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A s of Nov. 24, 2021, more than 260 million cases of 
confirmed SARS-CoV-2 infection and at least 5 mil-
lion deaths from COVID-19 had been reported 

worldwide.1 The COVID-19 pandemic has led to an increased 
demand for health care resources and a shortage of medical 
equipment and staff. Governments and health care organiza-
tions around the globe are currently working on containing 
and slowing down the spread of infections while trying to 
understand the risk factors associated with severe complica-
tions of COVID-19. It remains unclear which and how risk 
factors contribute to COVID-19 severity. Such understanding 
is crucial to help mitigate the health care system’s burden by 
prioritizing testing and resource allocation for those patients at 
the highest risk. Furthermore, now that vaccines are available,2 
the ability to accurately estimate population risk can guide vac-
cine rollout strategies and return-to-work prioritization. 

Diagnostic and prognostic models for COVID-19 have 
been developed to support medical decision-making.3 Most of 
these models depend on clinical data obtained on hospital 

admission (e.g., radiographs and blood tests) and from demo-
graphic and medical records (e.g., age and comorbidity history) 
to make a prediction.4–7 Since these models can be applied only 
to patients already hospitalized for COVID-19, it is not possi-
ble to extend their use for the general population to identify 
individuals with the highest potential risk of hospitalization or 
death from COVID-19. Therefore, risk stratification models 
that depend only on historical medical records are necessary to 
fill this gap. Such models are particularly effective in countries 
with single-payer health care systems, such as Canada, the 
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Background: The COVID-19 pandemic has led to an increased demand for health care resources and, in some cases, shortage of 
medical equipment and staff. Our objective was to develop and validate a multivariable model to predict risk of hospitalization for 
patients infected with SARS-CoV-2.

Methods: We used routinely collected health records in a patient cohort to develop and validate our prediction model. This cohort 
included adult patients (age ≥ 18 yr) from Ontario, Canada, who tested positive for SARS-CoV-2 ribonucleic acid by polymerase 
chain reaction between Feb. 2 and Oct. 5, 2020, and were followed up through Nov. 5, 2020. Patients living in long-term care facili-
ties were excluded, as they were all assumed to be at high risk of hospitalization for COVID-19. Risk of hospitalization within 30 days 
of diagnosis of SARS-CoV-2 infection was estimated via gradient-boosting decision trees, and variable importance examined via 
Shapley values. We built a gradient-boosting model using the Extreme Gradient Boosting (XGBoost) algorithm and compared its per-
formance against 4 empirical rules commonly used for risk stratifications based on age and number of comorbidities.

Results: The cohort included 36 323 patients with 2583 hospitalizations (7.1%). Hospitalized patients had a higher median age (64 yr 
v. 43 yr), were more likely to be male (56.3% v. 47.3%) and had a higher median number of comorbidities (3, interquartile range [IQR] 
2–6 v. 1, IQR 0–3) than nonhospitalized patients. Patients were split into development (n = 29 058, 80.0%) and held-out validation (n = 
7265, 20.0%) cohorts. The gradient-boosting model achieved high discrimination (development cohort: area under the receiver operat-
ing characteristic curve across the 5 folds of 0.852; validation cohort: 0.8475) and strong calibration (slope = 1.01, intercept = –0.01). 
The patients who scored at the top 10% captured 47.4% of hospitalizations, and those who scored at the top 30% captured 80.6%.

Interpretation: We developed and validated an accurate risk stratification model using routinely collected health administrative data. 
We envision that modelling such risk stratification based on routinely collected health data could support management of COVID-19 
on a population health level. 
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United Kingdom and Australia, since single-payer systems 
facilitate access to population-wide medical records. Access to 
extensive medical records is not limited to single-payer coun-
tries, as databases of commercial insurance claims data are also 
available for large portions of the population in countries with 
private health care systems, such as the United States. 

Our objective was to develop and validate a multivariable 
model to predict risk of hospitalization for patients infected 
with SARS-CoV-2. We believe that with sufficient adapta-
tion, such a model may have wide applicability for assessing 
the risk of severe COVID-19 complications in the population 
using routinely collected data. 

