variety of pathogenic bacteria.

Keywords: Type IV secretion system, Effector, Secretion signal prediction, Sequence analysis, Machine learning,
Helicobacter pylori
Background
Type IV secretion system (T4SS) is a membrane-
associated multi-component transporter complex, which
plays important roles both in horizontal DNA transfer
between different bacteria and in bacterial pathogenesis
by translocating pathogenic substrates (DNA or protein)
into host plant, animal or human cells [1,2]. A large
number of T4SSs have been identified in a variety of
bacterial species [1,2]. In many cases T4SSs have been
implicated in protein delivery during the infection
process, such as Helicobacter Cag-T4SS in human
gastric ulcer and cancer, Legionella Dot/lcm-T4SS in
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Legionnaires’ disease, and Bartonella VirB/VirD4 in cat
scratch disease [3-8]. Recently, a large-scale screening
study performed in over 1000 prokaryotic genomes dis-
closed a total of 949 T4SSs, among which 267 lacked
relaxases and were considered as putative protein-
exporting T4SSs, since the T4SSs involving horizontal
DNA transfer require the activity of relaxases while
known protein-exporting T4SSs do not need relaxes [9].
The proteins specifically secreted through T4SS con-

duit are called type IV secreted (T4S) effectors, which
exert important functions in cytoplasm of infected
eukaryotic cells [10,11]. A large number of T4S effectors
have been characterized experimentally with assays
involving genetic complementation, reporter protein
fusion, secretion apparatus or chaperone interaction, etc.
[12-16]. However, it is difficult and time-consuming to
find new effectors purely based on experimental
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methods. Additionally, in a given bacterial strain, most
effectors are scattered throughout the genome rather
than clustered in a narrow genomic region. Moreover,
the validated effectors in different species are signifi-
cantly diverse in sequence. Therefore, the bioinformatic
methods so far used, based essentially on sequence com-
parison, can hardly reveal new effectors.
Recently, two groups of investigators performed large-

scale screening of T4S effectors by bioinformatic analysis
[17,18]. Integrating multiple features including gene G +
C content, sequence conservation, within-genome gene
organization, regulatory elements, signal sequence com-
position, etc., Burstein et al., for the first time, set up a
machine learning method to predict and experimentally
identify new T4S effectors from Legionella pneumophila
[17]. The prediction accuracy was considerably high, but
the method developed is merely suitable for T4S protein
prediction in Legionella or closely-related species, since
the training sequences are all from Legionella and the
features about sequence conservation, gene organization
and regulatory elements are specific for Legionella. In
addition, a similar training pipeline is infeasible to de-
velop T4S effector predictors for a broader range of bac-
teria, because the numbers of validated T4S effectors in
most other bacterial genera, not like in Legionella (more
than 100), are so small (0 ~ 5) that the training data can-
not provide reliable feature information. In another
study, based on the weak sequence similarity with
Legionella effectors, Chen et al. identified a group of
effectors in Coxiella burnetii [18]. Most effectors, espe-
cially those in the distantly-related species, however, are
of no or very low sequence similarity. Therefore, new
effectors without sequence similarity cannot be captured
through sequence alignment.
We have focused on Helicobacter pylori to predict T4S

effectors for insights into the pathogenesis of the distinct
infections caused by these bacteria. H. pylori may elicit
human gastritis and gastric ulcer, and this pathogen is
also associated with gastric cancer [4]. In the pathogen-
esis, Cag-T4SS plays key roles as an important virulence
factor in the bacterial interaction with human stomach
cells [3,4]. To date, only one effector, CagA, has been
identified, although several lines of evidence have indi-
cated that there should be other effectors that participate
in bacterial infection and pathogenesis [4,19,20]. No ex-
perimental, sequence alignment or comparative genomic
methods are available for identifying new effectors. The
only CagA protein could not provide any statistic infor-
mation about its sequence features as a T4S effector
either.
Numerous reports have indicated that, in many differ-

ent bacteria, the C-terminal peptide sequences of T4S
effectors are necessary for their secretion [21-25]. Do
these amino acid sequences share any common
composition or structural features among different effec-
tors in different bacterial species? Could such features, if
any, be used to develop an inter-species T4S effector
predictor? Such a generally-suitable prediction tool
would be especially useful for identification of new effec-
tors in species like H. pylori, which is supposed to have
multiple effectors that are not experimentally validated
yet and lacks a sufficient number of within-species vali-
dated effectors for species-specific effector feature ex-
traction. Recently, many inter-species prediction tools
have been developed to predict Type III secreted (T3S)
effectors [26-32], but no similar software tool has been
developed for T4S effector prediction. In this research,
we collected a full set of T4S effectors and made sys-
tematical comparisons of their C-terminal sequence-
based and position-specific amino acid compositions,
motifs, secondary structures and solvent accessibility
properties. Based on these features, we developed a
series of machine learning methods to classify T4S effec-
tors and non-effectors. To our knowledge, this is the
first inter-species T4S protein prediction tool, which can
be applied to different bacteria and is especially useful
for bacteria that have limited effector information for
species-specific bioinformatic analysis.

Results
Sequence-based amino acid composition (Aac) differences
between C-termini of T4S and non-T4S proteins
The T4S proteins were annotated from literature, while
the non-T4S proteins were randomly selected from the
genome-encoding proteins removed of known T4S pro-
teins and their homologs (Methods). The size of non-
T4S proteins was twice of T4S proteins. The GC content
of the nucleotide sequences encoding the T4S proteins
was roughly equal to that of non-T4S encoding nucleo-
tide sequences (Methods).
Comparisons were performed on sequence-based Aac

