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Abstract
Background: Chronic kidney disease (CKD) has become a 
global public health problem nowadays. As cardiovascular 
diseases (CVDs) are the primary cause of death in advanced 
CKD patients, much attention has been paid to resolving 
their cardiovascular complications. However, managing 
CKD and cardiovascular complications is still a big challenge 
for nephrologists, as satisfactory treatments are still lacking. 
Platelets, the second most abundant cells in the blood, are 
the major participants of hemostasis, thrombosis, and 
wound healing. In recent years, platelets have been reported 
in various physiological and pathological processes, includ-
ing CKD and CKD-related CVDs. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

Chronic kidney disease (CKD) is a kind of disease in 
which kidney damage or decreased glomerular filtration 
rate (<60 mL/min per 1.73 m2) exists for more than 3 
months. It has become a global health problem, as the 
morbidity achieved approximately 10–13% [1]. A large 
proportion of CKD patients will gradually progress to 
end-stage kidney disease and eventually need replace-
ment therapy with dialysis for life and even kidney trans-
plantation [2]. Although extensive studies indicate that 
CKD progression is characterized by tubular atrophy, 
glomerular sclerosis, interstitial fibrosis, and peritubular 
capillary rarefaction, the pathological mechanisms of 
CKD have not been fully elucidated.

Dramatically, in CKD patients, the most common 
complications and major causes of death are cardiovas-
cular diseases (CVDs) [3]. Thus, the type 4 cardio-renal 
syndrome was defined as the CVDs induced by CKD. 
However, it remains largely unknown how CKD facili-
tates the development of CVDs. Therefore, exploring the 
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mechanisms of CKD and its cardiovascular complica-
tions is either beneficial for finding preventive and thera-
peutic targets or reducing the morbidity and mortality of 
CKD patients.

During the past decades, platelets have been found 
with extensive and versatile functions. As we all know, 
platelets are essential participants in acute coronary syn-
dromes and are involved in atherosclerosis and thrombo-
sis [4]. Besides, accumulating evidence suggests that 
platelets are involved in the pathogenesis of CKD, as they 
are hyperactivated and can participate in the processes of 
chronic inflammation, oxidative stress, immunoreaction, 
and fibrosis associated with CKD progression [5]. There-
fore, understanding the functions and mechanisms of 
platelets in CKD and identifying effective intervention 
targets of platelets provide broad prospects for CKD pa-
tients, with an ultimate aim to reduce cardiovascular 
morbidity and mortality. In this review, we mainly focus 
on the roles and mechanisms of activated platelets in 
CKD and CKD-related CVDs.

Platelet and Its Vesicles

Platelets are anucleate blood cells with a 2–4 μm diam-
eter. Platelets originate from proplatelets derived from 
megakaryocytes predominantly situated at bone marrow 
sinusoids [5] and a recent study also provided evidence 
for megakaryocytes and platelet production in the lung 
[6]. The traditional functions of platelets are hemostasis, 
thrombosis, and wound healing [7].

Platelets contain a great variety of cell surface recep-
tors and adhesion molecules, which make them respond 
quickly to stimuli such as injury or infection [5]. As they 
are highly sensitive to environmental changes and are 
present in high numbers in the circulation, they are the 
first cells to arrive at sites of acute injury, where they in-
teract with endothelial cells and leukocytes. In response 
to different stimuli, resting platelets become active and 
differentiate into different subtypes according to the ac-
tivation of different surface receptors and signaling inte-
grin molecules. Once activated, platelets begin to change 
shape, degranulate, and release microvesicles to recruit 
additional platelets and other immune cells [5].

Platelets carry three different types of microvesicles: 
α-granules, dense granules, and lysosomes. These mi-
crovesicles contain various biomolecules, including over 
300 kinds of different proteins and other bioactive me-
diators, such as P-selectin, thrombospondin, platelet-de-
rived growth factor (PDGF), thromboxane, and platelet-

activating factor. In addition, platelet microvesicles con-
tain mRNAs and miRNAs that can be transferred to 
other cells, modulating their gene transcription and pro-
tein synthesis. Through the release of microvesicles, 
platelets can rapidly modulate molecular processes that 
regulate coagulation, inflammation, fibrosis, and redox, 
all of which are associated with CKD and CKD-related 
CVDs [8].