Methods

Design and setting
The province of Ontario in Canada is one of many jurisdic-
tions in the world that has linked medical records on its entire 
population because of its single-payer health care system and 
robust infrastructure that links all residents through a unique 
identifier. Analyzing the medical records of Ontario’s popula-
tion is particularly interesting because of the province’s high 
diversity. Almost 3 in 10 Ontarians identify as members of vis-
ible minorities, with most of these individuals living in large 
metropolitan areas, such as the city of Toronto.8 Here, we 
leveraged this extensive and comprehensive source of data 
from patients who tested positive for SARS-CoV-2 infection 
in Ontario to develop a machine-learning model to predict 
the risk of hospitalization for COVID-19. 

Our methodology utilizes general medical and demo-
graphic attributes commonly collected in claims data in other 
countries, thus facilitating the model’s repurposing in other 
jurisdictions. In this context, we define optimal population 
health management as the set of actions and informed deci-
sions that maximize health promotion and disease prevention 
while making efficient use of limited resources, and are 
informed by a broad set of data inputs.

Data sources and study population
We obtained health administrative records from a compre-
hensive data repository held at ICES, a not-for-profit research 
institute in Ontario. The records contained in the ICES 
repository are actively curated and maintained by data scien-
tists and statisticians to ensure their validity and reliability.  

To support COVID-19 research, ICES partnered with the 
Vector Institute for Artificial Intelligence to develop a high-
performance infrastructure, the Health Artificial Intelligence 
Data Analytics Platform (HAIDAP). Briefly, HAIDAP is a 
secure computing environment that provides access to health 
data and advanced analytics, which enable a remote collabora-
tive platform supporting multiple researchers and projects 
across Ontario using ICES data. 

For the present research work, ICES created a continually 
updated data resource within HAIDAP that aggregates de
identified historical health records of individuals in Ontario 
who tested positive for SARS-CoV-2 infection. The data in-
cluded in this study are based on all laboratory-confirmed 

cases of SARS-CoV-2 infection compiled and held at ICES. 
Specifically, cases are identified through the Ontario Labora-
tories Information System (OLIS) and linked to other health 
data containing demographic, health care use and area-level 
information using unique encoded identifiers. The Ontario 
Laboratories Information System captures 88% of publicly 
reported cases of SARS-CoV-2 infection in Ontario.9 

Other data sources used in this study are the Canadian 
Institute for Health Information Discharge Abstract Database 
for hospitalization records, OLIS10 for all laboratory data 
(including tests not related to COVID-19), Ontario Health 
Insurance Plan (OHIP) for claims and health care usage data, 
Ontario Drug Benefit for drug prescription records and the 
Registered Persons Database (https://datadictionary.ices.
on.ca/Applications/DataDictionary). 

Using the data resource within HAIDAP, we identified all 
patients aged 18 years and older who were enrolled in OHIP 
(which covers all Ontario residents) and had nasopharyngeal 
swabs tested for SARS-CoV-2 between Feb. 2, 2020, and 
Oct. 5, 2020. Patients were followed up through Nov. 5, 
2020, to allow a follow-up period of 30 days. We excluded 
individuals living in long-term care facilities at the time they 
tested positive, as these individuals are all at high risk for seri-
ous outcomes from COVID-19 and should be prioritized for 
treatment, prevention and testing regardless of the features we 
included in our models. Therefore, this model applies to the 
population not living in long-term care.

Individual laboratory data from OLIS are linked to rele-
vant data sets containing health care use, demographic and 
geographic information using unique encoders held at ICES. 
The data from OLIS capture most SARS-CoV-2 infections 
but may miss results from certain private laboratories in the 
province, which may result in discrepancies between the num-
ber of cases in our study and those officially reported.11

Definition of index date and positive  
SARS-CoV-2 status
Patients were defined as positive for SARS-CoV-2 infection if 
they had 1 viral ribonucleic acid positive polymerase chain 
reaction test during the observation period. The index date for all 
analyses was defined as the date of the first recorded positive test.

Adverse outcome and baseline characteristics
We determined the adverse outcome as hospitalization for 
COVID-19 (International Classification of Diseases, 10th Revision 
code U071) at or within 30 days of the index date, since the 
median time to event from the index date was 1 (interquartile 
range [IQR] 0–5) day. We included baseline sociodemo-
graphic and clinical characteristics such as age, sex and 
comorbidity history.

