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Clonal expansion of fluconazole resistant (FLZ-R) Candida parapsilosis isolates is

increasingly being identified in many countries, while there is no study exploring the

antifungal susceptibility pattern, genetic diversity, and clinical information for Iranian C.

parapsilosis blood isolates. Candida parapsilosis species complex blood isolates (n

= 98) were recovered from nine hospitals located in three major cities, identified by

MALDI-TOF MS, and their genetic relatedness was examined by AFLP fingerprinting.

Antifungal susceptibility testing followed CLSI-M27-A3 and ERG11, MRR1 and hotspots

1/2 (HS1/2) of FKS1 were sequenced to assess the azole and echinocandin resistance

mechanisms, respectively. Ninety-four C. parapsilosis and four Candida orthopsilosis

isolates were identified from 90 patients. Only 43 patients received systemic antifungal

drugs with fluconazole as the main antifungal used. The overall mortality rate was

46.6% (42/90) and death mostly occurred for those receiving systemic antifungals

(25/43) relative to those not treated (17/47). Although, antifungal-resistance was rare,

one isolate was multidrug-resistant (FLZ = 16µg/ml and micafungin = 8µg/ml) and the
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infected patient showed therapeutic failure to FLZ prophylaxis. Mutations causing azole

and echinocandin resistance were not found in the genes studied. AFLP revealed

five genotypes (G) and G1 was the main one (59/94; 62.7%). Clinical outcome was

significantly associated with city (P = 0.02, α <0.05) and Mashhad was significantly

associated with mortality (P = 0.03, α <0.05). Overall, we found a low level of antifungal

resistance for Iranian C. parapsilosis blood isolates, but the noted MDR strain can

potentially become the source of future infections and challenge the antifungal therapy in

antifungal-naïve patients. AFLP typing results warrants confirmation using other resolutive

typing methods.

Keywords: Iran, candidemia, Candida parapsilosis, AFLP genotyping, high mortality rate, Candida orthopsilosis

INTRODUCTION

The changing epidemiological landscape of candidemia driven
by overuse of prophylactic antifungal drugs has resulted in an
increasing incidence of non-albicans Candida (NAC) species
(Sanglard, 2019). Presently, microbiologists and clinicians are
heavily focused on multi-drug resistant Candida parapsilosis
and Candida auris (Colombo et al., 2017), but an increasing
number of publications are casting light on the importance
of other NAC species, as well (Chakrabarti et al., 2015; Singh
et al., 2019). Among these NAC species, Candida parapsilosis
is the first to third common cause of candidemia depending
on age, geographical location, and patient category (Chan
et al., 2015; Da Matta et al., 2017; Sun et al., 2019). The
biofilm production (Marcos-Zambrano et al., 2014; Larkin
et al., 2018), which is viable for weeks on plastic surfaces
(Thomaz et al., 2018), and resilience of C. parapsilosis to
stay in clinical settings is reminiscent of that of C. auris
(Choi et al., 2018). Apart from being less susceptible to
echinocandins (Garcia-Effron et al., 2008), fluconazole resistant
C. parapsilosis isolates have emerged in India (Singh et al.,
2019), South Korea (Choi et al., 2018), Kuwait (Asadzadeh
et al., 2017a), USA (Berkow et al., 2015; Grossman et al.,
2015), and Brazil (Souza et al., 2015; Thomaz et al., 2018).
Additionally, the closely related cryptic species of C. parapsilosis,
i.e., C. orthopsilosis, is linked to numerous clinical failures
(Wessel et al., 2013; Oliveira et al., 2014; Heslop et al., 2015;
Charsizadeh et al., 2018b), and implicated in a wide range of
clinical manifestations, including superficial infections (Feng
et al., 2012), septic arthritis (Heslop et al., 2015), keratitis
(Wessel et al., 2013), and fatal invasive bloodstream infections
(Choi et al., 2010).

Apart from overexpression of efflux pumps such as CpCDR1
and CpMDR1 (Grossman et al., 2015; Souza et al., 2015), in
the majority of cases specific genetic alterations in CpERG11
(Grossman et al., 2015; Souza et al., 2015; Choi et al.,
2018; Thomaz et al., 2018; Singh et al., 2019) and in
some cases in CpMRR1 can result in azole resistance in
C. parapsilosis (Grossman et al., 2015; Choi et al., 2018).
Moreover, a naturally occurring amino acid substitution in
HS1 of FKS1 proved to be accountable for high MIC values
of echinocandin in this species complex (Garcia-Effron et al.,
2008).

Candida parapsilosis is easily spread through the hands of
healthcare workers (HCWs) and some studies revealed that
specific azole resistant genotypes of this species are able to stay in
a dormancy phase for a long period of time and can be the source
of future clonal outbreaks and cause azole-recalcitrant infections
in patients that have not been exposed previously to this drug
(Choi et al., 2018; Singh et al., 2019). As a result, genotypic
analysis could be an important guide to control infections
caused by this species. Among genotypic techniques, AFLP
fingerprinting has been associated with a higher resolution than
the laborious and expensive multi-locus sequence typing (MLST)
technique (Asadzadeh et al., 2017b). Moreover, studies showed
satisfactory resolution of AFLP to evaluate the genetic relatedness
of C. auris (Prakash et al., 2016) and C. parapsilosis species
complex isolates (Tavanti et al., 2010). Ease of optimization and
universality of the primers and experimental conditions are the
advantages of this technique (Restrepo et al., 2018).

Lack of knowledge about clinical outcome, genotypic
diversity, antifungal susceptibility profiles, and the
corresponding molecular mechanism of antifungal resistance
at a national scale for C. parapsilosis bloodstream isolates,
prompted us to conduct a multicenter study to fill those gaps
in Iran. Clarifying those factors will aid in a better clinical
management and provide insights about the extent of the
necessity of implementation of infection control strategies.

