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Abstract: As a highly important meteorological hazard, heat waves notably impact human health
and socioeconomics, and accurate heat wave risk identification and assessment are effective ways to
address this issue. The current spatial scale of heat wave risk assessment is relatively coarse, hardly
meeting fine-scale heat wave risk assessment requirements. Therefore, based on multi-source fine-
scale remote sensing data and socioeconomic data, this paper evaluates the heat wave risk along the
Jakarta-Bandung high-speed railway, obtains the spatial distribution of heat wave risk in 2005, 2014
and 2019, and analyzes spatiotemporal risk variations over the past 15 years. The results show that
most high-risk areas were affected by high-temperature hazards. Over time, the hazard, exposure,
vulnerability and risk levels increased by 25.82%, 3.31%, 14.82% and 6.97%, respectively, from 2005–
2019. Spatially, the higher risk in the northwest is mainly distributed in Jakarta. Additionally, a
comparative analysis was conducted on the risk results, and the results showed that the 100-m scale
showed more spatial differences than the kilometer scale. The research results in this paper can
provide scientific advice on heat wave risk prevention considering the Jakarta-Bandung high-speed
railway construction and regional economic and social development.

Keywords: heat waves; hazard; exposure; vulnerability; remote sensing; Jakarta-Bandung high-speed
railway

1. Introduction

In the Intergovernmental Panel on Climate Change (IPCC) Special Report on Global
Warming of 1.5 °C, it is estimated that human activities have caused approximately 1.0 °C
of global warming over preindustrial levels, with a likely range from 0.8 °C to 1.2 °C [1].
Global warming is projected to intensify heat wave events, with a trend toward an increased
frequency, intensity and duration [2–4]. A total of 70,000 people perished in a heat wave in
Europe in 2003 [5], and a heat wave lasting three weeks in Russia caused approximately
56,000 deaths in 2010 [6], while a heat wave in Pakistan killed more than 200 people within
a week in 2015 [7]. In April 2016, heat waves occurred in several countries in Southeast
Asia, severely affecting crop growth and causing social hardship [8]. The direct adverse
effects of heat waves also include: power shortages [9,10], agricultural losses [11,12],
and infrastructure damage [13]. The impact of heat waves on human health and global
socioeconomic activities is becoming increasingly severe and is now the leading cause of
weather-related illnesses and death globally [5,14]. Therefore, heat waves are highly valued
in the field of extreme weather, and the identification and assessment of the heat wave
risk (HWR) have become the basis and important foundation for disaster mitigation and
development of emergency management responses.

The Jakarta-Bandung high-speed railway (JBHSR) is Indonesia’s first high-speed
railway, connecting Jakarta with Bandung, and is one of the key nodes along the Belt and
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Road initiated by China, with an important demonstration and leading role [15]. The
JBHSR is located close to the equator, and the region remains hot year round. Regional
disasters are frequent, with meteorological and hydrological disasters accounting for 77%
of all disasters in Indonesia between 1815 and 2011 [16], and among these disasters, heat
waves represent one of the most frequent meteorological disasters. At present, there are few
reports on heat wave studies in the area, with a notable lack of fine-scale HWR assessment
results to scientifically guide local governments, people and construction companies in
the development of effective HWR prevention and response measures. Moreover, high-
speed railway construction certainly produces great demographic, economic and social
development along the route, which can cause spatiotemporal HWR changes. Therefore, it
is important to conduct HWR assessment in this region.

A review of the current literature on HWR assessment worldwide reveals the fol-
lowing problems: (1) In terms of the time scale, most of the studies on HWR changes at
long time scales are based on meteorological station data, and only indicators of the heat
wave intensity, frequency and duration are chosen [17–21], or indicators such as the effec-
tive cumulative temperature calculated considering meteorological station temperature
data [22] to study heat waves in a particular region over decades. However, studies based
on meteorological station data consider only one station to represent the temperature of
the whole city, or when the study area is large, the variability in heat waves is mostly
studied via interpolation of station-measured temperatures [20,21,23]. Although the above
methods can suitably analyze changes over time on a yearly scale, the spatial scale is
coarse (10–50 km), and only analyses from the perspective of heat wave hazards have been
conducted. This ignores the uneven distribution of the temperature within cities caused
by the topography, natural environment and urban heat island effect and fails to reveal
the spatial differences in temperature within regions. (2) In recent years, the accelerating
urbanization process has led to further intensification of the urban heat island effect. Kazak
utilized land use data to construct a decision support system and found that areas with a
concentration of large cities have higher levels of potential UHI exposure [24]. Numerous
scholars have shown that urban heat islands have a synergistic relationship with heat
waves [25–27]. During heat waves, urban residents are exposed to more severe and sus-
tained heat stress [28], and the morbidity and mortality of residents are increased [29–31].
Fischer considered urban models and found that heat stress in cities would be greatly
increased during heat waves [32]. Thus, humans, as the main bearers of heat waves are
also increasingly affected by heat waves. In recent years, an increasing number of scholars
have paid attention to the impact of heat waves on human health [33–35]. Studies on the
impact of heat waves on human health should consider not only the impact of heat on
humans but should also include a comprehensive assessment of the HWR in conjunction
with factors such as natural and socioeconomic environments [5,36,37]. Estoque considered
the land surface temperature (LST), population and economy factors [33]. Jackson selected
sociodemographic, ambient temperature distribution, and shelter availability factors [36].
However, in this type of study, the risk of heat waves is usually studied for a single heat
wave event or on a one-year time scale, and only the spatial distribution of high- and
low-risk areas can be obtained. A multiyear (long time scale) HWR study provides a
more realistic meaning, because it not only clarifies the spatial distribution of high- and
low-risk areas but also identifies the overall HWR trends and the evolution of risk hotspots
and predicts future risk trends. In conclusion, in regard to the spatiotemporal scale, the
current research does not satisfy the realistic guidance needs of regional disaster prevention
and mitigation.