Model development
To ensure that only the most recent data before diagnosis of 
SARS-CoV-2 infection were included in our model, we 
included medical records dated no later than 30 days before 
the index date and not earlier than 2 years before the index 
date (Figure 1). The 2-year window was selected because 
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most (> 92%) patients in our study cohort had at least 2 years 
of recorded clinical history in our database. Other windows 
were considered (3, 4 and 5 yr), but we discarded them for 
not covering more than 90% of the patients. The 30-day 
buffer before the index date was applied to ensure that only 
historical medical records were used to make a prediction for 
each patient and not tests done as a result of the SARS-
CoV-2 infection.

In addition to hospitalizations, we aggregated historical 
records of doctor visits, outpatient services, drug prescrip-
tions and laboratory results for each individual to compute 
independent predictor variables for model training. Examples 
of such variables include the number of doctor visits in the 
last year, the number of corticosteroid prescriptions recorded 
in the last 2 years, or the number of times that the patient 
had an abnormal reading of a blood biomarker such as lym-
phocytes (Appendix 1, Supplementary Table 1, available at 
www.cmajopen.ca/content/9/4/E1223/suppl/DC1). For each 
type of laboratory result (blood and urine), we calculated 
absolute deviations from normal ranges and counted the 
number of abnormally high or abnormally low measurements 
recorded in the 2-year window before the index date. As for 
comorbidities, we included binary variables indicating 
whether a patient had a history of the following: acute myo-
cardial infarction, arrhythmia, arthritis, asthma, cancer, 
chronic heart failure, colitis, chronic obstructive pulmonary 
disease, coronary disease, diabetes, hypertension, osteoarthri-
tis, osteoporosis and kidney disease.

We excluded variables with records for less than 50% of 
the patients in our cohort. For example, visits to a nephrolo-
gist are recorded only for those patients seeking kidney care; 
thus, if the variable “number of visits to a nephrologist in the 
last 2 years” were recorded for less than 50% of the patients, 
then this variable would be discarded from our model. Com-
pared with previous studies, the 50% threshold is slightly 
more stringent than the one recently used (33%) by Knight 

and colleagues.7 The full list of independent predictor vari-
ables extracted from the COVID-19 data source, as well as 
the fraction of patients lacking observations for each variable 
can be found in Appendix 1, Supplementary Table 1. After fil-
tering variables by number of records across patients, we used 
backward search for feature selection.12

An 80%/20% random split of the data set (where each 
example corresponds to 1 patient) was used to define develop-
ment and validation sets. The validation data set was held 
back and not used for model training or tuning. For the final 
model, we built a gradient-boosted trees model using the 
Extreme Gradient Boosting (XGBoost) algorithm.13 Briefly, 
gradient-boosted trees is an ensemble model methodology 
that consists of adding the predictions of several classification 
and regression trees.14

The set of variables included in our XGBoost model was 
selected using a backward search approach, and hyperparame-
ter tuning (learning rate, maximum tree depth, number of 
trees, α and γ) was done with the grid-search algorithm to 
maximize the cross-validation area under the receiver operat-
ing characteristic (ROC) curve. XGBoost allows explicit han-
dling of missing values, and thus we did not perform data 
imputation in our model. Model discrimination was evaluated 
by using the area under the ROC curve (C-index), in which a 
value of 0.5 indicates no predictive ability and 1.0 indicates 
perfect discrimination. Furthermore, we computed Shapley 
Additive Explanation (SHAP) values to identify predictive vari-
ables that contribute the most to the model output.15 SHAP 
values represent the weighted average of marginal contribu-
tions for each predictive variable included in the XGBoost 
model.16 That is, the SHAP value of a predictive variable rep-
resents how much the variable contributed to the model pre-
diction in a given instance (patient) compared with the average 
prediction for all instances (patients) in the data set. Finally, to 
assess the impact of each predictive variable on the predicted 
outcome, we computed partial dependence plots.17

2 years
(calculate predictor variables)

30 days
(gap)

Health care
utilization

Laboratory
tests

Drug
prescriptions

Demographic
information

Index 
date

30 days
(outcome)