METHODS

Ethical Approval
Candidemia studies, from which Candida parapsilosis isolates
were obtained, conducted in Tehran, Shiraz, and Mashhad
were granted with ethical approval (IR.SUMS.REC.1397.365,
IR.MUMS.fm.REC.1397.268, IR. TUMS.SPH.REC.1396.4195).
Isolates of C. parapsilosis were assigned with numerical codes to
anonymize the patient’s identity.

Definitions, Study Design, and Growth
Conditions
Definition of candidemia was in accordance with the revised
definition of European Organization for Research and Treatment
of Cancer (De Pauw et al., 2008). Isolates recovered within <30
days and those recovered within >30 days were considered as
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repetitive isolates and new cases, respectively (Blyth et al., 2009).
The entire stay of respective patients following admission to
discharge was considered for hospitalization duration, but not
after the isolation of C. parapsilosis from blood samples (as this
data was not available for all patients included in this study).
Candida parapsilosis bloodstream isolates were retrospectively
recovered from nine hospitals (2015–2019) located in three main
metropolitan cities, including Tehran (two hospitals), Shiraz
(two hospitals), and Mashhad (five hospitals). The majority of
the isolates were from Mashhad (n = 60, 61.2%), followed by
Tehran (n = 24, 24.5%), and Shiraz (n = 14, 14.3%). All patients
manifesting candidemia due to C. parapsilosis species complex
without any restriction were included in our study. Blood
samples were incubated in Bactec devices (Becton Dickinson,
MD, USA) and recovered isolates were grown on Sabouraud
dextrose agar at 37◦C for 24–48 h, and to identify samples
with mixed Candida/yeast species, they were subcultured onto
chromogenic agar (Candiselect, Bio-Rad, Hercules, CA, USA) at
37◦C for 48 h.

Identification
Isolates were identified by MALDI-TOF MS using the full-
extraction method [29] and those identified as C. orthopsilosis
or C. metapsilosis were further confirmed by Sanger sequencing
using ITS5 and LR5 primers targeting part of the 28S and
internal transcribed spacer (ITS) rDNA (Stielow et al., 2015).
The DNA samples were extracted using a previously described
CTAB-phenol/chloroform protocol (Theelen et al., 2001).

Primer Design and Sequencing of
CpERG11, CpMRR1, and HS1 and HS2 of
CpFKS1
PCRwas performed in a final volume of 50µl. All primers used in
this study, the PCR programs, and the PCR ingredients are listed
in Supplementary Table 1.

Sanger sequencing was performed for the aforementioned
genes, contigs were assembled by SeqMan Pro (DNASTAR,
Madison, USA), and the obtained sequences along with
references were aligned with MEGA v7.0 (Temple University,
Philadelphia, USA) (Kumar et al., 2016). Sequences of ERG11
and MRR1 were compared with the corresponding reference
wild-type ERG11 sequences of ATCC 22019 (GQ302972)
and CDC317 wild-type MRR1 sequence (HE605205),
respectively (Berkow et al., 2015). As for the sequences
of FKS1 HS1 and HS2 they were compared with those
previously reported (Garcia-Effron et al., 2008). Although,
Y132F is mainly found in FLZ-R isolates, a recent study
identified this mutation in an isolate showing FLZ-intermediate
phenotype (Singh et al., 2019). Moreover, according to our
experience with C. glbarata, not all echinocandin susceptible
isolates are wild-type in HS and they can harbor well-known
accountable mutations in their HS regions (Arastehfar et al.,
2020b). Therefore, ERG11 and HS1 and HS2 of FKS1 were
sequenced for all isolates included in this study, while
MRR1 was sequenced for only selective number of isolates
(see Results).

Evaluation of Genotypic Diversity Using
AFLP
In order to check the genotypic diversity, a previously described
AFLP fingerprinting method was used (Arastehfar et al., 2019a).
Diluted PCR products were analyzed by capillary electrophoresis
on an ABI 3730xL Genetic Analyzer (ThermoFisher Scientific,
Waltham, MA, USA) and the obtained data were analyzed
by Bionumerics software v7.6.2 (Applied Math, Sint-Martens-
Latem, Belgium). Analysis was based on fragment size and its
presence/absence among isolates tested and included standard
Pearson and unweighted pair group method with averages
(UPGMA) as performed before (Prakash et al., 2016). Reference
and type strains of C. parapsilosis (CBS 604, CBS 1818, CBS 1954,
CBS 2195, and CBS 2917), C. metapsilosis (CBS 2315, CBS 2916,
and CBS 10907), and C. orthopsilosis (CBS 10906) were included
for comparative purposes.

Antifungal Susceptibility Testing
The CLSI broth microdilution (CLSI-BMD) method of M27-
A3/S4 was used for antifungal susceptibility testing (AFST)
(Clinical and Laboratory Standards Institute, M27-A3, 2008;
Clinical and Laboratory Standards Institute, M27-S4, 2012).
AFST included the following antifungal drugs, amphotericin
B (AMB), fluconazole (FLZ), voriconazole (VRZ), itraconazole
(ITZ) all from (Sigma-Aldrich, St. Louis,MO,U.S.A), micafungin
(MFG) (Astellas, Munich, Germany) and anidulafungin (ANF)
(Pfizer, NY, USA). Reference strains of C. parapsilosis (ATCC
22019) and C. krusei (ATCC 6258) were used for quality control
purposes. Due to interlaboratory variation, caspofungin was not
used in this study (Espinel-Ingroff et al., 2013). Plates containing
antifungal drugs and isolates were incubated at 37◦C for 24 h and
data were recorded visually. MIC data were interpreted based
on CLSI M60 (Clinical and Laboratory Standards Institute, M60,
2017). Isolates showing a minimum inhibitory concentration
(MIC) ≥8µg/ml were noted as resistant to FLZ, MFG, and ANF,
while those with VRZ MIC ≥1µg/ml were regarded resistant
(Clinical and Laboratory Standards Institute, M60, 2017). AMB
and ITZ MIC values were interpreted as epidemiological cut-
off values (ECV), where non-wild-types (NWT) isolates had a
MIC >2 and >0.5µg/ml, respectively (Clinical and Laboratory
Standards Institute, M60, 2017).