Hyperactivated Platelets Contribute to the Progress 
of CKD

Platelets are hyperactivated in CKD patients. This can 
be detected by the increased expression of P-selectin, 
thromboxane A2, CC-chemokine ligand 5(CCL5), 
CD154, platelet factor 4(PF4), etc. [9, 10]. Clinically, it 
was also detected that mean platelet volume was obvi-
ously increased with the progression of CKD. Many sub-
stances lead to platelet activation in CKD patients. On the 
other hand, hyperactivated platelets contribute to the 
progress of CKD in turn.

Platelets Release Proinflammatory Factors and 
Interact with Inflammatory Cells to Accelerate Renal 
Inflammation and Fibrosis in CKD
Chronic, systemic, and low-grade inflammation is a 

long and generalized process, which can be usually ob-
served in CKD patients [11]. Renal inflammation plays a 
central role in the initiation and progression of renal fi-
brosis and CKD-induced complications. Multiple pieces 
of evidence show there are bidirectional relationships be-
tween platelets and inflammation.

On the one hand, inflammation can induce platelet ac-
tivation, evidenced by the increase in platelet aggregation 
and the interaction of platelets with monocyte [12]. On 
the other hand, platelets can release multiple proinflam-
matory factors such as PF4, stromal cell-derived factor-1, 
epithelial neutrophil-activating protein 78, IL-1β, CD40 
Ligand (CD40L), and CCL5, all of which further acceler-
ate the development of CKD [13, 14]. Platelet-derived 
proinflammatory factors can trigger a switch of endothe-
lial cells to a more inflammatory phenotype [15], which 
will subsequently release inflammatory cytokines such as 
IL-8, CCL2, etc. Therefore, activated platelets in CKD 
contribute to leukocyte recruitment.

In CKD, the interactions between platelets, mono-
cytes, and endothelial cells are enhanced, facilitated by 
the increases in inflammatory cytokine levels and cell ad-
hesion molecules in these cell types [16]. Platelet-derived 
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extracellular vesicles (EVs) activate endothelial cells and 
leukocytes by surface molecules CD41 and CD62P. Ad-
ditionally, platelet EVs can induce the migration and pro-
liferation of vascular smooth muscle cells (VSMCs), as 
prolonged incubation of VSMCs with platelet EVs results 
in increased adhesiveness for THP1 monocytic cells and 
an increase in IL-6 production [17]. These findings indi-
cate that platelet EVs have proinflammatory effects and 
promote endothelial dysfunction. Besides, incubating 
VSMCs with platelet-derived EVs led to a phenotypic 
transition towards a synthetic phenotype, as evidenced by 
the morphological changes and the reduced expression of 
contractile marker calponin [17]. Therefore, platelets can 
amplify the inflammation by releasing EVs under CKD 
conditions.

Particularly, activated platelets can express CD40 and 
CD154, the latter of which is also termed CD40L. CD40 
is a transmembrane glycoprotein receptor expressed in 
platelets and endothelial cells. However, CD40L in plate-
lets is only expressed upon activation and always in a sol-
uble form [18]. In CKD patients, the level of CD40L from 
platelet microparticles was obviously increased, especial-
ly in CKD 4–5 stages [19]. According to the binding of 
CD40 and CD40L, CD40L on platelets induces endothe-
lial cells to secrete chemokines and express adhesion mol-
ecules, thereby generating signals for the recruitment and 
extravasation of leukocytes at the site of injury [20]. This 
study revealed that platelets could directly initiate an in-
flammatory response of the vessel wall. Under this condi-
tion, endothelial cells upregulate the surface adhesion 
molecules E-selectin, VCAM1, and ICAM1, release 
CCL2, and further boost the recruitment of leukocytes, 
such as macrophages and neutrophils [21]. All these ac-
tions above promote the creation of a constantly inflam-
matory environment in CKD patients.