Figure 1: Electronic medical records used for model development. The date of diagnosis of SARS-CoV-2 infection is used as the index date. 
From this date, a look-ahead period of 30 days is used to look for the outcome of hospitalization related to COVID-19. Besides including demo-
graphic information, independent predictor variables were constructed by aggregating 2 years of medical records (e.g., past health care utiliza-
tion, laboratory results and drug prescriptions) up to 30 days before the index date. The complete list of predictor variables calculated can be 
found in Appendix 1, Supplementary Table 1 (available at www.cmajopen.ca/content/9/4/E1223/suppl/DC1). The icons used in this figure are 
freely available at www.flaticon.com and were downloaded from this site on Jan. 17, 2021. 
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Statistical analysis
We computed the median and IQR to describe continuous 
variables across groups in our data set (hospitalized, not hos-
pitalized). To compare variables between the 2 groups, we 
used the standardized difference18 defined as 

= (   )
+  
2  

 

for continuous variables, where μ denotes the sample mean of 
the variable, and σ denotes the sample variance of the vari-
able. The subindices h and n correspond to hospitalized and 
not hospitalized samples, respectively. 

For binary (0 or 1) variables, the standardized difference is 
defined as

 =  (   )
(1 )  +  (1 )

2
 

where p denotes the prevalence or mean of the binary 
variable.

To compare the performance of our model against 
empirical rules, we computed the recall at the 10th, 20th and 
30th percentiles after scoring patients in the validation data 
set with either our model or the empirical rule. To compare 
commonly recommended risk factors, we constructed 4 
empirical rules and applied them to the held-out validation 
cohort to see how many actual hospitalizations we could cap-
ture. These 4 empirical rules are as follows: rank patients by 
age and select the oldest patients; rank patients by the num-
ber of comorbidities and select patients with the most 
comorbidities; rank patients by age first, then by number of 
comorbidities and select patients at the top of the ranking; 
and rank patients by number of comorbidities first, then by 
age and select patients at the top of the ranking. 

Ethics approval
The use of data in this project was authorized under section 
45 of Ontario’s Personal Health Information Protection Act, 
which does not require review by a research ethics board.

Results

The ICES COVID-19 data source included 58 948 patients 
who tested positive for SARS-CoV-2 infection between 
Feb. 2 and Nov. 5, 2020. From these, we excluded patients 
with an index date after Oct. 5, 2020, as well as patients cur-
rently living in a long-term care facility. After exclusions, 
36 323 patients were included in our study cohort and fol-
lowed up for 30 days (Figure 2). We used 80% of the 
patients for model development (n = 29 058) and 20% for 
model validation (n = 7265).

Over the total cohort, the hospitalization rate was 7.1% 
(2583 hospitalizations) with a median time to event of 

1 (IQR 0–5) day, and the mortality rate was 2.5% (906 
deaths) with median time to death of 12 (IQR 6–27) days 
after the index date. The median age of patients in the 
cohort was 45 (IQR 31–58) years. Table 1 shows the base-
line characteristics for all patients in the cohort, and Table 2 
shows the same characteristics for the development (29 058; 
80%) and validation (7265; 20%) data sets. 

XGBoost model
From a starting set of 133 variables, we identified 18 impor-
tant predictor variables of COVID-19 hospitalization and 
excluded the other 115. The ranking of variables by SHAP 
scores is shown in Table 3 and Appendix 1, Supplementary 
Figure 1, and the variables’ marginal impact, visualized via 
partial dependence plots, is shown in Appendix 1, Supplemen-
tary Figure 2. These variables are age, days since the last cre-
atinine blood test, geographical latitude, days since the last 
basophils blood test, sex, number of family doctor visits in the 
last year, number of comorbidities, number of different 
unique subclasses of drugs taken in the last 2 years, highest 