Deposition of Isolates and Sequences
Isolates of C. orthopsilosiswere deposited in the culture collection
of the Westerdijk Fungal Biodiversity Institute (CBS 15892,
CBS 15878, CBS 15879, CBS 15862). Additionally, sequences
of ERG11, MRR1 and FKS1 HS1 and HS2 were submitted to
GenBank with the following accession numbers MK513945-
MK514041, MT019513-MT019524, MK532043-MK532140, and
MK532141-MK532237, respectively.

Statistical Analysis
All statistical analyses included in this study were performed by
SPSS software v24 (SPSS Inc. Chicago, IL, USA) and presented
in Supplementary Table 2. The Chi-square test was used to find
the association between clinical outcome (death or survival),
genotypes, and cities involved. In order to assess the association
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of hospitalization duration and encountered genotypes the
Kruskal-Wallis Test was used. The association of genotypes with
death was assessed using logistic regression and path analysis.
Patients with more than two isolates belonging to various
genotypes were not considered for statistical analysis. Variables
showing P values <0.05 were considered statistically significant.

RESULTS

Clinical Profiles
Candida parapsilosis accounted for the vast majority of the
blood isolates (n = 93; 94.9% from 86 patients), followed by
C. orthopsilosis (n = 3; 3%) and one patient was concurrently
infected with both C. parapsilosis and C. orthopsilosis (98 isolates
from 90 patients) (Table 1, Supplementary Table 3). Five patient
were infected with multiple C. parapsilosis isolates (n = 12)
(three patients with two isolates including 27-BC, 60-BC, and
111-BC vs. two patients with three isolates, including 79-BC
and 97-BC) among which only 79-2BC was isolated >30 days
apart and considered as new case and the rest as repetitive
isolates. There was no difference for C. parapsilosis candidemia
between males (n = 45; 50%) and females (n = 45; 50%)
(clinical data were calculated per patient number). The vast
majority of patients were admitted to ICU (n = 44; 48.9%),
followed by general ward (n = 24; 26.7%), surgery (n = 8;
8.9%), and others (n = 14; 15.6%) (Supplementary Table 3).
The most prevalent risk factors were broad-spectrum antibiotic
usage (n = 84; 93.3%), CVC insertion (n = 78; 86.7%),
mechanical ventilation (n = 35; 38.9%), surgery (n = 30;
33.3%) among which 15.6% were abdominal (n= 14), parenteral
nutrition (n = 25; 27.8%), neutropenia (n = 15; 16.7%), and
administration of immunosuppressive drugs (n = 12; 13.3%)
(Supplementary Table 3). Diabetes (n = 19; 21.1%), abdominal
events (n = 19; 21.1%), vascular and heart events and chronic
lung diseases (each n = 16; 17.8%), leukemia (n = 11; 12.2%),
and concomitant bacteremia (n = 10; 11.1%) were the most
encountered underlying conditions (Supplementary Table 3).
The median of hospitalization duration was 39 days. Only 47.7%
of the patients (n = 43) were treated with systemic antifungal
drugs, among whom 72.1% (n= 31) and 27.9% (n= 12) received
a single or more than one systemic antifungal drugs (but not
in combination) during the course of treatment, respectively.
Among those receiving single antifungal treatment (n= 31), FLZ
was the most widely used antifungal (n= 15; 48.4%) followed by
AMB (n = 9; 29%), CSP (n = 6; 19.3%), and VRZ (n = 1; 3.2%).
The overall mortality rate was 46.6% (n = 42). Surprisingly,
death occurred for the vast majority of those receiving systemic
antifungals (25/43) (17/31 receiving single antifungals and 8/12
received more than one antifungal), while patients not treated
with systemic antifungals mostly recovered (30/47; 63.8%). Per
antifungal, AMB (6/9; 66.6%) and FLZ (10/15; 66.6%) showed
the highest rate of mortality, while those treated with CSP
(5/6; 83.3%) mostly recovered (the only patient receiving VRZ
survived) (Supplementary Table 3). The highest death count was
significantly observed in Mashhad (33/59; 55.9%) (Chi-square,
two-tailed, P = 0.013), while lower mortality rates occurred in
Tehran (7/17; 36.8%) and Shiraz (2/14; 14.3%). At the species

level, death occurred in 66.7% of patients infected with C.
orthopsilosis (2/3) and 45.3% of those infected with C. parapsilosis
(39/86) (Supplementary Table 3). Death occurred for the only
patient simultaneously infected with both C. parapsilosis and
C. orthopsilosis.

Antifungal Susceptibility Testing
Overall, antifungal resistance was rare. One isolate was multidrug
resistant as it was resistant against both FLZ (≥8µg/ml)
and MFG (8µg/ml) (isolate# 131-BC) (Tables 1, 2). Moreover,
intermediate-anidulafungin (n = 5, one was the MDR isolate)
and –VRZ (n = 2) were noted and one isolate was NWT for
ITZ (2µg/ml). ANF showed the highest geometric mean value
(1.12µg/ml), followed by MFG (0.7µg/ml), FLZ and AMB (each
0.3µg/ml), ITZ (0.08µg/ml), and VRZ (0.02µg/ml) (Table 2).