Some inflammatory factors are reported to be associ-
ated with renal fibrosis. After activation, platelets can in-
crease the release of inflammatory factors in CKD [13]. 
The profibrotic inflammatory factors such as CCL5, 
TNF-a, TGF-β, and PDGF are reported to be up-regulat-
ed, while the antifibrotic factors, such as AMPK and IL-
10, are down-regulated in the kidneys of CKD patients. 
Among them, TGF-β drives renal fibrosis by activating 
lots of signaling molecules and plays a central role in renal 
fibrosis [11]. It is reasonable to infer platelet can contrib-
ute to systemic inflammation and promote renal fibrosis 
in CKD patients, which is a characteristic process con-
necting inflammatory factors, recruitment of leukocytes, 
and activated fibrotic signal pathways.

Moreover, platelets are also involved in the phenotyp-
ic change of macrophages to promote fibrosis of CKD. 
Macrophages belong to the mononuclear phagocytic sys-
tem [22]. Based on their functions and anatomical loca-
tion, macrophages are divided into different subpopula-
tions [23]. In the kidneys, macrophages can be broadly 
classified into two different subtypes: classically activated 
(M1) macrophages (which can release inflammatory fac-
tors) and alternatively activated (M2) macrophages 
(which can release TGF-β-promoting fibrosis) [24, 25]. 
With the development of CKD, M1 macrophages can 
switch to fibrotic-M2 macrophages [24]. A study illus-
trated that by incubating platelet-derived EVs with mono-
cytes, platelet EVs can preferably bind to monocytes, and 
platelet EVs can be absorbed by phagocytic over time 
[26]. Thus, monocytes can harbor the platelet markers. 
Prolonged incubation of monocytes with platelet EVs re-
sults in a remarkable change of surface marker expres-
sion, indicating a polarization of the monocytes to M2-
type macrophages [26]. Therefore, it is a novel thrombo-
inflammatory pathway that platelets may mediate the 
monocytes to M2-type macrophages and probably con-
tribute to the progress of CKD by M2 macrophages.

MiRNAs Released from Platelets Play a Vital Role in 
Fibrosis of CKD
Although devoid of a nucleus and lacking genomic 

DNA, circulating human platelets retain as much as 45% 
of the Refseq genes in the form of mRNAs [27]. Platelets 
contain an abundant and diverse array of mRNAs and 
miRNAs. MiRNAs are noncoding RNAs with a length of 
20–25 nucleotides. The binding of miRNAs to their re-
spective target mRNAs promotes degradation of the 
mRNAs [28]. Clinical research investigated the circulat-
ing platelets of 10 CKD patients and five age- and sex-
matched healthy subjects. They found that platelet mRNA 
and miRNA transcriptome was altered in CKD patients 
and could be restored partially upon dialysis [29]. Plate-
let-derived miRNAs can be internalized by recipient cells 
including endothelial cells, macrophages, and VSMCs, 
where the altered miRNAs may take part in the molecular 
processes of oxidative stress, inflammation, and fibrosis 
of CKD [30]. Therefore, some circulating miRNAs have 
been suggested as promising noninvasive biomarkers in 
CKD patients. Microarray screening revealed miRNAs 
from activated platelets or platelet microparticles mainly 
include miRNA-223, miRNA-126, miRNA-21, miR-
NA-191, miRNA-150, miRNA-24, and miRNA-197 [30–
32].
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The miRNA-21 is an evolutionarily conservative miR-
NA and almost exists in all types of cells, among which 
platelets are the major sources [33, 34]. MiRNA-21 is very 
stable in the blood and performs vital regulatory roles in 
health and disease [33]. A study in 2015 found a strong 
up-regulation of miRNA-21 in the kidneys of mice with 
unilateral ureteral obstruction and also in the kidneys of 
patients with severe kidney fibrosis. In addition, their 
data also indicated that circulating miR-21 levels were as-
sociated with renal fibrosis [35]. Another study reported 
miRNA-21 could contribute to fibrogenesis and epithe-
lial injury by suppressing the expression of peroxisome 
proliferator-activated receptor (PPAR)-α, which is a ma-
jor regulator of the mitochondrial β-oxidation pathways 
[36]. Genetic deletion of miRNA-21 in mice dramatically 
reduced interstitial fibrosis, glomerulosclerosis, tubular 
injury, and inflammation and prevented CKD progres-
sion. Inhibition of miRNA-21 was protective against 
TGF-β-induced fibrogenesis and inflammation in glo-
merular and interstitial cells, likely as the result of en-
hanced PPARα/RXR activity and improved mitochon-
drial function in CKD mice [37]. MiRNA-21 also upregu-
lates extracellular signal-regulated kinase (ERK) signaling 
in the kidney. Both ERK1/2 and TGF-β/Smad signaling 
pathways seem to be emphasized in the development of 
kidney fibrosis in diabetic models [38]. Moreover, miR-
NA-21 and miRNA-124 also activate the profibrotic 
genes in human podocytes and tubular cells in a model of 
IgA nephropathy [39]. All these studies indicate that 
miRNA-21 plays an essential role in the fibrosis of CKD, 
and it can be a candidate target for antifibrotic therapies.