ICES COVID-19 
cohort

n = 58 948

Included in the 
study

n = 36 323

Excluded
n = 17 483

Excluded
n = 5142

Index date before 
Oct. 5, 2020
n = 41 465

Not living in a long-
term care facility

n = 36 323

Development 
cohort

n = 29 058

Validation cohort
n = 7265

Figure 2: Flow diagram of study cohort (derivation and validation). 
The ICES COVID-19 cohort was last updated on Nov. 7, 2020, and it 
includes patients with index (diagnosis) dates between Feb. 2, 2020, 
and Nov. 5, 2020. Patients with an index date after Oct. 5, 2020, or 
currently living in a long-term care facility were excluded. Included 
patients were followed up for 30 days for the outcome of hospitaliza-
tion for COVID-19. 
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value of creatinine recorded in the last 2 years, number of 
diagnostic radiology studies in the last 2 years, average value 
of neutrophils in blood in the last 2 years, number of doctor 
visits in the last 2 years, average value of leukocytes in blood 

in the last 2 years, number of creatinine blood tests in the last 
2 years, highest value of hemoglobin recorded in the last 2 
years, history of chronic kidney disease, and days since the last 
mean corpuscular hemoglobin test in the last 2 years. 

Table 1: Baseline characteristics of patients included in the study

Characteristic

No. (%) of patients* Standardized 
difference 

(hospitalized – not 
hospitalized)

All patients
n = 36 323

Hospitalized 
n = 2583

Not hospitalized 
n = 33 740

Age, yr, median (IQR) 45 (31–58) 64 (54–77) 43 (30–56) 1.175

No. of comorbidities, median (IQR)† 1 (0–3) 3 (2–6) 1 (0–3) 0.935

Male 17 428 (48.0) 1453 (56.3) 15 975 (47.3) 0.179

Female 18 895 (52.0) 1130 (43.7) 17 765 (52.7) –0.179

Asthma 5460 (15.0) 480 (18.6) 4980 (14.8) 0.103

Cancer 1453 (4.0) 297 (11.5) 1156 (3.4) 0.311

Chronic heart failure 831 (2.3) 275 (10.6) 556 (1.6) 0.381

COPD 1959 (5.4) 457 (17.7) 1502 (4.5) 0.432

Diabetes 5273 (14.5) 940 (36.4) 4333 (12.8) 0.568

Hypertension 8994 (24.8) 1477 (57.2) 7517 (22.3) 0.763

Hospitalized for COVID-19 2583 (7.1) 2583 (100) 0 (0) NA

Died from COVID-19 906 (2.5) 543 (21.0) 364 (1.1) 0.67

Note: COPD = chronic obstructive pulmonary disease, IQR = interquartile range, NA = not applicable.
*Unless otherwise stated.
†The variable “no. of comorbidities” accounts for the following conditions (see Model development under Methods): acute myocardial infarction, arrhythmia, arthritis, asthma, 
cancer, chronic heart failure, colitis, COPD, coronary disease, diabetes, hypertension, osteoarthritis, osteoporosis and kidney disease. 

Table 2: Baseline characteristics of patients in the development and validation sets 

Characteristic

No. (%) of patients*

Standardized difference
Development set

n = 29 058
Validation set

n = 7265

Age, yr, median (IQR) 44 (31–58) 45 (31–58) –0.015

No. of comorbidities, median (IQR)† 1 (0–3) 1 (0–3) –0.009

Male 13 995 (48.2) 3433 (47.3) 0.018

Female 15 063 (51.8) 3832 (52.7) 0.003

Asthma 4376 (15.1) 1084 (14.9) 0.004

Cancer 1163 (4.0) 290 (4.0) 0.001

Chronic heart failure 668 (2.3) 163 (2.2) 0.004

COPD 1549 (5.3) 410 (5.6) –0.014

Diabetes 4202 (14.5) 1071 (14.7) –0.008

Hypertension 7181 (24.7) 1813 (25.0) –0.006

Hospitalized for COVID-19 2043 (7.0) 540 (7.4) –0.016

Died from COVID-19 719 (2.5) 187 (2.6) –0.006

Note: COPD = chronic obstructive pulmonary disease, IQR = interquartile range.
*Unless otherwise stated.
†The variable “no. of comorbidities” accounts for the following conditions (see Model development under Methods): acute myocardial infarction, arrhythmia, arthritis, asthma, 
cancer, chronic heart failure, colitis, COPD, coronary disease, diabetes, hypertension, osteoarthritis, osteoporosis and kidney disease.
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The final XGBoost model achieved high discrimination 
in the fivefold cross-validation setting with the mean area 
under the ROC curve of 0.852, and the area under the 
ROC curve of 0.8475 in the held-out validation cohort. 
Figure 3A shows the ROC curve of the final model. The 
model also shows excellent calibration, with R2 = 0.998, 
slope = 1.01 and intercept = –0.01 (Figure 3B; Appendix 1, 
Supplementary Table 2). Patients in the validation cohort 
with a score of at least 0.5 (n = 2149, 29.6%) had a hospital-
ization rate of 20.3%, and patients with a score less than 0.5 
(n = 5116, 70.4%) had a hospitalization rate of 2.2%. Fur-
thermore, patients in the validation cohort scored at the top 
10% represent 47.4% of actual hospitalizations, and those 
scored at the top 30% capture 80.6% of hospitalizations 
(Figure 4). 