Sequencing of ERG11, MRR1, and FKS1

HS1 and HS2
None of isolates harbored any silent or nonsynonymous
mutations in the FKS1 HS1 and HS2 (Table 1). However, in
ERG11 the silent mutations T591C, C168T, and G747C were
detected in 94, 17, and one isolate(s), respectively (Table 1). As
for non-synonymous mutations in ERG11, G1193T (R398I) (n=
9; 9.5%), A740R (D247G) (n = 4; 4.2%), G327C (L109F) (n = 2;
2.1%) were the most frequently encountered mutations, followed
by G266T (G89V) and C1217A (P406Q) each occurred in one
isolate (Table 1 and Supplementary Table 4). None of these
mutations were encountered in FLZ-R (≥8µg/ml) and ITZ-
R isolates (>0.5µg/ml) (Table 1 and Supplementary Tables 4,
5). As Y132F was not found in FLZ-R ERG11, the CpMRR1
was sequenced for this isolate (131BC) and 11 randomly
selected FLZ-S isolates from all three cities (Table 1 and
Supplementary Table 5). The MDR isolate did no harbor any
mutations in MRR1, while for FLZ-S isolates a silent mutation
(A231G) occurred in two isolates (isolate# 60-1BC and 60-2BC)
and A3080R occurred for one isolate (N1W).Moreover, insertion
of a T nucleotide in the position of 3306-3307 was detected in
one isolate (isolate# 33AZ) leading to translation termination
(Table 1 and Supplementary Table 5).

Genotyping Diversity Evaluation Using
AFLP
AFLP analysis clustered the C. parapsilosis isolates (n = 94)
into five genotypes (G) (Figure 1 and Table 1). G1 was the
most abundant genotype (n = 59, 62.7%), followed by G2
(n = 17, 18%), G3 (n = 16, 17%), G4 (n = 1, 1.06%), and
G5 (n = 1, 1.06%) (Figure 1 and Table 1). The vast majority
of isolates recovered from Mashhad (n = 43, 72.8%) and
Shiraz (n = 8, 61.5%) grouped in G1, while G2 accommodated
almost 35% of isolates (n = 8) from Tehran (Figure 1 and
Table 1). Except for 97-1BC and 97-2BC clustered in the same
genotype, the rest of repetitive isolates were scattered over
two (97-3 BC, 27-BC, 111-BC) or even three genotypes (79-
BC) (Figure 1 and Table 1). All C. orthopsilosis isolates (n =

4) showed a distinct genotype, except for one isolate that did
not show a decent visible fragment pattern (SU236) (Figure 1,
Table 1, Supplementary Table 2). Chi-square analysis did not
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TABLE 1 | Antifungal susceptibility testing data and sequencing of genes conferring resistance to echinocandins (HS1 and HS2 of FKS1) and azoles (ERG11).

Patient # Species Genotype MIC values (µg/ml) ERG11 MRR1 HS1 FKS1 HS2 FKS2

FLZ VRZ ITZ MFG AFG AMB

1BC C. parapsilosis G2 0.25 0.015 0.5 2 2 1 A740R (D247G) ND FLTLSLRDA DWIRRYTL

5BC C. parapsilosis G3 0.25 0.015 0.03 0.5 1 0.5 A740R (D247G), G1193T

(R398I)

ND FLTLSLRDA DWIRRYTL

8-1BC C. parapsilosis G1 0.25 0.015 2 0.5 1 0.5 C168T ND FLTLSLRDA DWIRRYTL

17BC C. parapsilosis G2 1 0.125 0.25 2 2 0.5 WT ND FLTLSLRDA DWIRRYTL

20BC C. parapsilosis G3 0.25 0.015 0.06 0.5 1 0.03 A740R (D247G) ND FLTLSLRDA DWIRRYTL

27-1BC C. parapsilosis G1 0.5 0.06 0.25 2 2 1 WT ND FLTLSLRDA DWIRRYTL

27-2BC C. parapsilosis G2 0.5 0.06 0.25 2 2 1 WT ND FLTLSLRDA DWIRRYTL

30BC C. parapsilosis G2 0.5 0.03 0.125 0.5 1 1 WT ND FLTLSLRDA DWIRRYTL

48BC C. orthopsilosis G2Orth 0.25 0.03 0.06 0.5 1 0.25 WT ND FLTLSLRDA DWVRRYTL

60-1BC C. parapsilosis G3 2 0.03 0.125 2 2 0.5 WT A231G FLTLSLRDA DWIRRYTL

60-2BC C. parapsilosis G1 2 0.015 0.125 1 2 0.25 WT A231G FLTLSLRDA DWIRRYTL

64BC C. parapsilosis G3 0.125 <0.015 0.06 0.5 1 0.5 WT WT FLTLSLRDA DWIRRYTL

67BC C. parapsilosis G2 1 0.03 0.125 1 2 0.25 WT ND FLTLSLRDA DWIRRYTL

79-1BC C. parapsilosis G1 0.5 0.015 0.06 2 2 0.25 C168T ND FLTLSLRDA DWIRRYTL

79-2BC C. parapsilosis G2 0.5 <0.015 0.06 0.5 1 0.5 WT ND FLTLSLRDA DWIRRYTL

79-3BC C. parapsilosis G4 0.5 <0.015 0.06 0.5 1 1 WT ND FLTLSLRDA DWIRRYTL

97-1BC C. parapsilosis G1 0.5 0.03 0.125 2 2 0.25 WT ND FLTLSLRDA DWIRRYTL

97-2BC C. parapsilosis G1 0.25 0.03 0.125 2 2 0.25 WT ND FLTLSLRDA DWIRRYTL

97-3BC C. parapsilosis G2 0.25 0.03 0.125 2 2 0.5 G747C ND FLTLSLRDA DWIRRYTL

101BC C. parapsilosis G1 1 0.125 0.25 2 4 1 WT ND FLTLSLRDA DWIRRYTL

106BC C. parapsilosis G1 0.25 0.03 0.125 1 1 0.25 WT ND FLTLSLRDA DWIRRYTL

111-1BC C. parapsilosis G2 0.25 <0.015 0.06 0.5 1 1 WT WT FLTLSLRDA DWIRRYTL

111-2BC C. parapsilosis G3 0.25 <0.015 0.125 0.5 1 1 WT ND FLTLSLRDA DWIRRYTL

131BC C. parapsilosis G3 16 0.25 0.5 8 4 0.06 WT WT FLTLSLRDA DWIRRYTL

SU92 C. parapsilosis G2 0.5 0.25 0.015 0.5 0.5 1 WT ND FLTLSLRDA DWIRRYTL

SU109 C. parapsilosis G2 0.25 <0.015 0.125 0.5 1 1 WT ND FLTLSLRDA DWIRRYTL

SU159 C. parapsilosis G1 0.5 0.015 0.25 0.5 2 1 A740R (D247G) ND FLTLSLRDA DWIRRYTL