MiRNA-223 is the most abundant miRNA from plate-
let microvesicles. It is considered to be associated with 
several inflammatory disorders including diabetes-type 
2, sepsis, and rheumatoid arthritis. MiRNA-223 can be 
delivered into vascular endothelial cells, where it partici-
pates in the process of inflammation in CKD [40]. Studies 
have revealed the close relationship between miRNA-223 
and the NLRP3 gene in several disease models including 
IgA nephropathy, atherosclerosis, and diabetic cardio-
myopathy [41, 42]. Thus, it is reasonable to predict that 
miRNA-223 may promote fibrosis of the kidneys by acti-
vating inflammation.

Although miRNAs have great potential and more and 
more research is exploring the functions of miRNAs, the 
studies regarding the detailed molecular mechanisms of 
platelet-derived miRNAs in CKD are quite limited. From 
existing data, we can infer that platelet-derived miRNAs 
can have extraordinary functions in regulating fibrosis in 
CKD, and targeting specific platelet-derived miRNAs 

could be a novel therapeutic approach to treating renal 
fibrosis. Therefore, further studies are needed to elucidate 
the molecular mechanism of miRNAs.

Platelets Accelerate Glomerulosclerosis in CKD 
Progression
Glomerulosclerosis is an important progressive patho-

logical process that appears in almost all kinds of CKDs 
as well as the natural aging process. Glomerulosclerosis is 
defined as the obstruction of glomerular capillaries and 
loss of podocytes by extracellular matrix (ECM) deposi-
tion [43]. The glomerulus contains four different cell 
types including parietal epithelial cells, endothelial cells, 
podocytes, and mesangial cells [44], among which podo-
cytes are the most important in maintaining the structure 
of the glomerular filtration. In recent years, platelets have 
been reported to influence the normal functions of glo-
meruli and participate in the process of glomerulosclero-
sis.

First of all, activated platelets may affect the functions 
of podocytes and the remodeling of GBM. As mentioned 
before, platelets are a primary blood reservoir for CD154. 
In the glomerulus, CD40 is synthesized by podocytes and 
can be detectable in kidney tissue sections. Activated 
platelet supernatants induced matrix metalloproteinases 
9 (MMP-9) mRNA synthesis in podocytes, an effect re-
duced by anti-CD40 antibody [45]. This study uncovered 
the potential role of platelets through the CD40/CD154 
signaling pathway in the control of GBM synthesis and 
degradation. In addition, there are still some studies that 
reported CD154 may contribute to the regulation of ma-
trix remodeling proteins, particularly through the induc-
tion of MMP-9 in other disease models [46, 47]. In a 
word, the platelet-derived CD154 activates the CD40/
CD154 signaling pathway to modulate matrix remodel-
ing through the synthesis of MMPs in podocytes, further 
contributing to CKD progression.

Second, platelet secretory factors influence mesangial 
cell proliferation in glomerulosclerosis. Fibronectin, 
PF4, 12-hydroxyeicosatetraenoic acid, TGF-β, and 
PDGF, all can be released by platelets and almost all of 
them are related to mesangial cell proliferation [48–51]. 
A study reported that fibronectin could promote mesan-
gial cell migration and proliferation in vitro and contrib-
ute to extracellular matrix formation and tissue remodel-
ing during glomerular disease [48]. Moreover, this re-
search also proposed a hypothesis that fibronectin 
derived from platelets and macrophages served as a pro-
visional matrix involved with mesangial cell migration 
into glomerular lesions [48]. Platelets are also crucial in 
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mesangial cell injury to renal matrix expansion in an 
acute glomerular wound repair to chronic kidney injury 
animal model. Platelets inhibition significantly reduced 
TGF-β overexpression, fibrinogen deposition, and glo-
merular matrix expansion in this acute glomerular 
wound repair model [52].