The risk assessment along the JBHSR has not been studied until now. Only a few
scholars have conducted some studies on the central cities (provincial capitals or national
capitals) in Indonesia, covering a few themes, such as land use, urban heat island, and
natural hazard vulnerability [38,39]. Relevant studies at the kilometer scale have been
carried out for Indonesia regions in our previous work, which better represent the spatial
differences in regional HWR and can be applied to regional disaster prevention and
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mitigation guidance. However, it is found that, spatially, the kilometer scale cannot reflect
the spatial differences within a small region, and temporally, it cannot reflect the trend of
risk changes and predict the future development trend of risk.

Therefore, this paper, after interviewing relevant experts many times, determines
an index system for the HWR, applies Landsat data to obtain finer-scale LST data via
inversion, and combines multisource fine-scale remote sensing data to carry out a study on
the spatiotemporal changes in the HWR at the 100-m scale over the past 15 years (2005,
2014 and 2019). This study can provide a reference for regional disaster prevention and
mitigation decisions, scientific warning and prevention systems of high-temperature risks
and implementation of adaptation measures.

2. Materials and Methods
2.1. Study Area

The JBHSR is located in northwestern Java, Indonesia, between 5°54′-7°19′ S and
106°42′–107°54′ E (Figure 1). The region is bordered by Banten Province in the west
and the Java Sea in the north, and the JBHSR connects Jakarta, the capital of Indonesia,
with Bandung, the capital of West Java, passing through Bekasi city, Bekasi Regency,
Karawang Regency, Puwakarta Regency, West Bandung Regency, Cimahi city and Bandung
Regency. The region is located in the tropics and is hot and humid year round. The highest
temperature reaches 37.8 °C, the lowest temperature is 11.2 °C, and the relative humidity is
above 70%. Due to the unique geographical location of the region, a rainy season, which is
influenced by the northwest monsoon, lasting from November to March each year, and a
dry season, which is influenced by the southeast monsoon, lasting from April to October
each year, can be distinguished. The average annual precipitation exceeds 2000 mm. The
regional landscape is complex, with alluvial plains, denuded remnant hills and gentle
slopes, hills, low hills and intermountain basins, with the terrain gradually increasing from
northwest to southeast [40].

According to historical data acquired from meteorological stations in the study area,
51 heat waves occurred from 1973–2018 (station: Tangerang/Budiarto Airport; 967390),
mainly concentrated from September-November, with 17 heat waves occurring in Septem-
ber, accounting for 33.3% of the total number of heat waves (Figure A1). After data
cleaning and filtering of the remaining data, the historical average maximum temperature
in September recorded at this site was obtained, indicating an upward overall trend.

2.2. Data Collection and Preprocessing

(1) Land surface temperature (LST) data. The LST was selected as a remote sensing
indicator for HWR assessment [41]. Landsat-5 and Landsat-8 data were obtained to
determine the LST via inversion with the radiative transfer equation method [42]. Statistical
analysis revealed the highest frequency of heat waves in September in the study area, and
only three years (i.e., 4 September 2005, 13 September 2014, and 11 September 2019) were
selected for analysis, as Landsat data from 2010 or years near 2010 were more heavily
influenced by clouds, and the data were of a poorer quality. The data with a spatial
resolution of 30 m were resampled to 100 m.

(2) Population data. The data were freely downloaded from WorldPop [43] at a
spatial resolution of 100 m [44]. This paper adopted population data for 2005, 2014 and
2019, including the population count, population of elderly individuals (>65 years) and
population of young individuals (<5 years).

(3) Nighttime light (NTL) data. These data were derived from the corresponding
dataset in the Figshare repository [45], which is a harmonized global NTL dataset from
1992–2018 [46]. The data resolution is 1 km, which was resampled to 100 m.

(4) Medical facility point data and road data. These data were sourced from Open-
StreetMap [47] and extracted by the attribute in ArcGIS.

(5) The acquired remote sensing index data included normalized difference vegetation
index (NDVI), modified normalized difference water index (MNDWI) and impervious
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surface data. NDVI and MNDWI data were obtained via the band math function in ENVI
software (Boulder, CO, USA). Impervious surface data were first obtained with the band
math function to retrieve NDBI data, and areas with NDBI values > 0 were then extracted
as impervious surfaces, and areas with NDBI values < 0 were treated as pervious surfaces.
The data with a spatial resolution of 30 m were resampled to 100 m.

Figure 1. The location of the study area.

2.3. Methods
2.3.1. Heat Wave Risk Assessment Framework

Our study builds upon other previous related studies employing remote sensing and
socioecological data [14,48]. The implemented heat wave HWR assessment approach relies
on the IPCC conceptual risk framework reported in AR5, in which the risk is a function of
hazard, exposure, and vulnerability [49].