SU225 C. parapsilosis G1 0.5 <0.015 0.03 1 2 0.5 WT ND FLTLSLRDA DWIRRYTL

SU236 C. orthopsilosis NA 0.125 <0.015 0.25 0.5 1 0.25 WT ND FLTLSLRDA DWVRRYTL

SU237 C. parapsilosis G1 0.25 0.015 0.125 0.5 1 1 WT ND FLTLSLRDA DWIRRYTL

SU242 C. parapsilosis G1 0.5 <0.015 0.06 0.5 1 0.5 WT ND FLTLSLRDA DWIRRYTL

SU243 C. parapsilosis G1 0.25 <0.015 0.06 1 1 0.5 WT WT FLTLSLRDA DWIRRYTL

SU251 C. parapsilosis G1 0.25 <0.015 0.03 0.5 1 0.125 WT ND FLTLSLRDA DWIRRYTL

SU255 C. parapsilosis G1 0.25 <0.015 0.125 0.5 1 0.5 WT ND FLTLSLRDA DWIRRYTL

SU259 C. parapsilosis G1 0.5 0.03 0.125 1 1 0.25 WT ND FLTLSLRDA DWIRRYTL

SU266-2 C. parapsilosis G5 0.25 <0.015 0.03 1 2 1 G1193T (R398I) ND FLTLSLRDA DWIRRYTL

SU273 C. parapsilosis G3 0.25 0.015 0.125 0.5 1 1 WT ND FLTLSLRDA DWIRRYTL

SU276 C. parapsilosis G3 0.5 <0.015 0.03 0.5 2 0.5 G266T (G89V) WT FLTLSLRDA DWIRRYTL

N1W C. parapsilosis G3 0.5 0.06 0.5 1 0.5 0.25 C168T A3080R* FLTLSLRDA DWIRRYTL

N1R C. orthopsilosis G4Orth 0.25 0.03 0.06 0.25 1 0.25 WT ND FLTLSLRDA DWVRRYTL

N16 C. parapsilosis G1 0.25 0.015 0.125 1 0.5 0.06 WT ND FLTLSLRDA DWIRRYTL

N25 C. parapsilosis G1 0.25 <0.015 0.125 1 1 0.25 C168T ND FLTLSLRDA DWIRRYTL

N59 C. parapsilosis G3 0.25 0.015 0.125 0.5 2 0.25 G1193T (R398I) ND FLTLSLRDA DWIRRYTL

N60 C. parapsilosis G1 0.5 <0.015 0.03 0.5 0.5 0.5 WT ND FLTLSLRDA DWIRRYTL

N61 C. parapsilosis G1 1 <0.015 0.25 0.25 0.5 0.25 WT ND FLTLSLRDA DWIRRYTL

N63 C. parapsilosis G1 1 0.015 0.5 0.25 2 0.25 WT ND FLTLSLRDA DWIRRYTL

N65 C. parapsilosis G1 0.25 0.25 0.25 0.5 4 0.5 WT ND FLTLSLRDA DWIRRYTL

N79 C. parapsilosis G1 0.25 <0.015 0.125 0.5 0.5 1 WT ND FLTLSLRDA DWIRRYTL

N80 C. parapsilosis G2 0.25 <0.015 0.25 0.5 1 0.25 WT ND FLTLSLRDA DWIRRYTL

N81 C. parapsilosis G3 0.125 <0.015 0.25 0.5 2 0.25 WT ND FLTLSLRDA DWIRRYTL

(Continued)

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 May 2020 | Volume 10 | Article 206

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Arastehfar et al. Candida parapsilosis Blood Isolates Typing

TABLE 1 | Continued

Patient # Species Genotype MIC values (µg/ml) ERG11 MRR1 HS1 FKS1 HS2 FKS2

FLZ VRZ ITZ MFG AFG AMB

N82 C. parapsilosis G1 0.25 <0.015 0.03 0.5 4 0.125 WT ND FLTLSLRDA DWIRRYTL

N83 C. parapsilosis G1 0.5 <0.015 0.03 1 1 0.25 WT ND FLTLSLRDA DWIRRYTL

N84 C. parapsilosis G1 0.5 <0.015 0.03 0.5 0.5 0.25 WT ND FLTLSLRDA DWIRRYTL

N86 C. parapsilosis G1 0.25 <0.015 0.03 0.25 0.5 0.5 WT ND FLTLSLRDA DWIRRYTL

N87 C. parapsilosis G1 1 0.03 0.25 0.5 1 0.5 C1217A (P406Q) WT FLTLSLRDA DWIRRYTL