In conclusion, platelets may involve in ECM remodel-
ing, cell migration, and proliferation to stimulate glomer-
ular remodeling. The mechanisms of platelets in CKD 
progression are shown in Figure 1.

Involvement of Activated Platelets in Cardiovascular 
Complications of CKD

Cardiovascular complications of CKD mainly include 
cardiomyopathy, atherosclerosis, calcification, and sub-
sequent result in heart failure, cerebrovascular, cardio-
vascular death, and so on [53]. CVD accounts for 40–50% 
of deaths among patients with end-stage kidney disease 
[54], which is much higher than that in age- and sex-
matched people [55].

Fig. 1. The mechanisms of platelets in CKD progression. Platelets can not only release miRNAs, inflammatory 
factors, and fibrosis factors to directly promote renal fibrosis, but also interact with inflammatory cells to promote 
CKD progression indirectly.
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A clinical study stated that for patients with CKD stage 
5 or receiving dialysis treatment, higher platelet counts 
tend to be associated with a greater risk of CVD events 
[56]. It was also discovered that patients with CVDs had 
higher mean platelet volumes than those without CVDs 
in CKD [57]. Our group also reported that platelet counts, 
plateletcrit, and platelet distribution width were associ-
ated with CVD events in CKD patients without dialysis 
[58]. The changes in platelet indices in CKD patients in-
dicate the vital role of platelets in CKD-related CVDs. To 
reduce the morbidity of cardiovascular complications in 
CKD, it has become a common therapy to use acetylsali-
cylic acid, clopidogrel, etc. as antiplatelet agents. A sig-
nificant reduction in cardiovascular mortality was ob-
served in CKD patients who received aspirin alone or in 
combination with a β-blocker compared to those who did 
not receive either medication [59]. What’s more, although 
there is still a lack of evidence using acetylsalicylic acid as 
cardiovascular primary prevention in CKD patients, re-
search has clearly shown aspirin administration resulted 
in an absolute risk reduction of major CVD events [60]. 
The information on antiplatelet agents in CKD and CVDs 
is listed in Table 1.

Under CKD conditions, many sera pathophysiological 
factors can lead to the activation of platelets. These fac-
tors, like accumulated uremic toxins and inflammatory 
cytokines, induce the overproduction of platelet mi-
crovesicles. They can be directly absorbed by vascular 
cells and even mediate platelet-monocyte aggregation, 
further leading to vascular calcification (VC), atheroscle-
rosis, and heart fibrosis in CKD patients. In a word, plate-
lets play a vital role in the cardiovascular complication 
progression of CKD patients. The functions of platelets in 
cardiovascular complications of CKD patients have been 
explored, which will be discussed below.

Platelets Expedite VC of CKD
Vascular calcification (VC) is defined as mineral depo-

sition in the vasculature in a form of calcium-phosphate 
complexes [61]. VC often occurs with aging but is preva-
lent in patients with hypertension, CKD, or diabetes [61]. 
Different from other pathological types, CKD-induced 
VC often occurs in the medial layer. Even in the early 
stage of CKD, the rate of VC increases obviously. Many 
factors influence the progression of VC in CKD, such as 
oxidative stress, endothelial dysfunction, and the in-
creased levels of proinflammatory cytokines.

As mentioned before, platelets can directly release 
many inflammatory factors that can contribute to the 
persistent inflammatory state in CKD and recruit more 
inflammatory cells, further enhancing the interactions 
between VSMCs and inflammatory cells [62]. These in-
teractions result in phenotypic switching of VSMCs. The 
phenotype of osteochondrogenic VSMCs can enhance 
cell migration and proliferation and eventually facilitate 
VC [63]. This might be a general process that happened 
in the development of VC in CKD patients.