(1) Hazard
A hazard refers to “the potential occurrence of a natural or human-induced physical

event or trend or physical impact that may cause loss of life, injury, or other health impacts,
as well as damage and loss to property, infrastructure, livelihoods, service provision,
ecosystems, and environmental resources” [49]. The intensity, duration, frequency and
extent of the occurrence are important contributors to the hazards of heat wave-related
disasters [50]. Traditional temperature acquisition mainly involves meteorological stations,
but meteorological data are acquired over a long period and limited in scope and cannot
meet the requirements of large-scale spatial analysis. In contrast, the LST is an important
factor in monitoring the dynamics of the resource environment, and several studies have
indicated a linear relationship between the temperature and LST [51,52]. In conjunction
with previous studies, an intensity indicator of the LST was selected to assess the hazard
level of heat waves.
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(2) Exposure
Exposure refers to “the presence of people, livelihoods, species or ecosystems, envi-

ronmental functions, services, and resources, infrastructure, or economic, social, or cultural
assets in places and settings that could be adversely affected” [49]. In this paper, risk
assessment focused on the impact of risk on people, and therefore, only the population
was selected as an exposure evaluation indicator. The more densely populated an area, the
more severely it is likely to be affected by heat waves.

(3) Vulnerability
Vulnerability refers to “the propensity or predisposition to be adversely affected [and]

encompasses a variety of concepts and elements, including sensitivity or susceptibility to
harm and lack of capacity to cope and adapt” [49]. Infants and elderly individuals are
considered heat-sensitive individuals due to their relatively low physiological capacity,
resistance and immunity to disease and heat [5,53]. The economic level reflects the regional
resilience and coordination during emergencies [28]. Previous studies have demonstrated
that NTL data can effectively reflect the level of economic development [54]. Vegetation
and water coverage plays an important role in regional cooling, and the level of vegetation
and water coverage is closely related to the health risk of heat waves [55]. Numerous
studies have indicated a significant positive correlation between the level of built-up land
coverage and population heat-related morbidity and mortality [56]. Medical resources
and their accessibility also constrain the average ability of people to resist and adapt to
high temperatures from the top down. Therefore, based on the characteristics of heat
waves and considering the availability of data, eight composite indicators were selected
for vulnerability analysis: population of elderly individuals (>65 years), population of
young individuals (<5 years), economic level, distance to a hospital, distance to a road,
vegetation coverage, water coverage and impervious surfaces.

2.3.2. Construction of HWR Assessment Model

(1) Data grading
To analyze the spatiotemporal variability in hazard, exposure, vulnerability and risk

levels over time, the indicators must be graded according to a uniform standard (Table A1).
This is accomplished by using the reclassification tool in ArcGIS to grade each indicator
and assign a value from 1–5. The impervious surface data were binarized, and a value of 1
was assigned to impervious surfaces, while a value of 0 was assigned to pervious surfaces.

(2) Data normalization
To eliminate any differences in the magnitude, scale and attribute between the various

indicators, the raw data are normalized via the polarization method before each index is
calculated. The equations are expressed as follows (Equations (1) and (2)):

Positive indicators:
Ri =

xi − xmin
xmax − xmin

(1)

Negative indicators:

Ri =
xmax − xi

xmax − xmin
(2)

where Ri denotes the normalized value of the i-th indicator (i = 1, 2, 3....., n), xi is the
actual value of each indicator, and xmax and xmin are the maximum and minimum values,
respectively, of each indicator.

(3) Calculation of each factor index
The hazard index (HI), exposure index (EI) and vulnerability index (VI) are calculated

as follows (Equations (3)–(5)):

HI =
1
n

n

∑
i=1

Ri (3)

where Ri denotes the normalized value of the i-th indicator in the hazard layer (i =
1, 2, 3....., n).
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EI =
1
n

n

∑
i=1

Ri (4)

where Ri denotes the normalized value of the i-th indicator in the exposure layer (i =
1, 2, 3....., n).

VI =
1
n

n

∑
i=1

Ri (5)

where Ri denotes the normalized value of the i-th indicator in the vulnerability layer
(i = 1, 2, 3....., n).

The risk index (RI) is calculated based on the above three risk components by using a
weighted arithmetic approach, as expressed in Equation (6):

RIi = WHi × HI + WEi × EI + WVi ×VI (6)

where WHi , WEi and WVi denote the weight values corresponding to the hazard, exposure
and vulnerability, respectively, obtained from the i-th expert questionnaire.

By using 12 sets of relative weights derived from questionnaire surveys of 12 experts
(Table A2), 12 risk assessment results were derived in the whole process [33]. The average
value of the 12 risk assessment results was calculated to obtain the final heat wave risk
index (HWRI).

HWRI =
1
12

n

∑
i=1

RIi (7)

In the above equation, i = 1, 2, 3....., n, and n = 12.
Finally, the corresponding layers for 2014 and 2019 were graded considering each

index layer based on the thresholds determined in 2005 according to the natural interval
method [41,57]. Each index layer was classified into five levels (very low, low, medium,
high and very high), and the grading thresholds for each index layer are listed in Table A3.

3. Results
3.1. Analysis of the Spatiotemporal Variability in the Heat Wave Risk
3.1.1. Hazard

Figure 2 shows the spatial distribution of the regional heat wave hazards along the
JBHSR from 2005 to 2019. In terms of the overall distribution of hazards, the areas with
higher hazard levels were mainly located in Jakarta, Bekasi, Bandung and Cimahi. In terms
of the overall trend, the hazard level indicated a significant increasing trend from 2005
to 2019.

Figure 2. Spatiotemporal variation in the heat wave hazard ((a) 2005, (b) 2014, (c) 2019).