N88 C. parapsilosis G1 1 0.06 0.25 1 0.5 1 WT ND FLTLSLRDA DWIRRYTL

N89 C. parapsilosis G1 0.25 <0.015 0.06 0.5 1 1 WT ND FLTLSLRDA DWIRRYTL

N103 C. parapsilosis G1 0.25 0.015 0.06 0.5 0.5 0.25 WT ND FLTLSLRDA DWIRRYTL

N105 C. parapsilosis G1 0.5 <0.015 0.06 0.5 1 0.25 WT ND FLTLSLRDA DWIRRYTL

N106 C. parapsilosis G1 0.5 0.015 0.125 0.5 1 0.5 WT ND FLTLSLRDA DWIRRYTL

N110 C. parapsilosis G1 0.125 <0.015 0.03 0.5 1 0.125 WT ND FLTLSLRDA DWIRRYTL

N114 C. orthopsilosis G1Orth 0.25 0.06 0.03 0.5 2 0.06 WT ND FLTLSLRDA DWVRRYTL

N117 C. parapsilosis G1 0.25 0.015 0.03 2 1 0.125 WT ND FLTLSLRDA DWIRRYTL

N119 C. parapsilosis G1 2 0.06 0.125 1 2 0.5 WT WT FLTLSLRDA DWIRRYTL

N120 C. parapsilosis G1 0.25 <0.015 0.25 0.5 1 0.125 C168T ND FLTLSLRDA DWIRRYTL

N124 C. parapsilosis G1 0.5 0.06 0.125 1 0.5 0.25 G327C (L109F) ND FLTLSLRDA DWIRRYTL

N133 C. parapsilosis G1 0.5 <0.015 0.03 0.5 0.5 0.25 WT ND FLTLSLRDA DWIRRYTL

N134 C. parapsilosis G1 0.25 <0.015 0.03 1 1 0.5 WT ND FLTLSLRDA DWIRRYTL

N135 C. parapsilosis G1 0.06 <0.015 0.5 1 4 0.03 C168T ND FLTLSLRDA DWIRRYTL

N137 C. parapsilosis G1 0.25 <0.015 0.03 0.5 1 0.5 C168T ND FLTLSLRDA DWIRRYTL

N138 C. parapsilosis G1 0.125 <0.015 0.03 0.5 1 1 WT ND FLTLSLRDA DWIRRYTL

N139 C. parapsilosis G1 0.125 <0.015 0.06 0.5 1 2 WT WT FLTLSLRDA DWIRRYTL

N148 C. parapsilosis G1 0.25 0.015 0.06 0.5 1 0.5 G1193T (R398I) ND FLTLSLRDA DWIRRYTL

N158 C. parapsilosis G3 0.25 <0.015 0.03 0.25 0.25 0.5 C168T ND FLTLSLRDA DWIRRYTL

N166 C. parapsilosis G1 0.25 <0.015 0.25 2 2 0.25 WT ND FLTLSLRDA DWIRRYTL

N174 C. parapsilosis G1 0.25 <0.015 0.03 0.5 0.5 0.5 C168T ND FLTLSLRDA DWIRRYTL

N175 C. parapsilosis G1 0.25 <0.015 0.03 0.5 1 0.25 C168T ND FLTLSLRDA DWIRRYTL

N176 C. parapsilosis G2 0.25 <0.015 0.25 0.5 2 0.5 G1193T (R398I) ND FLTLSLRDA DWIRRYTL

N180 C. parapsilosis G1 0.5 0.015 0.03 0.5 2 0.25 WT ND FLTLSLRDA DWIRRYTL

N183 C. parapsilosis G2 0.25 0.015 0.125 1 1 0.125 G1193T (R398I) ND FLTLSLRDA DWIRRYTL

N184 C. parapsilosis G2 0.25 0.015 0.06 1 2 0.125 G1193T (R398I) ND FLTLSLRDA DWIRRYTL

N185 C. parapsilosis G2 0.5 0.015 0.06 1 1 0.125 WT ND FLTLSLRDA DWIRRYTL

N187 C. parapsilosis G1 0.25 <0.015 0.03 0.5 1 0.25 WT ND FLTLSLRDA DWIRRYTL

N193 C. parapsilosis G2 0.25 0.03 0.03 0.5 2 0.125 G1193T (R398I) ND FLTLSLRDA DWIRRYTL

N207 C. parapsilosis G3 0.25 <0.015 0.03 0.5 1 0.5 WT ND FLTLSLRDA DWIRRYTL

N209 C. parapsilosis G3 0.06 <0.015 0.25 1 0.25 0.25 C168T ND FLTLSLRDA DWIRRYTL

N212 C. parapsilosis G1 0.125 <0.015 0.06 0.5 1 0.25 C168T ND FLTLSLRDA DWIRRYTL

N213 C. parapsilosis G1 0.125 <0.015 0.125 0.5 1 0.06 C168T ND FLTLSLRDA DWIRRYTL

N214 C. parapsilosis G1 0.25 0.015 0.06 1 1 0.25 WT ND FLTLSLRDA DWIRRYTL

N215 C. parapsilosis G2 0.25 <0.015 0.03 0.5 1 0.125 G327C (L109F) ND FLTLSLRDA DWIRRYTL

N217 C. parapsilosis G1 0.25 <0.015 0.03 0.5 1 1 C168T ND FLTLSLRDA DWIRRYTL

N220 C. parapsilosis G1 0.25 <0.015 0.03 0.5 1 0.5 WT ND FLTLSLRDA DWIRRYTL

N221 C. parapsilosis G1 0.25 <0.015 0.03 0.5 1 1 C168T ND FLTLSLRDA DWIRRYTL

N222 C. parapsilosis G1 0.5 0.015 0.125 0.5 1 1 WT ND FLTLSLRDA DWIRRYTL

N223 C. parapsilosis G1 0.5 0.015 0.125 1 1 1 C168T ND FLTLSLRDA DWIRRYTL

N225 C. parapsilosis G1 0.125 0.015 0.25 1 0.5 0.25 WT ND FLTLSLRDA DWIRRYTL

N226 C. parapsilosis G3 0.5 <0.015 0.03 1 1 0.25 WT ND FLTLSLRDA DWIRRYTL

33AZ C. parapsilosis G3 0.5 0.015 0.25 0.5 1 2 G1193T (R398I) 3306-3307

Insertion of T

FLTLSLRDA DWIRRYTL

*Located in the first interval of MRR1 (3057–3094), which does not code amino acids.

All of the ERG11 sequences harbored the silent mutation of T591C.