of C-terminal 100 positions (C100) between T4S and
non-T4S sequences. Most amino acid species were not
equally distributed in the two types of sequences, with
glutamic acid, serine, lysine, threonine, asparagine and
proline enriched and isoleucine, glycine, valine, tyrosine,
tryptophan, methionine, leucine, phenylalanine and ala-
nine depleted in T4S sequences (p < 0.05, Bonferroni-
corrected binomial test and t-test; Figure 1A). The
relative enrichment ratio of Aac was calculated for each
amino acid species which showed statistical difference
between T4S and non-T4S sequences. Glutamic acid
and serine had the largest enrichment in T4S sequences,
whereas isoleucine, tyrosine and glycine were enriched
in non-T4S sequences (tryptophan and methionine were
not considered because of their low occurrence in both
types of sequences) (Figure 1A). The relative enrichment
ratios of biased amino acids between T4S and non-T4S
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Figure 1 Sequence-based Aac difference between T4S and control proteins for C-terminal 100-aa positions. (A) Single-residue composition
difference. The different amino acids were listed along the horizontal axis while the length of bars represented the frequency of the corresponding
amino acid. T4S and non-T4S proteins were represented in black and gray, respectively. Amino acid with significant different compositions between
effectors and non-effectors were indicated with a star above the bar (Bonferroni-corrected Student’s t test and binomial test, p < 0.05). The logarithm
of amino acid frequency ratio was also shown, with red representing preference and black representing depletion in effectors. (B) Continual and
spanned bi-residues with statistically significant composition difference between effectors and non-effectors (Bonferroni-corrected Student’s t test
and binomial test, p < 0.05). ‘Px’ represented ‘Position x’. ‘X’ represented any type of amino acid. The amino acid at the last position was in red if the
corresponding bi-residue was preferred and in black if depleted in T4S sequences. (C) Distribution of motifs in T4S and non-T4S proteins.
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sequences were not apparently enlarged when the length
of observed signal sequence was shortened (Additional
file 1: Figure S1).
Bi-residue composition (bAac) was also compared

between T4S and non-T4S C100 sequences. Among
the 400 combinations of bi-residues, 29 were signifi-
cantly enriched and 25 were depleted in T4S sequences
(p < 0.05, Bonferroni-corrected binomial test; Figure 1B
left and Additional file 2: Table S1). Most significantly
enriched bi-residues included ‘[EKD]E’, ‘[STPE]S’, ‘E[TKN]’,
‘S[PE]’, ‘FF’, ‘TP’ and ‘PT’, while ‘I[IAG]’, ‘[VYF]L’, ‘G[IVG]’
and ‘[FV]I’ were most significantly depleted in T4S
sequences (‘[XY]’ means ‘X’ or ‘Y’; Additional file 2:
Table S1). The composition was further compared for
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discontinuous bi-residues (eg., ‘ExxS’, ‘ExSx’, etc., where
targeted bi-residues ‘E’ and ‘S’ were interupted by other
residues). Twenty two bi-residues interrupted by one
amino acid were enriched and 31 were depleted in T4S se-
quences, among which ‘[KE]XE’, ‘[ESTK]XS’, ‘EX[TK]’ and
‘SX[PER]’ were most significantly enriched while ‘[GLVI]
XI’, ‘[IGL]XV’, ‘AXY’, ‘LXA’ and ‘[YI]XL’ were most signifi-
cantly depleted (‘X’ represents any amino acid; Figure 1B
middle and Additional file 2: Table S1). Among the bi-
residues interrupted by two amino acids, ‘[EKP]XXE’, ‘SXX
[SKTPN]’, ‘EXX[TK]’, ‘NXXT’ and ‘DXXS’ were most sig-
nificantly enriched, and ‘[GI]XXI’, ‘IXX[GF]’, ‘GXX[FL]’,
‘VXX[AG]’ and ‘LXXG’ were most significantly depleted
in T4S sequences (Figure 1B right and Additional file 2:
Table S1). Among these continuous and interrupted bi-
residues, ‘KXXE’, ‘SXXS’ and ‘EXXE’ existed in 193 (56%),
187 (54%) and 183 (53%) T4S sequences, respectively,
representing the patterns most enriched in T4S signal
peptides. Nearly 90% (312/347) of the T4S sequences con-
tained at least one of the three motifs. However, the per-
centages of non-T4S sequences containing such motifs
were much lower (34%, 30% and 31% for ‘KXXE’, ‘SXXS’
and ‘EXXE’ respectively, and 67% for existence of at least
one of the three motifs).
Tri-residue (tAac) and quart-residue (qAac) composi-

tions were further compared, so as to refine the conserved
motifs buried in T4S signal sequences. Taking into ac-
count of the bi-residue composition preference property
described above, an consensus method disclosed three de-
generate motifs, ‘K[ADEHKLMNRVWY][ADEKNPQ]E’,
‘E[AEGKMNQR][DEKNPQ]E’, and ‘S[GIKLMNQRST]
[PQRS]S’, which were significantly enriched in T4S se-
quences (p < 0.05, Bonferroni-corrected binomial test).
N
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Figure 2 Position-specific Aac profiles of T4S and control proteins for
position number. (A) and (B) represent T4S proteins and control proteins, r
In total, more than 50% (175/347) of the T4S sequences
contained at least one of these three motifs, whereas only
12% (82/694) of the non-T4S sequences contained one or
more of them (Figure 1C and Additional file 3: Table S2).
The motifs existed in effectors of different bacteria with
IVA or IVB T4SS (Additional file 3: Table S2).
The patterns with more than four residues were quite

degenerate, and represented by very few T4S sequences
(data not shown).

Distinct position-specific Aac profiles in C-termini of T4S
effectors
Besides sequence-based Aac preference in T4S signal
peptides, the position-specific Aac profiles were also
compared between T4S and non-T4S sequences. As
shown in Additional file 4: Figure S2 and Figure 2, T4S
sequences showed apparently different amino acid com-
position profiles from non-T4S sequences. These differ-
ences were most striking for C-terminal 1–50 (especially
1–25) positions (Additional file 4: Figure S2). More posi-
tions in T4S effectors exhibited specific amino acid pref-
erence, while in non-T4S sequences, different species of
amino acids appeared more evenly distributed at each
position (Figure 2A and B). Consistent with the
sequence-based observations, glutamic acid, serine and
lysine were also frequently preferred in T4S sequences
(Figure 2A). Leucine was enriched in both T4S and non-
T4S sequences (Figure 2A and B).
To further evaluate whether the observed amino acid

preference (or depletion) is statistically significant, we
set up a binomial distribution model for each amino acid
at each position of T4S and non-T4S C-terminal 50 po-
sitions. At positions of T4S C-termini, the 20 amino acid
C