Combined with Table A4, it is found that the proportion of very high-level hazards
changed the most, increasing from 13.66% in 2005 to 39.48% in 2019, which is an increase of
25.82% over the past 15 years. The remaining four grades of hazards all indicated varying
degrees of decreasing trends.
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In conjunction with Figure 2, the observed variation was largely reflected spatially:
(1) In the four cities of Jakarta, Bekasi, Bandung and Cimahi, the LST in most areas roughly
remained above 35 °C in 2005, and at the center of these cities, the LST reached above 38 °C.
By 2014, the range of the temperature distribution expanded outwards. By 2019, the LST in
almost all areas of the four cities reached 38 °C or higher. The maximum temperature also
increased from 44 °C in 2005 to 45 °C in 2014 and reached as high as 47 °C by 2019. This
change mainly occurred because Jakarta is the economic, political and cultural center of
Indonesia, and Bandung is the capital of West Java, while Bekasi and Cimahi, as two major
cities in close proximity to both the capital and provincial capital, experienced a notable
increase in population, with increasingly dense buildings and more vehicles over the past
15 years, resulting in increasingly pronounced urban heat island effects. (2) The changes in
Bekasi, Karawang and Puwakarta counties were also noteworthy. Due to their proximity
to the Java Sea and the influence of the sea and monsoons, northern Bekasi and northern
Karawang regencies attained a lower LST than that of inland areas. The region exhibited
a low risk level in 2005, a medium risk level in certain areas by 2014, and a medium risk
level in almost all areas by 2019, with scattered areas even indicating a very high risk level.
Southern Bekasi and southern Karawang counties, in addition to northern Puwakarta
County, revealed large contiguous areas with the LST reaching or even exceeding 38 °C in
2019. Combined with the land cover, it is clear that these areas are predominantly urban
areas which have also experienced high urbanization rates and the consequent accelerated
LST increases during the fifteen-year period of interest.

3.1.2. Exposure

Figure 3 shows the spatial distribution of heat wave exposure along the JBHSR from
2005–2019. Humans are the main exponents of heat wave disasters, and the more densely
populated a given area, the more severe the impact and the higher the exposure level will
be. In terms of the overall exposure distribution, the areas with a higher exposure are
mainly located in Jakarta, Bekasi, Bandung and Cimahi. In terms of the overall trend, the
exposure levels indicate an increasing trend from 2005 to 2019.

Figure 3. Spatiotemporal variation in the heat wave exposure ((a) 2005, (b) 2014, (c) 2019).

Combined with Table A5, the proportion of the very low exposure level changed the
most, decreasing from 61.62% in 2005 to 48.99% in 2019, a total decrease of 12.63%. The
remaining four exposure grades maintained a slow increasing trend, with the change in
each grade reaching 5.85% (low), 1.66% (medium), 1.83% (high) and 3.30% (very high).

Spatially, this change is mainly evident in central Bekasi County, central Karawang
County and northern Bandung County. The central areas of these three counties host
numerous towns, and these areas have gradually shifted over the past 15 years from areas
with low exposure levels to areas with medium and high exposure levels as the population
has grown and cities have expanded. In Bekasi and Bandung counties, there are even
scattered areas with a very high exposure level. Exposure has also increased in Jakarta,
Bekasi, Cimahi and Bandung. Combined with the demographic statistics of Indonesia,
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this change can be explained by the fact that the Indonesian population has grown over
the years, and the population of Indonesia reached approximately 263 million people by
2017. Moreover, 60% of the population is concentrated on the island of Java, which is
host to a population of 145 million people (2015) and a density of 1121 people per square
kilometer, making the island the most populous Indonesian island and one of the most
densely populated islands globally. The increasing number of people and the population
density in the study area has resulted in a trend of increasing exposure to heat waves across
the region.

3.1.3. Vulnerability

Figure 4 shows the spatial distribution of the heat wave vulnerability along the JBHSR
from 2005–2019. In terms of the overall vulnerability distribution, most areas exhibit high
vulnerability levels. In terms of overall trends, the vulnerability level indicates a notable
increasing trend from 2005 to 2019.

Figure 4. Spatiotemporal variation in the heat wave vulnerability ((a) 2005, (b) 2014, (c) 2019).

In conjunction with Table A6, the proportion of the very high vulnerability level
changed the most, increasing from 20.31% in 2005 to 35.13% in 2019, an increase of 14.82%
over the past 15 years. The remaining four vulnerability grades all demonstrated varying
degrees of decreasing trends.

The reasons for the change in vulnerability include, on the one hand, the overall lack
of health care resources, and on the other hand, the economic level, although an overall
growth trend is maintained. Notable vulnerability variation is concentrated in large cities
such as Jakarta and Bandung, with a much lower economic growth level in suburbs far
from cities than the per capital level. Road facilities are quite poor, with only one highway
between the two major cities of Jakarta and Bandung and only one light rail line in Jakarta,
which opened in 2019, resulting in unbearable traffic jams and preventing timely access to
medical treatment in the event of heat waves. Continued city expansion has encroached
on previously cultivated grassland and woodland areas, thereby reducing the vegetation
coverage and increasing the urban building coverage, further exacerbating the urban heat
island effect. Of particular interest is Jakarta, where the overall vulnerability level was low
in 2005, but this city has changed the most notably over the last 15 years, with most of
Jakarta attaining a relatively high vulnerability level in 2019. The city is densely populated
and contains relatively abundant medical resources. While the medical resources in large
cities have improved the human capacity to respond to disasters to a certain extent, this
has been accompanied by the reality of an increasingly aging population and rising birth
rates, which have exerted much pressure on these cities. In summary, from 2005–2019,
despite a slight increase in health care resources and an increase in economic level, the
overall vulnerability still increased due to multiple factors. Therefore, there is an urgent
need to identify the contributing factors as a means of reducing the impact of heat waves
on humans.
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3.1.4. Risk

Figure 5 shows the spatial distribution of the HWR along the JBHSR from 2005–2019.
Overall, there occurs significant spatial variation in the HWR. Jakarta achieves the highest
risk level. In terms of the overall dynamics, the risk level notably increases from 2005
to 2019.