NA, Not assigned; ND, Not determined; WT, Wild-type; G, Genotype; FLZ, Fluconazole; VRZ, Voriconazole; ITZ, Itraconazole; MFG, Micafungin; AFG, Anidulafungin; and AMB,

Amphotericin B.
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show any significant association between genotypes and clinical
outcome (P > 0.2; Supplementary Table 2). Moreover, Kruskal-
Wallis Test analysis did not exhibit a significant association
between hospitalization duration and genotypes (P > 0.489;
Supplementary Table 2).

DISCUSSION

The prevalence of Candida parapsilosis in this retrospective study
(2015–2019) showed a city-dependent pattern. In Mashhad the
prevalence of C. parapsilosis (36%) was even higher than that
of C. albicans (32%) (data not shown and part of ongoing
regional epidemiologic studies), while in Tehran and Shiraz
this species accounted for the third most common cause of
candidemia. Although an Iranian meta-analysis study speculated
that C. parapsilosis is the leading agent of candidemia (Vaezi
et al., 2017), another prospective single-center study from
Tehran, Iran, showed that this species accounted for the
second agent of candidemia in children (Charsizadeh et al.,
2018a). Lack of sufficient number of candidemia studies in
Iran prevents the establishment of a clear understanding of
candidemia epidemiology separately for children and adults
on a national scale. Similar to other studies (McCarty and
Pappas, 2016), utilization of broad-spectrum antibiotics, CVC
insertion, surgeries (especially abdominal surgeries), mechanical
ventilation, and parenteral nutrition were the most important
risk factors. Unaffordability of echinocandins in developing
countries (Chakrabarti et al., 2015; Singh et al., 2018; Arastehfar
et al., 2019b) was the main reason for the extensive use of FLZ
in this study, which deviates from the international guidelines
that recommend utilization of echinocandins for treatment of
candidemia in adults (Hope et al., 2012; Pappas et al., 2016)
and AMB (Hope et al., 2012; Pappas et al., 2016) and/or
echinocandins for children (Pappas et al., 2016). The lack of
adherence to international guidelines is illustrated by the huge
observed variation of administered antifungal drug and the
dosages used, and the fact that almost 52.2% of cases were left
untreated with systemic antifungal drugs (Hope et al., 2012;
Pappas et al., 2016). The observed high mortality rate of 46.6%
reported in this study is close to values reported in Brazil
(Brito et al., 2006; Colombo et al., 2006), the USA (Gudlaugsson
et al., 2003), Portugal (Costa-de-Oliveira et al., 2008), and Italy
(Tumbarello et al., 2007) with a mortality range of 30–46%,
which are in contrast with observations from Taiwan (Wu et al.,
2017) and Maryland (Sofair et al., 2006) with a mortality rate
of 14%. The surprisingly high death rate observed for those
treated with systemic antifungals relative to those not treated
(53.2 vs. 36.2%) could be multifactorial and the retrospective
nature of our study and the scarcity of detailed clinical data did
not allow us to draw a specific conclusion in this regard and
prospective, detailed case-control studies are required to clarify
this matter.

Adaptation of C. parapsilosis to harsh environments (Dogen
et al., 2017), being ubiquitously found in man-made and natural
environments (Dogen et al., 2017), and the fact this yeast species
is predominantly isolated from the hands ofHCWs (Delfino et al.,
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FIGURE 1 | Candida parapsilosis isolates showed five distinct genotypes when subjected to AFLP typing, including G1 (green), G2 (red), and G3 (dark blue), and G4

and G5 (Orange). Candida orthopsilosis isolates (the reference strain and clinical isolates) and Candida metapsilosis reference strains are shown in light blue and dark

green colors, respectively. Reference strains C. parapsilosis, C. orthopsilosis, and C. metapsilosis denoted with CBS numbers were included in AFLP analysis.

2014) emphasizes the importance of genotyping techniques to
find the source of infections and to confine its clonal spread. In
this study, AFLP fingerprinting revealed that G1 accounted for

almost 60% of candidemia cases. We did not find any significant
association between genotypes and mortality and hospitalization
duration, whilst mortality was significantly associated with city (P
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0.02) as Mashhad with the highest mortality rate (56.8%) had the
highest number of isolates that showed the least genetic diversity
as inferred from AFLP data. The clonal expansion of G1 in Iran
in general, and in Mashhad in particular, might be explained by
(a) lack of efficient strict hygiene and infection control strategies
(Singh et al., 2019), (b) strain-level variation in adhesion and
biofilm production abilities leading to survival of a specific
tenacious genotype (Silva-Dias et al., 2015), and (c) the lack of
true mating type loci in C. parapsilosis (Toth et al., 2019). The fact
that C. parapsilosis was the first cause of candidemia in Mashhad,
further indicates the presence of an ongoing outbreak in this
city (data not shown and derived from regional epidemiology
studies). Of note, obtaining high level of genetic similarity
between isolates included in this study, especially those clustered
in G1, might be an indication for the lower discriminatory
power of AFLP when compared to other typing techniques, such
as microsatellite and whole genome sequencing. The genotypic
variation observed for serial isolates might have resulted from
chromosomal changes, which is accompanied by the emergence
of drug resistance in other NAC species, such as C. glabrata
(Muller et al., 2009; Polakova et al., 2009; Healey et al., 2016).
Alternatively, this phenomenon may lead to a better adaptation
to the host environment and a higher virulence abilities (Carrete
et al., 2019). Additionally, in some cases a given patient might
be infected with strains belonging to different genotypes. C.
orthopsilosis isolates were recovered from all centers involved
(n = 4) and varied in AFLP fingerprint profiles and showed a
higher degree of heterogeneity that could be due to the hybrid
nature of this species (Pryszcz et al., 2014). Positivity of one
blood samples for both C. parapsilosis and C. orthopsilosis was
extensively discussed in our previous study (Arastehfar et al.,
2019a) and confirmed earlier findings (Barbedo et al., 2015) that
almost 9.5% of blood isolates contained both species.