C

C-terminal 50 positions. The horizontal axis indicates the C-terminal
espectively.
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species did not show equal preference. Some amino
acids were enriched while some others depleted signifi-
cantly (Figure 3A; Additional file 5: Table S3). Trypto-
phan and cysteine were most generally depleted in T4S
C-termini. Additionally, leucine (enriched), methionine
(depleted), serine (enriched), glutamic acid (enriched or
depleted) and histidine (depleted) were also frequently
biased in the composition (Figure 3B; Additional file 5:
Table S3). The total number of amino acids with signifi-
cant position-specific composition difference between
T4S and non-T4S proteins was much smaller than that
of theoretically biased amino acids in T4S proteins,
demonstrating that there are many common amino acid
composition biases between the two types of proteins
(Additional file 5: Table S3). However, the difference be-
tween T4S and non-T4S proteins was even more pro-
nounced at the C-terminal 30 positions (Figure 3C). The
most profound composition difference between T4S and
non-T4S in most positions was the frequency bias of
glutamic acid (enriched or depleted), followed by those
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of serine (enriched), aspartic acid (enriched or depleted),
proline (enriched or depleted), threonine (enriched) and
phenylalanine (enriched or depleted) (Figure 3D). It
should be noted that, leucine was also frequently biased
(depleted) in T4S sequences compared with its compos-
ition in non-T4S sequences, indicating the larger enrich-
ment in the latter (Figure 3B and D). Other amino acids,
e.g., cysteine, tryptophan, methionine and histidine, did
not contribute much to the composition bias, as they are
depleted in both T4S and non-T4S proteins (Figure 3B
and D). Notably, glutamic acid, though enriched in most
C-terminal positions of T4S proteins when compared
with non-T4S proteins, showed significant depletion in
C-terminal 1–4 positions of T4S proteins and was sig-
nificantly enriched at positions 9 to 19 continuously
(Additional file 5: Table S3). Some of the amino acids
enriched or depleted in T4S sequences (e.g., serine,
threonine, proline and glutamic acid) could be related
with the secondary structure and hydrophilicity, two
possibly important secondary features related with
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signal recognition [26,30]. The biological relevance of
the biases of the amino acids remains to be clarified.
Structural flexibility of the C-termini of T4S effectors
The primary peptide sequence determines its secondary
structure (Sse) and solvent accessibility (Acc), which
may be associated with the specificity of signal recogni-
tion. Therefore, we compared the Sse and Acc compos-
ition in each C-terminal position of T4S effectors with
those of the non-T4S proteins. As expected, T4S effec-
tors showed a position-specific Sse preference pattern
apparently different from that of the non-T4S proteins
in the C-terminal region, especially at the C-terminal 40
positions (Additional file 6: Figure S3A and B). In con-
trast to helices in the non-T4S sequences, coils are more
common in most regions of the T4S sequences, indicat-
ing that they are more flexible (Additional file 6: Figure
S3A and B). Besides, β-strands were less frequently
adopted by T4S sequences (Additional file 6: Figure S3A
and B). T4S and non-T4S sequences also showed dif-
ferent position-specific Acc profiles, with more posi-
tions being exposed in the C-termini of T4S sequences
(Additional file 6: Figure S3C and D). The distinct Sse
and Acc profiles adopted by the C-terminal region of
T4S effectors were similar to those of N-terminal re-
gion of type III secreted (T3S) proteins, indicating pos-
sibly similar signal recognition mechanisms between
the type IV and type III secretion systems [26].
When twenty T4S C-terminal peptides were randomly

selected for 3D structure prediction, six peptides were
predicted with high accuracy. The C-terminal ends of all
the six peptides form helices or coiled coils, always ex-
posed outside (Additional file 7: Figure S4). A structure
alignment showed that these six peptides could form a
cluster with quite similar structures (37% structure simi-
larity, <10 Å; Additional file 8: Figure S5A). Most inter-
estingly, though without similarity at the sequence level,
Table 1 Performance of different models classifying T4S effec

Features Model Sn (%) vs.

Seq_Aac SVM 50.57 vs. 93

Seq_bAac SVM 44.57 vs. 96

Seq_Aac, bAac SVM 46.00 vs. 96

Seq_Sig SVM 50.57 vs. 93

Motif - 50.43 vs. 88

Seq_Aac, Sse, Acc SVM 69.71 vs. 91

Pos_Aac_SPB SVM 61.71 vs. 92

Pos_Aac _SPB + Seq_Aac SVM 78.86 vs. 93

Pos_Aac_BPB BPB-SVM 79.14 vs. 94

Pos_Aac, Sse, Acc BPB-SVM 89.14 vs. 97

Note: The RBF kernel function was used for all the models except ‘Motif’. The perfo
Legionella VipE (YP_096808.1) and YP_094180.1 had an
extremely similar 3D structure, with a mirror symmetry for
the C-terminal end parts (76% structure similarity, <5 Å;
Additional file 8: Figure S5B). Legionella YP_094076.1 and
Coxiella YP_001597263.1 also showed 74% similarity, and
these four proteins, VipE, YP_094180.1, YP_094076.1 and
Coxiella YP_001597263.1, had 52% structure similarity
(<10 Å; Additional file 8: Figure S5C and D). The 3D struc-
ture similarity suggested that the high-order structure
could exert important function in specific T4S signal
recognition.
Inter-species prediction of T4S effectors based on Aac
and structural features
It is interesting to determine whether the distinct Aac
(sequence-based and position-specific), motifs, Sse and
Acc profiles can be used for distinguishing T4S proteins.
Support Vector Machine (SVM) based machine learning
models were therefore trained with different features
and/or their combination, and comparison was per-
formed on their classification power. SVM was adopted
since it often generates high classification accuracy and
especially high specificity [26-28,31]. Additional file 9:
Table S4 showed the parameters optimized for different
models.
As shown in Table 1, the decision model based only

on motifs detected above had the worst distinguishing
power, with an average accuracy of 75.6%. The distin-
guishing power was similar among the models based on
sequential Aac, bi_residue composition (bAac), their
combination and the combination of significantly biased
Aac and bi_Aac between T4S and non-T4S peptides, in
terms of sensitivity, specificity, accuracy, AUC and MCC
values (Table 1). The SVM model based on position-
specific, single-profile bayesian (SPB) features only per-
formed a little better than the sequence-based models
(Table 1). The Bi-Profile Bayesian (BPB) model, however,
tors and non-effectors