Figure 5. Spatiotemporal variation in the heat wave risk ((a) 2005, (b) 2014, (c) 2019).

Based on Table A7, all four risk grades notably varied except the low risk level. Among
these levels, the very low risk level changed the most, decreasing from 31.16% in 2005 to
11.47% in 2019, a decrease of 19.69% over 15 years.

Combined with Figure 5, the following is observed in space: (1) the above changes
are mostly reflected in the four larger cities of Jakarta, Bekasi, Bandung and Cimahi. In
2005, although most areas occurred at a very high risk level, a high risk level was observed
in suburbs farther away from the city center, but by 2019, almost all areas of the four
cities had reached a very high risk level. The main reasons for this change include the
increasing number of buildings, the development of large amounts of arable grassland
for building purposes, the increase in vehicles within the city and the emission of gases
such as carbon dioxide, all of which cause higher heat accumulation in the city, a more
severe urban heat island phenomenon and a rapid increase in the LST. City development
has also attracted more people, thus increasing the exposure to heat waves once again.
The level of medical care and various infrastructures within cities yield a major advantage
over rural areas, resulting in a large aging population, with a relatively high birth rate
and therefore an increasing vulnerability. The combination of these effects has resulted
in an overall increasing risk level in the region. (2) Areas of concern also include the
interior of Karawang, Bekasi and Puwakarta counties, all of which contained scattered
small areas with a high risk level in 2005. By 2014, high-level risk areas had expanded
outwards, resulting in contiguous areas and scattered areas with a very high risk level.
By 2019, this expansion trend continued, and contiguous areas with a very high risk level
emerged. Combined with the land cover, the scattered small high-grade areas in 2005
encompassed urban areas, covered by a large number of buildings and surrounded mostly
by cultivated grasslands, while in the northern part of Karawang and Bekasi counties,
farmers took advantage of the unique geographical location to create many fish ponds and
salt pans. Economic development has led not only to urban expansion in large cities but
also to expansion and development of urban areas, conversion of large amounts of arable
forestland into construction land, reduction in vegetation coverage and population growth
in the area, with a number of factors leading to an increasing HWR.

3.2. Comparative Analysis of the Heat Wave Risk Results

By comparing the results with the 2015 global standard heat wave index distribution
of Raei [50] and the Belt and Road regional HWR assessment of Yin [21], it is concluded
that the regional HWR at the kilometer scale agrees well with that determined in previous
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large-scale studies in terms of the overall dynamics. The risk is higher in the northwestern
part of the study area and the highest in the Jakarta region.

Despite the differences in assessment methods, data, and indicator selection and
grading standards, the results of this assessment inevitably differ from previous research
results. However, in terms of the overall risk trend, the obtained HWR assessment results
at the 100-m scale agree well with those at the kilometer scale (Figure 6). To further validate
the results of this paper, Figures A2 and A3 show interpolated daily maximum temperatures
and historical heat wave frequency values determined based on meteorological station
data, which shows that the risk level in Jakarta in the northeast is notably higher than that
in the other regions. In summary, the findings of this paper are credible.

Figure 6. Heat wave risk distribution map ((a) 2015 km scale, (b) 2014 hundred meter scale).

3.3. Analysis of the Heat Wave Risk Variation Based on the Subdistrict

ArcGIS was applied to spatially link HWR raster data with subdistrict vector data to
obtain a map of the HWR levels at the subdistrict scale (Figure 7).

Figure 7. Map of the subarea-scale heat wave risk level ((a) 2005, (b) 2014, (c) 2019).

The risk level zoning results indicate that there are 205 administrative units at the
subdistrict scale (Tables A8 and A9). Sixty-nine zoning units occurred at a very high risk
level in 2005, increasing to 84 in 2014 and 91 in 2019, while the number of zoning units in
very high-risk areas accounted for 44.39% of all zoning units by 2019. The very high-risk
areas were concentrated in Jakarta, Bekasi, Cimahi and Bandung, and the high-risk areas
exhibited an expansion trend toward surrounding areas over the past 15 years. By 2019,
all three cities of Jakarta, Bekasi and Cimahi had attained a very high risk level. These
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areas are characterized by dense populations, high concentrations of urban buildings,
more frequent summer heat processes and heat wave events, and a higher human health
risk associated with hot weather conditions. Moreover, although medical resources are
relatively abundant in these areas, the total amount remains insufficient to alleviate the
summer heat risk.

3.4. Heat Wave Risk Analysis Based on High-Speed Rail Stations

The JBHSR line currently encompasses four high-speed railway stations, namely,
Harlem, Karawang, Walini and TegalTuar. Analysis of the change trends of the HWR near
these stations can provide scientific recommendations for urban structure planning and
adaptation measures along the JBHSR. We adopt ArcGIS to generate multiring buffer zones
centered on the above stations and overlay risk layers to determine the risk change trend in
1-, 3- and 5-km areas around each station. According to Figure 8, overall, the risk around
each station demonstrates an increasing trend from 2005–2019. The risk level around each
station reveals the following sequence: Halim > TegalTuar > Karawang > Walini.

3.5. Identification and Analysis of the Driving Factors of the Heat Wave Risk

In addition to the identification of high-risk areas, it is important that decision makers
recognize the risk factors that play a dominant role in shaping these high-risk areas. Here,
pixels with high and very high risk levels are considered potential high-risk areas. The
hazard, exposure and vulnerability indices were also reclassified into two classes in the
same manner. The main drivers leading to potential high-risk areas along the JBHSR were
thus identified (Figure 9). For example, the H-V (hazard-vulnerability) label indicates that
both the hazard and vulnerability levels are high in the corresponding area, while the
exposure level is low. Therefore, the aspects of hazard and vulnerability are defined as
drivers of high risk.