Overall, antifungal resistance was rare, but interestingly,
we showed that one isolate was MDR (131-BC), which was
simultaneously resistant to both FLZ (16µg/ml) and MFG
(8µg/ml). This phenomenon is paralleled with the recent clonal
emergence of MDR C. parapsilosis in a pediatric surgery ward
in Ege University Hospital, Turkey, in which the MDR isolates
were also resistant against both fluconazole and micafungin
and harbored Y132F+K143R in Erg11p and R658G in HS1-
Fks1p (Arastehfar et al., 2020a). However, we did not find any
mutation in ERG11, MRR1, and HS1/2 of FKS1 in our MDR
isolate, but we found five non-synonymous mutations in the
ERG11 of FLZ-susceptible isolates, four of themwere new (G89V,
L109F, D247G, and P406Q) and one (R398I) was previously
described fromKuwait (Asadzadeh et al., 2017a) and Korea (Choi
et al., 2018). They were not associated with triazole resistance
as those mutations were far away from the active site of the
enzyme and heme-binding region (Sagatova et al., 2018). Lack of
identifying mutations in the genes studied might be explained by
the fact that theremight be other FLZ and echinocandin-resistant
mechanisms involved in addition to what discovered. Indeed at
least for azoles, it has been shown that the upregulation ofMDR1,
CDR1, and ERG11 in C. parapsilosis are not merely controlled by
gain of function (GOF) mutations in their regulating proteins,
i.e., MRR1, TAC1, and UPC2, respectively (Toth et al., 2019),

which further shows the complexity of regulatory networks
governing azole resistance in this species.

Surprisingly, the fluconazole and caspofungin therapeutic
failures were reported in the Turkish study and the MDR-
infected patients were not exposed to echinocandins, but the
MDR C. parapsilosis isolate harbored R658G in their HS1-Fks1
(Arastehfar et al., 2020a). Therefore, we assessed the previous
exposure with echinocandins and azoles and potential antifungal
therapeutic failure in our MDR-infected patient. Therapeutic
failure was defined if the patient showed persistent fever
despite antifungal therapy. Our patient (19-year-old female) was
neutropenic, suffered from leukemia, and had a central venous
catheter. FLZ therapeutic failure occurred while the patient was
on prophylactic FLZ treatment (400mg PO/day, for 10 days),
but survived following CVC removal and caspofungin therapy
(loading 70mg stat/day and then 50mg stat/day for 5 days).

The overall low rate of antifungal resistance is similar to
what is observed in several European countries (Austria, Italy,
and Spain) and Asia Pacific countries (Bassetti et al., 2013;
Tortorano et al., 2013; Tan et al., 2016; Beyer et al., 2019),
but quite different from studies conducted in the USA, South
Africa, and India with surprisingly high rates of azole resistance
(Raghuram et al., 2012; Govender et al., 2016; Singh et al.,
2019). Alarmingly, in the candidemia studies conducted in
South Africa (Govender et al., 2016) and Turkey (Hilmioglu-
Polat et al., 2018) almost half of FLZ-R isolates were cross-
resistant to VRZ. Similar to South Africa (Govender et al.,
2016), Turkey (Hilmioglu-Polat et al., 2018), Qatar (Taj-Aldeen
et al., 2018), Asia-Pacific countries (Tan et al., 2016), Spain and
Italy (Bassetti et al., 2013; Tortorano et al., 2013), and Austria
(Beyer et al., 2019) that showed low levels of echinocandin
resistance (except for one MCF-R isolate), our isolates were
susceptible to this antifungal class. We assume that such
a low level of antifungal resistance in our study might be
explained by the lack of previous and prolonged antifungal
exposure (Ii et al., 2013; Perlin, 2015) and the fact that
prophylactic antifungal therapy is not well-exercised in many
Iranian hospitals. Surprisingly, as discussed earlier (Arastehfar
et al., 2019b), some patients infected with azole/echinocandin
susceptible C. parapsilosis and C. orthopsilosis isolates died
despite the use of antifungal therapy, which is in agreement
with other studies showing that in both species in-vitro
susceptibility does not always correlate with clinical outcome
(Choi et al., 2010; Wessel et al., 2013; Dimopoulou et al., 2014;
Oliveira et al., 2014). This could be viewed as a multifaceted
controversial concept that might arise from the underlying
condition of the patients, the potent sequestration of azole and
echinocandins by biofilm (Soldini et al., 2018), colonization in
tissues inhibiting efficient drug penetration (Zhao et al., 2017),
and the synergistic antifungal activity of the immune system
(Dimopoulou et al., 2014).

We admit that this study could have benefited from the
assessment of biofilm production as a mortality predictor
and assessment of the expression profiles of CDR1, ERG11,
and MDR1. Although, the application of AFLP fingerprinting
in different studies showed species-dependent variations in
resolution (Tavanti et al., 2010; Prakash et al., 2016; Asadzadeh
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et al., 2017b; Restrepo et al., 2018), AFLP cannot differentiate
homozygous and heterozygous alleles and may have a lower
discriminatory power relative to microsatellite typing and whole
genome sequencing (WGS). Therefore, comparing AFLP with
other resolutive techniques is of paramount importance to
identify the most economic and resolutive typing techniques to
be used in clinic.

CONCLUSION

Herein, for the first time we reported the molecular
epidemiology, antifungal susceptibility testing, and clinical
outcomes of Iranian patients suffering from C. parapsilosis
candidemia and interestingly we found one MDR C.
parapsilosis. AFLP revealed a high degree of genetic
similarity, at least in Mashhad as C. parapsilosis was the
first cause of candidemia in this city, which may reinforce the
importance of application of proper and effective infection
control strategies. Moreover, huge variability observed for
antifungal drug type and dosages used and the fact that
more than half of the patients did not receive any systemic
antifungal drugs revealed deviation and lack of compliance with
international guidelines.
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