Sp (%) A (%) AUC MCC

.86 79.43 0.8212 0.5146

.29 79.05 0.8311 0.5088

.14 79.43 0.8343 0.5182

.86 79.43 0.8500 0.5146

.18 75.60 - 0.4222

.14 84.00 0.8742 0.6313

.14 82.00 0.8538 0.5802

.29 88.48 0.9362 0.7369

.43 89.33 0.9559 0.7561

.14 94.57 0.9883 0.8770

rmance was evaluated according to 5-fold cross validation results.
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considerably outperformed both the SPB model and
the sequence-based models (Table 1 and Figure 4A).
Interestingly, the combination of SPB Aac features and
sequential Aac features could greatly improve the clas-
sifying performance, which was comparable to that of
BPB Aac model (Table 1 and Figure 4A).
Inclusion of secondary structure and solvent accessi-

bility improved the distinguishing power of both
sequence-based models and position-specific Bayesian
models. The model based on sequential joint features of
Aac, Sse and Acc outperformed any other pure sequen-
tial features-based model (Table 1). Most strikingly, the
position-specific model based on the joint features
False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seq_Aac
Pos_Aac_SPB
Seq_Aac+Pos_Aac_SPB

(A)

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pos_Aac,Sse,Acc
Seq_Aac+Pos_Aac_SPB
Pos_Aac_BPB
Pos_Aac_SPB

(B)

Figure 4 Performance ROCs of different T4S effector
prediction models. (A) Comparison of ‘Pos_Aac_SPB’, ‘Seq_Aac’,
and ‘Pos_Aac_SPB + Seq_Aac’ models. ‘Pos_Aac_SPB’ only extracted
the features of positive dataset. ‘Seq_Aac’ only learned sequence-based
single-residue composition features. ‘Pos_Aac_SPB + Seq_Aac’
combined the features of ‘Pos_Aac_SPB’ and ‘Seq_Aac’. (B) Comparison
of ‘Pos_Aac_SPB’, ‘Pos_Aac_BPB’, ‘Pos_Aac_SPB + Seq_Aac’ and
‘Pos_Aac,Sse,Acc’ models. ‘Pos_Aac_BPB’ model extracted the Aac
features of both positive and negative datasets, while ‘Pos_Aac,Sse,Acc’
learned the joint position-specific Aac, Sse and Acc features. All
comparisons were performed with a 5-fold cross-validation strategy.
outperformed all other models in terms of any evalu-
ation parameter (Table 1 and Figure 4B). The five-fold
cross-validation sensitivity, specificity, accuracy, AUC
and MCC of this model could achieve 89.14%, 97.14%,
94.57%, 0.9883 and 0.8770, respectively (Table 1).
We also tested the influence of different signal sequence

length on model performance. Among the models based
on C-terminal 25aa, 30aa, 40aa, 50aa and 100aa (C25,
C30, C40, C50 and C100, respectively), C100 models
apparently outperformed the others (data not shown).
Since the models based on combined SPB Aac and se-
quential Aac features (T4SEpre_psAac), BPB Aac fea-
tures (T4SEpre_bpbAac) and position-specific joint
features of Aac, Sse and Acc (T4SEpre_Joint) showed
the best performance on classification of T4S and non-
T4S sequences, the rest parts of the research will only
use these three models based on C-terminal 100aa sig-
nals. To further confirm the classification performance
of these three models, we changed the size of negative
dataset (from 2-fold to 6-fold size of the positive data-
set, Additional file 10: Text S1), and assessed the per-
formance with 5-fold and 10-fold cross validation. As
shown in Additional file 11: Table S5 and Additional
file 12: Table S6, the prediction performance was im-
proved slightly when the negative dataset with larger
size (Additional file 11: Table S5) was used and quite
stable when 5-fold (Additional file 11: Table S5) or 10-
fold (Additional file 12: Table S6) cross validation was
adopted.
It is also important to observe the inter-species ef-

fector discriminating power of the models. A Leave-One
genus-Out strategy was proposed previously and
adopted here. As shown in Figure 5, T4SEpre_Joint ex-
hibited the best inter-species prediction performance,
while T4SEpre_psAac performed worst among the three
software tools. For most genera, T4SEpre_Joint could re-
call all or nearly all known effectors without any prior
knowledge about the targeted genus (Figure 5A) and at
very high prediction specificity (Figure 5B). The specifi-
city of T4SEpre_Joint for Brucella appeared lower be-
cause the total number of negative control proteins was
only 4, and in fact, merely one of them was misclassified
(Figure 5B). It is worth pointing out that only 73 training
effectors remained after all the 274 Legionella effectors
were excluded, and the T4SEpre_Joint model with such
limited training data (21% of the original training data)
could still correctly recognize most of the known Legionella
effectors (222/274, 81%). One genus, Ochrobactrum,
was an apparent exception: the models based on the ef-
fectors of other genera could at best recall 2/5 of the
known effectors (Figure 5A, T4SEpre_bpbAac).
There are two types of T4SSs, type A and type B. It is

interesting to observe the inter-category discretion
power of these models. The effectors were therefore
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Figure 5 Inter-species/group prediction of T4S effectors by three computational models with a Leave-One genus-Out strategy.
(A) Recall of known effectors in each species or group. Agr, Ana, Bar, Bor, Bru, Cox, Ehr, Hel, Leg and Och represented Agrobacterium, Anaplasma,
Bartonella, Bordetella, Brucella, Coxiella, Ehrlichia, Helicobacter, Legionella, and Ochrobactrum respectively. Type A and B represented the two types
of T4SSs. (B) Prediction specificity of different models in each species or group.
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assigned to two subsets, type A T4SS substrates and type
B T4SS substrates. The negative controls were divided
into two parts accordingly. Models were trained with ei-
ther one type of sequences and were further used to clas-
sify the other type of sequences. As shown in Figure 5,
whereas T4SEpre_bpbAac and T4SEpre_psAac also
showed some performance, T4SEpre_Joint showed the
best classification power. The relatively low recall rates of
type B effectors (67.85% for T4SEpre_Joint) with the
model based on type A effectors were due to the ex-
tremely limited number of type A effectors (36/347,
10.4%) (Figure 5A). Again, the specificity of different
models on either type was very high, further demonstrat-
ing the reliability of inter-species prediction with all these
three software tools (Figure 5B).
Taking together, the results demonstrated that the fea-

tures purely extracted from C-terminal sequences could
well distinguish T4S effectors and non-effectors. The
models, especially T4SEpre_Joint, showed an excellent
inter-species prediction performance.
New T4S effector candidates in H. Pylori and salmonella
typhiumium
H. pylori is reported to encode multiple T4S effectors
[4,19,20], among which only one, CagA, has been experi-
mentally validated. As a result, direct statistic feature
analysis for H. pylori effectors is impossible. It has been
a big challenge to look for new effectors in H. pylori. We
therefore used T4SEpre (Additional file 13), the inter-
species T4S effector prediction software containing 3
highly-efficient models (T4SEpre_Joint, T4SEpre_bp-
bAac, and T4SEpre_spAac), to screen the H. pylori
genome (NC_000915) for possible T4S effectors.
T4SEpre_Joint, T4SEpre_bpbAac and T4SEpre_spAac

identified 58, 78 and 37 T4S effectors respectively
(Additional file 14: Table S7). In total, 25 candidates
were predicted by T4SEpre_Joint and at least one other
model, which composed the most potentially true effec-
tors (Table 2). The genes encoding these effector candi-
dates were widely scattered throughout the genome.
Among these candidates, CagA was a known effector