As indicated in Table A10, risk areas driven by a single factor exhibited a decreasing
trend over the last 15 years. The majority of the high-risk areas were influenced by high-
temperature hazards and revealed an increasing trend over the past 15 years. There are
three types of high-risk areas that greatly changed and accounted for a high proportion
of the risk areas: areas influenced by the synergistic hazard-exposure-vulnerability effect,
areas influenced by the synergistic hazard-exposure effect, largely located in Jakarta,
Bandung, Bekasi and Cimahi, and areas influenced by the synergistic hazard-vulnerability
effect, mainly located at the centers of certain districts.

Figure 8. Cont.
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Figure 8. Spatiotemporal variation in the heat wave risk around each Jakarta-Bandung high-speed
railway station from 2005 to 2019.

Figure 9. Leading factors of the heat wave risk ((a) 2005, (b) 2014, (c) 2019).

4. Discussion

Previous studies have shown that there is an urgent need for more spatial specificity
in HWR assessment under a geospatial framework [5,58,59]. In this study, the remote
sensing-based HWR assessment method can demonstrate the distribution of risk at the
pixel level. Moreover, this paper conducts research based on the 100-m scale, which
effectively improves the spatial granularity of the data compared to existing studies (in
which provinces, cities, or counties were the smallest research units), and the maps are more
informative and intuitive, which is more helpful for communicating and understanding
specific human risks. To the best of our knowledge, this is the first HWR map along the
JBHSR, and the first spatial and temporal map of HWR at the 100-m scale in the world
based on the region along the high-speed railway and taking into account the distribution
of the natural and socio-economic environments. With limited cost, time, and labor, this
study is particularly valuable in guiding local decision makers to proactively develop
adaptation strategies for mitigation interventions and climate impacts [60]. The method
can also provide new ideas for HWR assessment in countries along the Belt and Road.
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In the absence of spatially explicit population distributions, previous studies have
opted to use a proxy index, called the elevation-adjusted human settlement index, which
can be produced by using a set of remotely sensed data, including a nighttime lights dataset,
a vegetation index, and a digital elevation model [5,14,41]. Fortunately, the downscaling of
population data has improved in recent years. Global gridded population data are now
available at various spatial resolutions and time points. For instance, WorldPop provides
gridded population data products with a spatial resolution of 100 m for the corresponding
year [44]. Estoque et al. have demonstrated that this dataset has a significant positive
correlation with census data (R2 = 0.9926) [33]. This paper takes full advantage of this
dataset to obtain finer spatialized population data, which not only improves the accuracy
of the overall risk assessment but can also effectively overcome the difficulty of obtaining
detailed socioeconomic statistics for many countries, and can provide a new way to obtain
data for HWR assessment in the countries along the Belt and Road.

Most previous studies have focused on quantifying heat vulnerability and heat health
risks in urban environments. This study takes a different approach by selecting the strategi-
cally important area along the JBHSR, which has a complex landscape and passes through
towns with different levels of development and different sociodemographic population
characteristics. The 2005 vulnerability map of the region along the JBHSR (Figure 5) is
consistent with studies by Sheridan and Dolney [61], Wu et al. [62], Henderson et al. [63]
and Hu et al. [5] that show that rural populations are more vulnerable to extreme heat
than urban populations. Urban areas are usually better able to adapt to extreme heat than
rural areas, probably because they have higher socioeconomic status and better medical
resources [62]. In addition, a population cross-sectional survey in Guangdong Province,
South China, showed that rural populations have very low perceptions of HWR and rarely
take adaptive measures during heat waves [64]. The vulnerability maps for 2014 and 2019
(Figure 5) for this study area show high vulnerability not only in rural areas but also in
urban areas, which is consistent with the study by Aubrecht and Ozceylan [65], which
showed high vulnerability in the U.S. Capital Region. Vulnerability shows an overall trend
of increasing over time. The explanations of this trend may be diverse: first, as cities grow,
green spaces decrease and impervious surfaces increase, making urban heat islands more
severe; second, due to data limitations, road and hospital data, the constant 2014 data
(OpenStreetMap) was used, which has an impact on the assessment of dynamic changes
in vulnerability.

For indicator weights, this paper uses a combination of equal weights and relative
weights. Although the literatures present different contributions of environmental, demo-
graphic, and socioeconomic indicators, there is not yet an accepted standard weight for
each indicator [66,67]. Therefore, most previous studies have assumed equal importance
and set equal weights. In this paper, equal weights are used within specific risk compo-
nents. In addition, in calculating the risk, this paper uses a relative weight based on expert
judgment and is obtained by Estoque et al. through a questionnaire filled out by experts in
several fields, with a certain degree of objectivity and reliability [33].