Geographical latitude and laboratory test history were 
ranked among the top 10 predictors in our model (Appen-
dix 1, Supplementary Figure 1). Blood biomarkers such as 
basophils, creatinine and leukocytes were identified as 
important predictors.  

Comparison of XGBoost model recall against 
4 empirical rules
We split the held-out validation cohort (n = 7265) into per-
centiles and calculated the recall at the top 10th (n = 726), 
20th (n = 1453) and 30th (n = 2180) percentiles after ranking 
the cohort according to our model or each empirical rule. 
The results of this comparison are shown in Figure 4. The 
final XGBoost model outperformed these rules across the top 
3 percentiles with relative gains between 10% and 30%. 

Interpretation

We have developed and validated a gradient-boosted trees 
model for predicting the risk of hospitalization for COVID-19 
in a cohort of patients in Ontario. Our model showed excellent 
calibration and a high discrimination performance consistent 
across fivefold cross-validation cohorts, which was comparably 
superior to 4 empirical rules. We envision our model to be 
deployed and used at the system level where there is access to 
this type of routinely collected population data, rather than by 
clinicians directly, to plan resource allocation and other aspects 
of the public health response, such as targeted testing or vacci-
nation campaigns. 

We found that past laboratory test results contributed to 
model predictions, suggesting that legacy blood tests can be 
leveraged as a proxy for future risk of hospitalization for 
COVID-19, despite the fact that these are historical values 
and not measurements taken at admission.19 We identified 
past neutrophil counts in blood as a strong contributor to our 
model predictions. These findings are consistent with recent 
studies documenting the role of excessive neutrophil counts in 
severe COVID-19 pneumonia.20,21

After we removed variables with more than 50% missing 
values (see Methods), there were 115 variables in our data set 
that were removed from the final XGBoost model after the 
feature selection process was completed (Appendix 1, Supple-
mentary Table 1). Some of these variables could have influ-
enced hospitalization prediction nonetheless. For instance, 
marginalization and income quintile indicators are known to 
correlate with access to health care.22 Additionally, the avail-
ability of variables included in our final model is not limited to 
Ontario’s region, as these are variables readily available in 
most medical record and insurance claims databases around 
the world. Thus, our methodology could be extended for 
scoring populations and informing decision-making in other 
jurisdictions outside of Ontario, Canada.

Many recently developed prognostic models for COVID-
19 rely on information that must be collected after infection 
or at admission to hospital.23,24 A key strength of our model 
is that it depends only on historical medical records and 
demographic variables available before infection. These are 
variables that are routinely collected and readily available in 
both public and private medical claims databases used across 
many countries. One potential application of our model is to 
aid in vaccination campaigns by, for example, computing risk 
scores for all patients in Ontario and then ranking patients 
accordingly to prioritize vaccinations. 

Table 3: Variables included in final XGBoost model ranked by 
SHAP values of importance