Table 2 T4S effectors predicted from H. pylori

Protein_Accession Annotation Joint bpbAac psAac

gi|15644760|ref|NP_206930.1| Hypothetical protein HP0130 √ √ √

gi|15645482|ref|NP_207657.1| Hypothetical protein HP0863 √ √ √

gi|15645135|ref|NP_207305.1| Hypothetical protein HP0508 √ √ √

gi|15644973|ref|NP_207143.1| Hypothetical protein HP0345 √ √

gi|15645339|ref|NP_207511.1| DNA polymerase III subunits gamma and tau √ √ √

gi|15645728|ref|NP_207905.1| Excinuclease ABC subunit B √ √

gi|15646132|ref|NP_208314.1| Hypothetical protein HP1524 √ √

gi|15645173|ref|NP_207343.1| Cag pathogenicity island protein (cag26, cagA) √ √ √

gi|15644995|ref|NP_207165.1| Hypothetical protein HP0367 √ √

gi|15645343|ref|NP_207515.1| Hypothetical protein HP0721 √ √

gi|15645618|ref|NP_207794.1| Hypothetical protein HP1003 √ √ √

gi|15645567|ref|NP_207743.1| Putative recombination protein RecO √ √

gi|15645998|ref|NP_208179.1| Hypothetical protein HP1388 √ √

gi|15644810|ref|NP_206980.1| Hypothetical protein HP0181 √ √

gi|15644793|ref|NP_206963.1| Signal-transducing protein, histidine kinase √ √ √

gi|15645647|ref|NP_207823.1| Hypothetical protein HP1033 √ √

gi|15644672|ref|NP_206842.1| Hypothetical protein HP0041 √ √ √

gi|15644966|ref|NP_207136.1| Hypothetical protein HP0338 √ √ √

gi|15646203|ref|NP_208145.1| Hypothetical protein HP1353 √ √

gi|15645609|ref|NP_207785.1| Hypothetical protein HP0994 √ √ √

gi|15644860|ref|NP_207030.1| Hypothetical protein HP0232 √ √ √

gi|15645621|ref|NP_207797.1| Conjugal transfer protein (traG) √ √

gi|15645351|ref|NP_207525.1| Hypothetical protein HP0731 √ √

gi|15645518|ref|NP_207693.1| Hydrogenase expression/formation protein (hypB) √ √ √

gi|15645888|ref|NP_208066.1| Paralysed flagella protein (pflA) √ √

Note: ‘Joint’, ‘bpbAac’ and ‘psAac’ represent ‘T4SEpre_Joint’, ‘T4SEpre_bpbAac’ and ‘T4SEpre_psAac’ model, respectively. The genes with one or more of the three
motifs identified in this study were in italic.
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and the rest 24 were new. Motif screening showed
that more than half of the candidates contained ‘K
[ADEHKLMNRVWY][ADEKNPQ]E’, ‘E[AEGKMNQR]
[DEKNPQ]E’, or ‘S[GIKLMNQRST][PQRS]S’ (Additional
file 14: Table S7; Table 2, italic). It should be noted
that ~70% of the T4S candidates were hypothetical pro-
teins with unknown function (Table 2). Previous studies
have demonstrated that many proteins with unknown
function were likely to function as pathogenic effectors
[27]. Therefore, these proteins deserve further experimen-
tal validation analysis.
As a control, we also made a whole-genome T4S

effector prediction from Salmonella typhimurium LT2, a
strain which has never been reported with a functional
protein-transporting T4SS. As shown in Additional
file 15: Table S8, T4SEpre_Joint, T4SEpre_bpbAac and
T4SEpre_spAac identified 57, 81 and 27 T4S effectors re-
spectively. Dividing by the total number of genome-
encoding proteins (S. tyhimurium LT2, 4423; H. pylori,
1573), the percentages of positive T4S proteins predicted
in S. tyhimurium (1.29, 1.83 and 0.61, respectively) were
lower than in H. pylori (3.69, 4.96 and 2.35, respectively).
Furthermore, the prediction results of the three software
tools were combined to increase prediction specificity, as
performed in H. pylori. We found only 13 proteins were
predicted by both T4SEpre_Joint and at least one other
software tool (Additional file 15: Table S8). This positive
ratio (0.29%, 13/4423) was also much lower than that in
H,pylori (1.59%, 25/1573). Similar to the distribution of
T3S signals among different bacteria, it is not surprising
to find T4S signal containing proteins in strains without
protein-transporting T4SSs such as S. typhimurium LT2,
though the number of positive proteins could be much
smaller [27,29,30]. Three proteins in LT2 predicted to be
positive T4S effectors by all the three tools meanwhile
(STM1870, STM2074 and STM2256; Additional file 15:
Table S8). Among them, STM1870 is particularly interest-
ing. It was predicted by all the three models with the high-
est scores and hence most likely represents a true T4S
effector (Additional file 15: Table S8). In a previous report,
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STM1870 was also found to contain a T3S signal [27].
The function of STM1870 remains to be clarified.
STM2074 is annotated as a histidinol phosphatase and
STM2256 encodes a cytochrome c-type subunit. These
two proteins are more likely to represent false positives
predicted by the software tools, but the possibility could
not be excluded either that, they contain the T4S signal
sequences and could be translocated through the T4SS
conduit to host cells if there was a functional T4SS in
Salmonella.