However, there remain certain aspects that should be improved in this paper. (1) In
terms of hazards, this paper employs the LST, which only considers the effect of temperature
on humans, but the effect of heat waves on humans is also influenced by the relative
humidity and wind speed [28]. Furthermore, the hazard indicators selected in this paper
only include the heat wave intensity, while the heat wave frequency and duration are also
crucial in the heat wave process. In future studies, we will consider apparent temperature
data to characterize heat wave hazards [68], and we will add frequency and duration
indicators. (2) The lack of detailed data also imposes some limitations on the study
presented in this paper, for example, heat sensitivity data (e.g., people’s physical health
status) or adaptive capacity data (e.g., air conditioning ownership, education or literacy
rates, etc.). However, all of these indicators mentioned, including those considered relevant
but not mentioned, need to be explored and will be considered for inclusion in future
updates of this study once city-level or more detailed-level data are available. (3) Heat
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waves can be fatal in severe cases, so the number of heat-related deaths or the incidence of
heat-related mortality best validates the HWR [5,21], but these data are currently difficult
to obtain. The extraction of heat-related mortality data from all-cause mortality data
and mortality data related to various diseases will be a key focus of future HWR studies.
(4) Although Landsat data provide a high spatial resolution and can be applied in fine-
scale studies, due to their low temporal resolution, the two images obtained in this paper
pertaining to the same period (the same day) do not completely cover the entire study area,
resulting in a missing lower right corner of the research results in this study. Therefore,
data acquisition at a high spatial resolution and high coverage will also become a focus of
further exploration, and future research will attempt to solve this problem based on MODIS
data, combined with downscaling algorithms. (5) The importance of each assessment
factor (population of elderly individuals, population of young individuals, economic
level, hospital/road distribution, vegetation/water coverage, impervious surface) was not
differentiated when conducting the vulnerability assessment. In fact, each factor contributes
differently to the heat wave risk [21,41]. However, there is currently no uniformity in the
determination of the weights of each indicator in heat wave risk evaluation. How to
determine more objective and reasonable indicator weights when each influencing factor
has a different degree of influence on the overall risk evaluation will also be the focus of
future research on risk assessment.

Furthermore, (1) The resolution of NTL data used in this paper is 1 km. Chen published
the latest NTL data, which is a long time series with 500 m resolution [69]. In future research,
the 500 m resolution NTL data will be used to replace the 1 km NTL data, which will further
improve the evaluation accuracy. (2) The spatial advantage of surface temperature data
is more prominent; however, its temporal accuracy is lower and it is more seriously
affected by clouds. The time series of meteorological station data is more complete, but
its spatial accuracy is limited and cannot reflect the spatial variability of temperature in a
region [23,48]. In the future, we will try to combine RF (Random Forest) and LSTM (Long
Short-term Memory) algorithms to build a fine-scale temperature dataset with a complete
time series. Using this dataset to calculate heat waves will also increase the accuracy
of the data to a certain extent, thereby improving the accuracy of the risk assessment
results. (3) The study of spatiotemporal changes in the HWR over long time series is of
great practical significance in revealing the evolution of risk hotspots, HWR development
trends and disaster response and prevention patterns. In future studies, the time series
will be further increased to include years before 2005 (2000, 1995, 1990, etc.) to explore the
spatiotemporal variation in the HWR over a longer time series. Given a longer time series,
the impact of additional sensitivity indicators (GDP, population, etc.) on the HWR can
be further clarified. Moreover, we will perform a long-term follow-up assessment of the
HWR in the region after JBHSR completion in the future. This study can provide a good
reference case for research on the changes in HWR caused by regional development along
high-speed railways in more countries, which is highly important. (4) Combined with the
changes in population size and GDP per capita over the last 50 years in Indonesia, it is
clear that the influencing factors have notably changed over the last 50 years and that with
rapid socioeconomic development, the rate of increase in the population size and GDP
will further increase and heat waves will become more severe. Therefore, in future HWR
studies, the analysis frequency should be increased, and a time interval of three years, two
years, or even one year should be chosen in the examination of spatiotemporal change
patterns. (5) Combined with previous studies, it is predicted that the excess mortality of
the population of elderly individuals due to heat waves will notably increase against the
background of global warming [14,29]. However, with social progress and the increasing
availability of healthcare resources, population aging is becoming a common phenomenon
worldwide. Therefore, in future studies on HWR assessment, there is a need to not only
analyze the overall risk of elderly individuals as a highly sensitive population group but
also to further explore the relationship between heat and excess mortality among elderly
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individuals and to formulate scientific recommendations to mitigate the impact of heat
waves on this demographic group.

5. Conclusions

Assessments of extreme heat vulnerability and risk are mostly studied for a single heat
wave or on a one-year time scale, but HWR assessment on long time scales is rarely carried
out. Within the general framework of the main determinants of risk (hazard, exposure,
and vulnerability), we conducted a comprehensive, spatially explicit, and long time series
analysis to assess the HWR and the spatiotemporal variability of the risk along the JBHSR.
Multi-sensor remote sensing data, demographic and socioeconomic data, and geographic
information system (GIS) technology were used to calculate the HWRI and to develop
a raster map of the spatial distribution of HWR at the 100-m scale for the last 15 years
(2005, 2014, and 2019). Heat wave risk is spatially highly variable. The higher risk areas
are concentrated in Jakarta, Bandung, Bekasi and Cimahi, which mainly reflect the urban
heat island effect and population exposure. Heat wave risk shows a significant upward
trend from 2005–2019. Second, we qualitatively validated the regional HWR distribution
by combining the results of previous research on a large scale and risk assessment at the
kilometer scale, and the results showed good agreement with previous studies in terms of
overall distribution trends. Finally, we explored the driving factors for the high-risk region,
and the results showed that the study area was most severely affected by the heat hazard.

Our findings show that heat hazard is the most significant contributor to higher
risk areas within the experimental study area, especially in large cities such as Jakarta
(Figure 9). It was also found that the areas of high risk caused by a single factor are
decreasing, and the areas of high risk caused by the synergistic effect of risk, exposure,
and vulnerability are increasing (Table A10). In light of these findings, it is recommended
that, on the one hand, measures to reduce or mitigate the intensity of heat hazards be
considered, and in this regard, various measures related to urban development (e.g., the use
of highly resilient materials in building design, the use of cool-toned materials on roofs and
streets, and the implementation of urban greening strategies) are current research priorities
in this field [70,71]. On the other hand, optimizing the structure of town construction,
increasing medical resources, and increasing infrastructure such as summer facilities can
be considered.
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Abbreviations
The following abbreviations are used in this manuscript:

HWR Heat Wave Risk
JBHSR Jakarta-Bandung high-speed railway

Appendix A

Figure A1. Average maximum temperature in September along the Jakarta-Bandung high-speed
railway.