Predictor variable
SHAP 
value*

Age 0.7567

Days since last creatinine blood test 0.1320

Geographical latitude 0.1299

Days since last basophils test 0.1196

Male 0.1196

No. of family doctor visits in the last 2 yr 0.1165

No. of comorbidities 0.1072

No. of unique drug subclasses taken in the last 2 yr 0.0845

Highest recorded level of creatinine in the last 2 yr 0.0773

No. of diagnostic radiology studies in the last 2 yr 0.0381

Average measurement of neutrophils in blood in 
the last 2 yr

0.0289

No. of doctor visits in the last 2 yr 0.0237

Median level of neutrophils in the last 2 yr 0.0165

Average level of leukocytes in the last 2 yr 0.0144

No. of creatinine tests in the last 2 yr 0.0144

Highest recorded level of hemoglobin in blood in 
the last 2 yr

0.0021

History of chronic kidney disease 0.0021

Days since last mean corpuscular hemoglobin 
test in the last 2 yr

0.0010

Note: SHAP = Shapley Additive Explanation, XGBoost = Extreme Gradient 
Boosting.
*SHAP values represent the weighted average of marginal contributions for each 
predictive variable included in the XGBoost model.
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Ontario has a diverse population that covers a range of 
population groups, and thus the model will likely have appli-
cability outside of Ontario or could be easily adapted 
to score other populations. Although future work with an 
external data set would be required to validate the model 
performance in other geographical regions, we have 
observed that models developed with these data can usually 
be repurposed to other jurisdictions.25–27 An important 
strength of our study is the use of gradient-boosted trees, 
which allow for highly interpretable models to yield novel 
insights and relations among predictor variables.

After vaccines with sufficient efficacy were announced in 
October and November of 2020,28 governments of virtually all 
affected countries started to actively develop vaccine rollout and 
prioritization schedules.29,30 The most prevalent approach to 
assessing vaccine risk is to start with the oldest patients (especially 
those living in long-term care facilities), who account for most 
reported deaths, and health care workers, who have a high risk of 
exposure.31 Two factors that commonly influence expert recom-
mendations are age and pre-existing conditions (comorbidities).32 
Our model provides an alternative approach to leverage machine 
learning to predict a risk score for every patient. 

Our results indicate that our model can more accurately 
identify people at high risk of severe complications from 
COVID-19.

Limitations
Our study has several limitations. First, the variable “geograph-
ical latitude” was found to be a strong contributor for predict-
ing risk of hospitalization for COVID-19 in our final model. 
This suggests that our model learned an association that is spe-
cific to the region of Ontario. Nevertheless, geographical fea-
tures often correlate with sociodemographic factors, such as 
access to health care and income. Thus, a potential limitation of 
our model is the need for retraining with updated geographical 
data before implementing it in a different jurisdiction. 

Second, although we had a diverse data source that cap-
tured all health care interactions, we lacked access to some 
data elements that are not collected in routine data holdings. 
For example, risk factors such as diet and physical activity are 
associated with disease immunity33 and were not captured 
in our data. Furthermore, recent studies have identified 
genetic,34 transcriptomic35 and proteomic36 markers that play 
an important role in COVID-19 progression and outcome, 
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but these data are not routinely collected at the population 
level and thus not included in our study. The incorporation of 
such factors, if available, could boost both accuracy and 
robustness across subgroups of patients in the population. 

A third limitation is that XGBoost models, though some-
what explainable via SHAP values, are not as explicit as the 
coefficients generated from a logistic regression model. It is thus 
more difficult to estimate the impact of each predictor variable 
on the outcome in a way that is familiar to clinical audiences. 

Finally, since our model is trained on data from Ontario, 
we recommend independent validation and possibly retrain-
ing if the model is to be used outside of Ontario.

Conclusion
The XGBoost model developed here utilizes 18 health care 
and demographic variables to predict risk of COVID-19 hos-
pitalization with high performance and excellent calibration. 
Compared with 4 empirical rules currently used to stratify 
patients by risk, our model has a higher recall when scoring 
those patients ranked at the 3 top deciles. Past laboratory test 
results were found to significantly contribute to model predic-
tions, which suggests that legacy blood tests are important 
determinants of future COVID-19 hospitalization risk.

Our model has the potential utility to inform public health 
decision-making directly (e.g., during vaccination campaigns) 
without relying on empirical measures.37–39 Our model is able 
to perform risk stratification at a population-wide level, is based 
on an accurate and explainable algorithm, and demonstrates 

the potential use of legacy laboratory data as a proxy for poten-
tial risk of severe complications from COVID-19. These risk 
stratification models are currently not in practice in our setting 
to support health system decision-making for COVID-19. 
Thus, models like ours can support informed decision-making 
for optimal population health management. 

We envision our model providing a more effective way to 
use routinely collected data to support strategies that protect 
patients most at risk for serious complications from COVID-19 
and to support more careful and precise management for those 
at low risk, while making efficient use of the available resources.
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