Discussion and conclusion
Bacteria encode diverse protein secretion or transloca-
tion systems to effectively interact with host cells. Type
III and type IV secretion systems play especially import-
ant roles in gram-negative bacteria [2,9,33,34]. Through
comparative genomic analysis, Guglielmini et al. found
more bacteria than expected could encode potential
protein-exporting T4SSs [9]. This is an interesting find-
ing, indicating that these bacteria potentially interact
with host cells by injecting effector proteins through
T4SSs. It is much easier to detect whether these T4SSs
are assembled and functional than to analyze how they
could function. Identifying possible effectors is the deter-
minant step to solve the latter problem. Currently, the
most effective way to identify new T4S effectors is to
validate candidates predicted according to the common
features of known effectors encoded by the same or
closely-related bacteria [17,18]. However, for most spe-
cies that have T4SSs, only a small number of effectors
have been identified to date. Due to the small sample
pool of known T4S effectors, no reliable features could
be generalized from them. The species-specific methods
described above therefore could not be adopted directly
either. The number of newly discovered effectors is in-
creasing for a limited number of representative species,
e.g., L. pneumophila, but very few new effectors are be-
ing identified for other important species, e.g., H. pylori.
These factors prompted us to develop an inter-species
T4S effector prediction method.
In this study, we focused on sequence and structure-

derived features. Through sequence-based single-, bi-,
tri-residue Aac and motif analysis, we found distinct
composition preference in C-terminal sequences of T4S
effectors relative to control proteins. Glutamic acid and
serine were most strikingly preferred by T4S effector se-
quences (Figure 1A, B and C). Position-specific Aac
comparison demonstrated significant biases in the com-
position of glutamic acid and serine in a number of posi-
tions. Unlike serine, which always showed preference in
T4S sequences, glutamic acid was preferred in most posi-
tions but depleted in C-terminal positions 1–4 (Figure 3).
In the C-terminal sequences of more than 50% effectors,
three possible motifs were identified, which always
contained one (or more) glutamic acid or serine as the
consensus residue(s) (Figure 1C). It is interesting to exam-
ine whether and how these two amino acids or the motifs
play roles in the specificity of type IV secretion recogni-
tion. The biological meaning of other Aac preference also
remains to be clarified.
We also tried to observe the different secondary struc-

ture and solvent accessibility determined by the different
Aac features between T4S and control proteins. The T4S
effectors had much more flexible and exposed C-
terminal regions than the control proteins (Additional
file 6: Figure S3). We had similar observation for the N-
terminal sequences of type III secreted effectors reported
previously [26]. It is not clear whether this is a common
property of protein secretion signal sequences. Interest-
ingly, 3D structure modeling revealed similar tertiary
structure of the T4S C-terminal sequences (Additional
file 8: Figure S5). Due to the relatively low accuracy and
heavy computation cost of de novo structure prediction,
it is not feasible to predict the structure of all T4S effec-
tors with high precision. However, it is still interesting to
observe the structure basis of specific type IV secretion
recognition.
A variety of computational models were trained based

on the different types or combinations of features. Three
of them, T4SEpre_Joint trained on joint features of
position-specific Aac, Sse and Acc, T4SEpre_bpbAac
trained on Bi-Profile Bayesian Aac, and T4SEpre_psAac
trained on both position-specific (Single-Profile Bayesian)
and sequence-based Aac features, considerably outper-
formed the others in terms of sensitivity, specificity, accur-
acy, AUC and MCC (Table 1 and Figure 4). Additionally,
T4SEpre_Joint also exhibited an ideal inter-species predic-
tion power. Due to the lack of known effectors in most
bacterial species, Legionella effectors represented the over-
whelming majority of the training data (89%). Remarkably,
the T4SEpre_Joint model trained on the sequences of the
other species (21% of the original training data) could still
correctly recall ~ 81% of the known Legionella effectors
(Figure 5). Even with the fewer training data (type A effec-
tors and control proteins, 10.4% of the original training
data), T4SEpre_Joint could correctly recognize ~ 68% of
the relatively independent type B effectors (Figure 5).
Though with lower distinguishing performance than
T4SEpre_Joint, T4SEpre_bpbAac and T4SEpre_psAac re-
vealed different features of T4S effectors. These three
tools, therefore, may be combined in practice for T4S ef-
fector prediction.
Prediction of Sse and Acc is relatively time-consuming

for all bacterial proteins. We therefore only used
T4SEpre_bpbAac and T4SEpre_psAac to screen T4S sig-
nals in all the bacteria with possible protein-delivery
T4SSs [9]. We found all the bacterial chromosomes con-
taining protein-exporting T4SSs encode possible T4S
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effectors. On average, up to 5% genes encode T4S effec-
tors (data not shown). We further focused on H. pylori,
for which all the three T4SEpre models were adopted to
predict possible new effectors other than CagA. A total
of 25 genes were predicted by both T4SEpre_Joint and at
least one other model. Notably, nearly 70% of the pre-
dicted genes encoded hypothetical proteins with unknown
functions (Table 2). Besides, many genes, especially those
with higher prediction scores, contained at least one of
the three types of T4S motifs. These genes and others with
high prediction values provide a valuable list of effector
candidates for pathogenic study of H. pylori.
An ideal computational model could predict all the

true positive effectors (highest sensitivity) without any
false positive effector (highest specificity). However, it is
infeasible to develop such a perfect model. In practice,
we have to make a balance between sensitivity and speci-
ficity to cope with different situations. For example, in
bacteria with many known effectors such as Legionella,
the prediction specificity has to be sacrificed to increase
the sensitivity, so as to find more new effectors. How-
ever, to identify effectors from bacteria with few known
effectors such as H. pylori, it is recommended to in-
crease prediction specificity at a cost of sensitivity. The
higher specificity will ensure the fewer false positives
and the lower experimental cost. The three software
tools proposed here all exhibited quite high prediction
specificity (93 ~ 97%). It should be pointed out that, even
with the highest cross-validation specificity 97%, ~86
false positives would be predicted from a genome encod-
ing 2850 non-effector proteins. The sensitivity of
T4SEpre_Joint is 89% at the specificity of 97%, so about
134 effectors can be correctly predicted assuming there
are 150 effector proteins in the same genome. Therefore,
in a genome encoding 3000 total proteins and 150 (5%)
T4S effectors, T4SEpre_Joint will predict 220 candidates,
61% (134/220) among which are true positives. In order
to further increase the specificity, we suggested the fol-
lowing two strategies as we adopted in H. pylori effector
prediction: (1) combining all the three tools and looking
for the effectors predicted by both T4SEpre_Joint and at
least one other software tool, and (2) increasing the pre-
diction threshold value to 0.5 or higher. From our obser-
vations, the true positives are more often predicted by
combining multiple models, and with higher prediction
scores. Therefore, both the strategies should decrease
the ratio of false positives in the prediction results.
The T4S proteins were also predicted from bacteria