Furthermore, platelets can also express and release os-
teocalcin (OC). OC is one of the most abundant noncollag-
enous proteins in bone and is primarily generated by osteo-
blasts during bone formation. Recent data indicated OC 
was closely related to VC [64, 65]. OC exists in δ-granules 
of human platelets and is released upon platelet activation. 
In CKD patients, the total plasma OC concentration was 
higher when compared with that in the control group [66]. 
In the calcium-deposit area, there is an evident co-localiza-
tion between OC and platelets, thus platelets probably se-
crete OC to promote the early stage of VC [64].

In conclusion, platelets can affect the inflammatory 
state either by releasing proinflammatory factors or re-
leasing OC to promote VC in CKD. Further studies are 
needed to explore the detailed molecular mechanisms 
underlying the particular functions of OC and inflamma-
tory factors from platelets in CKD-related VC.

Platelets Facilitate Vascular Fibrosis and 
Atherosclerosis in CKD
Both vascular fibrosis and atherosclerosis are momen-

tous pathological processes in cardiovascular complica-
tions. Damage to vascular endothelial cells is the origin of 
vascular fibrosis and atherosclerosis and usually happens 
in CKD with a high frequency. The process of vascular 
endothelial cell damage often refers to premature senes-
cence of endothelial cells, cell transition from an endothe-
lial to a mesenchymal phenotype, endothelial cell dys-
function, and vascular fibrosis [67].

Table 1. Platelet inhibitors used in CKD and CKD related CVDs

Medication Dose Comments

Acetylsalicylic 
acid

100 mg/day Reduced effect in CKD stages 4 
and 5

Clopidogrel 75 mg/day Reduced effect in CKD stages 4 
and 5

Prasugrel 10 mg/day More safety in bleeding events

Ticagrelor 180 mg/day A higher antiplatelets efficiency 
but a higher incidence of 
bleeding especially in CKD stages 
4 and 5
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As we all know, platelets act essentially in vascular 
wound healing. At sites of vascular injury where endothe-
lium is damaged or removed, clot formation and vessel 
contraction immediately occur, which is mediated large-
ly by substances such as thromboxane and PDGF from 
activated platelets [5]. Then VSMCs are dedifferentiated 
and proliferated to repair the vascular injuries, with their 
phenotype shifting from a quiescent contractile pheno-
type to a highly synthetic and proliferating cell type. 
However, excessive repair of injuries by VSMCs can lead 
to intimal hyperplasia and fibrosis, which is engaged in 
the pathogenesis of atherosclerosis [7]. Current studies 
clearly show that platelets play an essential part in athero-
sclerotic lesions. Even more, activated platelets are pres-
ent in the circulating blood of atherosclerotic individuals 
throughout the atherosclerotic process [5]. CKD, even at 
early stages, can increase the risk of atheromatous plaques 
[68].

From a general position, activated platelets can release 
a plethora of chemokines, including CXCL4 or PF4, 
CCL5, CXCL12 or stromal cell-derived factor-1α (SDF-
1α), and CXCL16, all of which initiate or promote local 
inflammatory processes at sites of vascular injury and 
atherosclerosis. Moreover, genome-wide miRNA se-
quencing of VSMCs cocultured with activated platelets 
identified significant increases in platelet-derived miR-
NA-223. MiRNA-223 appears to directly target PDGFRβ 
(in VSMCs), reversing the injury-induced dedifferentia-
tion and intimal hyperplasia [69]. Thus, platelets may 
have bidirectional functions in vascular fibrosis, includ-
ing initiating an immediate repair process and excessive 
repair in a delayed manner. In CKD, the aggregation of 
the circulating activated platelets and platelet-leukocytes 
is enhanced, promoting the development of atherosclero-
sis. The chemokines released by platelets in VC, vascular 

fibrosis and atherosclerosis progression are shown in Fig-
ure 2.