Figure A2. Map of the daily maximum temperature ((a) 4 September 2005, (b) 13 September 2014, (c)
11 September 2019).

Figure A3. Map of frequency of historical heat waves.
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Appendix B

Table A1. Grading standards for each indicator.

Indicators 1 2 3 4 5

LST (°C) <5 25∼30 30∼35 35∼38 >38
Population count <10 10∼25 25∼50 50∼100 >100

MNDWI −1∼0 0∼0.2 0.2∼0.4 0.4∼0.6 0.6–1
NDVI −1∼0.2 0.2∼0.4 0.4∼0.6 0.6∼0.8 0.8–1

>65 years <2 2∼4 4∼6 6∼8 >8
<5 years <4 4∼8 8∼12 12∼16 >16

Economic level (DN value) 0∼13 13∼24 24∼39 39∼53 53∼63
Distance to a road (m) 0∼500 500∼1000 1000∼3000 3000∼5000 >5000

Distance to a hospital (m) 0∼1000 1000∼3000 3000∼5000 5000∼8000 >8000

Table A2. Relative weight values [33].

Components AHP Weights
1 2 3 4 5 6 7 8 9 10 11 12

Hazard 0.10 0.65 0.16 0.08 0.07 0.06 0.10 0.13 0.33 0.13 0.09 0.74
Exposure 0.64 0.07 0.30 0.66 0.68 0.60 0.64 0.60 0.33 0.46 0.32 0.08

Vulnerability 0.26 0.28 0.54 0.26 0.25 0.35 0.26 0.28 0.33 0.42 0.59 0.18

Table A3. Grading thresholds for each factor in 2005.

Grades Very Low Low Medium High Very High

Hazard 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1
Exposure 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1

Vulnerability 0–0.3103 0.3103–0.4055 0.4055–0.4673 0.4673–0.5290 0.5290–1
Risk 0–0.2336 0.2336–0.3482 0.3482–0.4923 0.4923–0.6790 0.6790–1

Table A4. Changes in the percentage of the different hazard levels from 2005–2019 (%).

Year Very Low Low Medium High Very High

2005 12.21% 23.68% 33.35% 17.09% 13.66%
2014 9.67% 21.51% 33.11% 15.97% 19.73%
2019 4.43% 8.82% 30.77% 16.49% 39.48%

Table A5. Changes in the percentage of the different exposure levels from 2005–2019 (%).

Year Very Low Low Medium High Very High

2005 61.62% 16.97% 8.34% 5.00% 8.06%
2014 52.47% 21.90% 9.55% 5.84% 10.24%
2019 48.99% 22.82% 10.00% 6.82% 11.37%

Table A6. Changes in the percentage of the different vulnerability levels from 2005–2019 (%).

Year Very Low Low Medium High Very High

2005 4.10% 17.85% 25.12% 32.62% 20.31%
2014 3.49% 15.34% 23.86% 29.23% 28.07%
2019 2.59% 12.97% 21.11% 28.20% 35.13%



Int. J. Environ. Res. Public Health 2021, 18, 12153 18 of 21

Table A7. Changes in the percentage of the different risk levels from 2005–2019 (%).

Year Very Low Low Medium High Very High

2005 31.16% 32.38% 18.12% 9.28% 9.07%
2014 26.52% 29.25% 19.63% 11.79% 12.82%
2019 11.47% 30.95% 25.14% 16.39% 16.04%

Table A8. Number of subdistricts at each heat wave risk level.

Year Very Low Low Medium High Very High

2005 16 58 37 25 69
2014 8 50 39 24 84
2019 2 41 41 30 91

Table A9. Number of subdistricts at each heat wave risk level based on city/county.

City/County Year Very Low Low Medium High Very High

Jakarta 2005 0 0 0 5 40
2014 0 0 0 1 44
2019 0 0 0 0 45

Bandung 2005 0 1 0 5 24
2014 0 1 0 4 25
2019 0 1 0 2 27

Bekasi 2005 0 0 0 8 4
2014 0 0 0 2 10
2019 0 0 0 0 12

Cimahi 2005 0 0 0 2 1
2014 0 0 0 0 3
2019 0 0 0 0 3

Bekasi country 2005 0 13 10 0 0
2014 0 6 10 7 0
2019 0 1 9 12 1

Karawang 2005 2 17 10 1 0
2014 0 16 10 4 0
2019 0 17 9 4 0

Purwakarta 2005 3 11 4 0 0
2014 0 10 7 1 0
2019 0 8 8 2 0

Bandung country 2005 8 7 9 4 0
2014 5 8 8 5 2
2019 2 6 9 8 3

West Bandung 2005 3 9 4 0 0
2014 3 9 4 0 0
2019 0 8 6 2 0

Table A10. Share of each influencing factor from 2005–2019.

Hazard Exposure Vulnerability H-E H-V E-V H-E-V

2005 19.16% 10.96% 0.40% 41.39% 7.86% 0.97% 19.26%
2014 16.97% 4.01% 0.64% 28.36% 16.18% 0.81% 33.02%
2019 13.10% 1.14% 0.17% 20.65% 29.85% 0.19% 34.91%
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