without known protein-transporting T4SSs (e.g., S.
typhimurium LT2, Additional file 15: Table S8). It is not
unexpected that some proteins also contain T4S signals
in such bacteria. Löwer and Schneider [29] and Arnold
et al. [30] independently found there were T3S signals in
proteins of bacteria without known Type III Secretion
Systems (T3SSs). In a previous study, we also demon-
strated that T3S signals could exist in proteins of gram-
negative bacteria without T3SSs, gram-positive bacteria
and even yeasts [27]. Being similar with T3S signals, it
makes sense that some proteins in bacteria without
protein-delivery T4SSs may happen to have T4S signal
sequences. Strictly, a protein containing a T4S signal se-
quence does not necessarily represent a T4S effector. A
T4S effector must have the signal sequence, be encoded
in a host strain bearing a functional protein-transporting
T4SS, and can be co-expressed with T4SS apparatus
genes [27]. A tentative hypothesis is, however, as in S.
typhimurium LT2, the number of total proteins with
T4S signals in bacteria without protein-transporting
T4SSs should be much smaller than strains with func-
tional protein-transporting T4SSs.

Methods
Datasets
Experimentally validated T4S effectors were retrieved
from literature and their putative orthologs were extracted
from genome annotation files. In total, we analyzed
1913 effectors from 10 genera, including Agrobacterium,
Anaplasma, Bartonella, Bordetella, Brucella, Coxiella,
Ehrlichia, Helicobacter, Legionella and Ochrobactrum. The
T4S signal peptide, i.e., the C-terminal 100-aa fragment,
was extracted from each effector sequence. Pairwise align-
ment was performed for the 100-aa T4S signal peptides
with JAligner implementing Smith-Waterman algorithm
(http://jaligner.sourceforge.net/). The ratio between the
similarity score of pairwise sequences and self similarity
score was calculated. Conserved paralogs or orthologs
were identified when a pair of sequences had an above-
stated similarity score ratio higher than 0.30. For each
orthologous or paralogous cluster, only one representative
was selected as the training sequence. This homology-
filtering procedure reduced the number of T4S peptides
to 347. The non-redundant peptides constitute the posi-
tive training dataset. Non-T4S proteins were randomly se-
lected from the same strains where the positive training
sequences were originated, followed by removal of the
known T4S effectors and their homologs. The C-terminal
100-aa peptide fragment was also extracted from each
non-T4S protein, and the same homology-filtering pro-
cedure was performed. Finally, for each strain, the ratio of
non-T4S: T4S peptides was set as 2:1, and the GC content
for encoding nucleotides was generally maintained equal
or similar between the two types of sequences (T4S 40%
vs. Non-T4S 41%) [26]. The 347 T4S and 694 non-T4S
sequences constituted final positive and negative data-
set, respectively (Additional file 16: Text S2). For 5-
fold (or 10-fold) cross-validation, the negative and
positive training datasets were pooled as the final
training dataset, which was evenly split into five (or ten

http://jaligner.sourceforge.net/
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for 10-fold cross-validation) sub-datasets, each containing
the same number of positive/negative samples.
To observe whether the size of negative dataset influ-

ence the classifying prediction performance, another in-
dependent negative dataset was prepared (Additional file
10: Text S1). The proteins were randomly selected from
different bacteria (from all the bacteria classes listed in
NCBI Genome database). The C-terminal 100 amino
acids were extracted from each protein, and then a simi-
lar homology-filtering strategy was performed to get rid
of the known effector homologs and redundant homo-
logs of included negative sequences. Finally, 2082 non-
redundant negative sequences were included (6-fold size
of the positive dataset). These negative sequences were
combined with the positive T4S sequences to form an
independent training dataset. For the new sequences,
Sse and Acc were predicted with the same procedures
described before.

Extraction of sequence-based and position-specific Aac
features
Sequence-based Aac was calculated for each T4S or
non-T4S sequence. Each of the 20 amino acid species
was counted for its occurrence within the C-terminal
100, 50 and 30 positions (C100, C50, and C30 respect-
ively). An Aac frequency vector was obtained for each
sequence, and the vectors for all sequences composed a
frequency matrix. The composition of each amino acid
species was compared between T4S and non-T4S se-
quences with Student’s two-tail t-test and a binomial
distribution-based statistic test. The resulted p-value was
further adjusted by Bonferroni multiple testing correc-
tion [35]. The significance level was set as p < 0.05 for
both tests. For each amino acid species with significant
bias, the log ratio of average composition was calculated
between the two types of sequences, which represented
the relative advantage of the amino acid composition in
T4S (positive) or non-T4S (negative) sequences, with a
larger absolute value for a more striking advantage. The
bi-residue (bAac) and tri-residue (tAac) compositions
were calculated with a similar procedure. Putative and
conserved motifs were screened with MEME [36],
followed by an iterative calculation of the frequency of
possible motifs derived from single Aac, bAac or tAac
preference.
The position-specific Aac features were extracted as

follows. Let vector S = s1, s2, s3,…, sn denote a peptide se-
quence in which s represents amino acid while 1, 2,… or
i represents position and n represents sequence length.
For m sequences, the position-specific occurrence of a
certain amino acid A is described as: p(Ai) = f (Ai)/mi, in
which f (Ai) denotes the frequency of amino acid A at
position i. For each position, the p(Ai) of different amino
acids form a position set, and for a sequence S with n
amino acids, n values (extracted from each position set)
comprise a composition vector. A binomial distribution
Bi(m, paa) was modeled for each amino acid species at
each position, where paa was set as p(Ai) of negative
dataset or 1/20 (ideal random situation) for different
comparison purpose. A Bonferroni-corrected binomial
test was performed based on the distribution model to
find out the significantly preferred or un-favored amino
acids at corresponding position of T4S sequences. The
significance level was also set as p < 0.05.