There still exist some other functions of platelets in 
vascular fibrosis and atherosclerosis in CKD. Platelet-de-
rived miRNAs are also proved to be implicated in the ini-
tiation and progression of atherosclerosis through the 
regulation of lipid metabolism, inflammatory response, 
oxidative stress, endothelial function, angiogenesis, and 
plaque formation [30]. MiRNA-126, mainly released by 
platelets, is thought to become a biomarker of CVDs be-
cause it was considerably elevated in vascular damage and 
endothelial dysfunction according to the detection in 
myocardial infarction patients. A positive association be-
tween circulating miRNA-126 and fatal myocardial in-
farction has been reported recently [70]. MiRNA-126 can 
control vascular inflammation by affecting the adhesion 
of white blood cells to the endothelium and has a positive 
function in CVDs. In addition, miRNA197, another miR-
NA shed mainly by platelets, is up-regulated in CKD pa-
tients. MiRNA-197 might facilitate dyslipidemia in meta-
bolic syndrome, hence leading to the progression of 
CVDs [71]. Clinical research confirmed that an elevated 
level of miRNA-197 could be a predictor of cardiovascu-
lar death in a large patient cohort with coronary artery 
disease [72].

In a word, platelets are classic cells that participate in 
fibrosis and atherosclerosis. However, the particularity of 
CKD revealed some different roles of platelets. Thus, for 
one thing, platelets can secrete plenty of chemokines to 
enhance interactions between endothelial cells and leu-
kocytes to enhance vascular fibrosis and atherosclerosis 
indirectly; for another thing, platelets can produce miR-
NAs to influence the transcription of key genes in the pro-
cess of vascular fibrosis and atherosclerosis in CKD.

Fig. 2. Activated platelets can secret lots of 
chemokines to promote VC and athero-
sclerosis in CKD.
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Platelets Deteriorate Cardiac Remodeling of CKD 
Both Directly and Indirectly
Aberrant cardiac remodeling with hypertrophy and fi-

brosis is one of the major pathological changes of CKD-
associated CVDs. In CKD patients, uremic cardiomyopa-
thy is a specialized cardiac pathology characterized by ab-
errant cardiac remodeling [73].

Previous studies have illustrated that activated plate-
lets can release some pathophysiological factors includ-
ing serotonin, thromboxane A2, platelet-activating fac-
tor, PDGF, etc. to participate in cardiac remodeling by 
regulating endothelial and VSMCs [74]. For example, a 
study showed that platelets and platelet-released sero-
tonin (5-HT) were directly involved in the functional reg-
ulation of neonatal rat cardiac fibroblasts by enhancing 
the secretion of TGF-β1 and promoting their migration 
and differentiation to promote cardiac remodeling [75]. 
A recent study also provided evidence that platelet-spe-
cific p38α contributed to cardiac remodeling via the 
MAPK/P38 signal pathway, and platelet-specific p38α-
deficient mice had improved cardiac function, reduced 
infarct size, decreased inflammatory response, and mi-
crothrombus in a myocardial infarction model [76]. Fur-
thermore, the P2y12 receptor, one of the predominant 
activating receptors for platelets, promoted pressure 
overload–induced cardiac remodeling via platelet-driven 
inflammation in mice [77]. These studies clearly indicat-
ed that platelets and their products participate in cardiac 
remodeling directly. In addition, platelets can interact 
with those inflammatory cells and lead to cardiac remod-
eling indirectly, which is similar to the inflammatory 
functions of platelets in other cardiac pathological pro-

cesses of CKD complications such as atherosclerosis and 
VC.

Platelet-derived miRNAs are also deeply engaged in 
cardiac remodeling. A clinical study suggested miR-
NA-21 as a novel biomarker for elderly patients with type 
2 cardiorenal syndrome, as obviously the elevated level of 
serum miRNA-21 was found in these patients [78]. Simi-
larly, miRNA-21-5p is a mediator of left ventricular re-
modeling through its regulation of PPARα [79]. In addi-
tion, miRNA-21 can control cardiac hypertrophy and af-
fect the overall structure and functions of the heart by 
regulating the signaling pathway of ERK-MAP kinase 
[80]. What’s more, overexpression of miRNA-24 in cul-
tured rat cardiomyocytes resulted in hypertrophic growth. 
This indicates that miRNA-24 may regulate the develop-
ment of cardiac remodeling [81]. Last but not least, miR-
NA-223 can regulate the gene expression of NLRP3 and 
conduce to fibrosis and inflammation of myocardial tis-
sues in diabetic cardiomyopathy [42, 82]. All these studies 
clearly showed that platelet-derived miRNAs were close-
ly related to cardiac remodeling. The functions of plate-
let-derived miRNAs in CKD and CKD-related CVDs are 
listed in Table 2.