Secondary structure, solvent accessibility and tertiary
structure
SCRATCH was used to predict the secondary structure
(Sse, represented as a combination sequence of ‘C’, ‘H’
or ‘E’ of each sequence where ‘C’ meant coil, ‘H’ meant
helix and ‘E’ meant strand) and solvent accessibility
(Acc, a combination of ‘b’ or ‘e’, representing ‘buried’ or
‘exposed’ respectively) [37]. Tertiary structure of T4S
peptides were predicted with I-TASSER [38]. The struc-
tures with TM-score ≥ 0.5 were further analyzed for their
structural similarity using MultiProt [39].

Models and performance assessment
Sequence-based Aac features were directly represented
by the frequency of each amino acid species (‘Seq_Aac’)
or each bi-residue (‘Seq_bAac’). The combination of all
the ‘Seq_Aac’ and ‘Seq_bAac’ features or those signifi-
cantly preferred/depleted in T4S peptides led to the fea-
tures of model ‘Seq_Aac, bAac’ or ‘Seq_Sig’, respectively.
The sequence-based joint Aac, Sse and Acc features
were extracted with the strategy described in Yang et al.,
[28]. Position-specific Single-Profile and Bi-Profile
Bayesian features were extracted with the same pipeline
for the type III secreted effector prediction model
BPBAac [26]. The combination of sequence-based Aac
and position-specific Single-Profile Aac features formed
the features of model ‘Pos_Aac _SPB + Seq_Aac’.
Position-specific joint Aac, Sse and Acc features were
extracted according to Wang et al., [27]. The feature
values for each training sequence formed a vector. The
vectors were further trained with an R package ‘e1071’
implementing SVM (http://cran.r-project.org), with ra-
dial basis kernel function. The parameters for SVM were
optimized using grid search based on 10-fold cross-
validation.
The model performance was evaluated and compared

with a five-fold cross-validation and Leave-One genus-
Out strategy [26]. Accuracy (A), Specificity (Sp), Sensi-
tivity (Sn), Receiver Operating Characteristic (ROC)
curve, the area under ROC curve (AUC) and Matthews
Correlation Coefficient (MCC) were utilized to assess
the predictive performance. In the following formula, A
denotes the percentage of both positive instances (T4S)

http://cran.r-project.org
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and negative instances (non-T4S) correctly predicted. Sn
(true positive rate) and Sp (true negative rate), respect-
ively, represent the percentage of positive instances
(T4S) and the percentage of negative instances (non-
T4S) correctly predicted. An ROC curve is a plot of Sn
versus (1 − Sp) and is generated by shifting the decision
threshold. AUC gives a measure of classifier perform-
ance. MCC takes into account true and false positives
and false negatives and is generally regarded as a bal-
anced measure which can be used even if the classes are
of very different sizes.

A¼ TPþTN
TPþFPþTNþFN

;SP¼ TN
TNþFP

;Sn ¼ TP
TPþFN

;

MCC¼ ðTP�TNÞ‐ FN�FPÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFNð Þ� TNþFPð Þ� TPþFPð Þ� TNþFNð Þp

where, and denote the number of true positives, true
negatives, false positives and false negatives, respectively.

Genome-wide prediction of T4S effectors
The proteins were deduced from the H. pylori genome
(NC_000915) and S. typhimurium LT2 (NC_003197) DNA
sequences downloaded from the NCBI Genome database.
The sequences were screened for possible T4S effectors
with three independent models in the T4SEpre package
(T4SEpre_Joint, T4SEpre_bpbAac and T4SEpre_psAac).
The default cutoff SVM scores (≥ 0.5) were adopted for all
the three models. The standalone T4SEpre package could
be freely downloaded from the web site: http://biocom-
puter.bio.cuhk.edu.hk/softwares/T4SEpre/.

Additional files

Additional file 1: Figure S1. Logarithm of Aac ratios between T4S
and non-T4S C-terminal sequences. The different amino acids were listed
along the horizontal axis while the length of bars represented the
logarithm of composition ratio of the corresponding amino acid. Three
lengths of T4S and non-T4S C-terminal sequences were analyzed, with
C100, C50 and C30 representing C-terminal 100-aa, 50-aa and 30-aa
peptides, respectively.

Additional file 2: Table S1. Significantly biased sequential bi-Aac.

Additional file 3: Table S2. Motifs in signal sequences of T4S effectors.

Additional file 4: Figure S2. Position-specific Aac profiles of T4S and
control proteins for C-terminal 100 positions. The horizontal axis indicates
the C-terminal position number. (A) and (B) represent T4S proteins and
control proteins, respectively.

Additional file 5: Table S3. Significantly biased position-specific Aac.

Additional file 6: Figure S3. Position-specific Sse and Acc profiles of
T4S and control proteins for C-terminal 100 positions. The horizontal axis
indicates the C-terminal position number. (A) and (B) represent the Sse
of T4S proteins and control proteins, respectively. (C) and (D) represent
the Acc of T4S proteins and control proteins, respectively.

Additional file 7: Figure S4. 3D structure of C-terminal 100aa peptides
of T4S effectors. (A) Legionella VipE; (B) Legionella YP_094180.1; (C) Legionella
YP_094076.1; (D) Coxiella YP_001597263.1; (E) Legionella YP_094096.1;
(F) Legionella YP_094157.1.
Additional file 8: Figure S5. Structural similarity among C-termini of
T4S effectors. (A) The structure cluster formed by all the six T4S effectors
with high prediction accuracy (Legionella VipE, YP_094180.1, YP_094076.1,
YP_094096.1, YP_094157.1 and Coxiella YP_001597263.1); (B) Structure
alignment between Legionella VipE and YP_094180.1; (C) Structure
alignment between Legionella YP_094076.1 and Coxiella YP_001597263.1;
(D) Structure alignment among Legionella VipE, YP_094180.1, YP_094076.1
and Coxiella YP_001597263.1.

Additional file 9: Table S4. Optimized parameters for different SVM
models classifying T4S effectors and control proteins.

Additional file 10: Text S1. 6-fold negative dataset.

Additional file 11: Table S5. Performance of models classifying T4S
effectors and non-effectors (data size ratio between negative and positive
data: 6:1; 5-fold cross validation).

Additional file 12: Table S6. Performance of models classifying T4S
effectors and non-effectors (data size ratio between negative and positive
data: 6:1; 10-fold cross validation).

Additional file 13: T4SEpre package.

Additional file 14: Table S7. T4SEs predicted from H. pylori.

Additional file 15: Table S8. T4SEs predicted from S. typhimurium LT2.

Additional file 16: Text S2. Training datasets.
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