In CKD patients, the high frequency of cardiac remod-
eling is strongly linked to platelet activation, which causes 
a cascade of downstream reactions. In a recent study, 
Yang et al. [83] found that platelets were significantly ac-
tivated in 5/6 nephrectomy-operated mice, while cardiac 
remodeling was significantly ameliorated when platelets 
were effectively depleted. They further found that acti-
vated platelets released PF4 and induced macrophages to 
polarize toward a specific phenotype intermediate be-

Table 2. Platelets-derived miRNAs in CKD and CKD related CVDs

MiRNAs Pathology Effect Mechanisms References

MiRNAs in CKD
miRNA-223 IgA nephropathy, atherosclerosis, 

diabetic cardiomyopathy
Inflammation, apoptosis of vascular 
endothelial cell

Insulin-like growth factor 1 
receptor, NLRP3 inflammasome

[40–42]

miRNA-21 CKD, cardiorenal syndrome type 4 Glomerulosclerosis, interstitial fibrosis, 
tubular injury, and inflammation

ERK1/2, TGF-β/Smad signaling, left 
ventricular remodeling

[36–39]

MiRNAs in CVDs
miRNA-223 Atherosclerosis VSMCs dedifferentiation and intimal 

hyperplasia
PDGFRβ [69]

miRNA-126 Myocardial infarction Vascular damage and endothelial 
dysfunction, vascular inflammation

– [70]

miRNA-197 Metabolic syndrome Dyslipidemia – [71]
miRNA-21 Type 2 cardiorenal syndrome Left ventricular remodeling, cardiac 

hypertrophy
ERK-MAP, left ventricular 
remodeling

[78–80]

miRNA-24 Heart failure Cardiac remodeling – [81]
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tween the previously characterized M1 and M4 pheno-
types. Then activated macrophages secreted MMP7, 
which could cleave a wide range of ECM proteins includ-
ing collagen I, thereby leading to the process of cardiac 
remodeling during uremia. This study provided a poten-
tial mechanism of cardiac remodeling in uremic mice 
[83].

In conclusion, inappropriate platelet activation can af-
fect the cardiac remodeling of CKD. They can facilitate 
macrophage dysfunction in cardiac remodeling in uremic 
mice. What’s more, platelets can also recruit proinflam-
matory cells or shed miRNAs to precipitate cardiac re-
modeling.

Conclusion

Here, we review the pathogenic roles of platelets in 
CKD and its cardiovascular complications. Besides 
thrombosis, the hyperactivated platelets also release large 
amounts of cytokines and chemokines that directly or in-
directly contribute to CKD progression and the develop-
ment of cardiovascular complications. Meanwhile, the 
hyperactivated platelets can also be swallowed by other 
cells, wherein they shed miRNA to affect their activities. 
Given these pleiotropic roles of platelets, we anticipate 
that more pathogenic mechanisms of platelet hyperacti-
vation in CKD need to be defined. What’s more, the pro-
longed and persistent state of inflammation in CKD pa-
tients is closely linked to coagulation disorder. Inflamma-
tion results in activation of coagulation, and coagulation 
also affects inflammatory activity. Proinflammatory cyto-
kines and other mediators are capable of activating the 
coagulation system and leading to thrombin generation. 
As a result of the central role of platelets in the process of 

thrombosis, there exists an upward tendency in throm-
botic risk in CKD patients. So oral anticoagulants are 
commonly used drugs in patients with CKD. Of note, 
both thrombosis and hemorrhage are prevalent in CKD; 
it remains unclear how CKD affects hemostasis via regu-
lating platelet activity. Further studies focusing on the 
distinctive regulation of platelet activity by different stag-
es of CKD or the special treatment during CKD may rec-
oncile this contradiction. We believe that deeply resolv-
ing these questions will help explain the intrinsic mecha-
nism of the high morbidity and mortality of CVD in CKD 
as well as provide new therapeutic targets for CKD-asso-
ciated CVD.
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