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Sandra Kümper, Anne J. Ridley*

Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom

Abstract

Background: Adherens junctions consist of transmembrane cadherins, which interact intracellularly with p120ctn, ß-catenin
and a-catenin. p120ctn is known to regulate cell-cell adhesion by increasing cadherin stability, but the effects of other
adherens junction components on cell-cell adhesion have not been compared with that of p120ctn.

Methodology/Principal Findings: We show that depletion of p120ctn by small interfering RNA (siRNA) in DU145 prostate
cancer and MCF10A breast epithelial cells reduces the expression levels of the adherens junction proteins, E-cadherin, P-
cadherin, ß-catenin and a-catenin, and induces loss of cell-cell adhesion. p120ctn-depleted cells also have increased
migration speed and invasion, which correlates with increased Rap1 but not Rac1 or RhoA activity. Downregulation of P-
cadherin, b-catenin and a-catenin but not E-cadherin induces a loss of cell-cell adhesion, increased migration and enhanced
invasion similar to p120ctn depletion. However, only p120ctn depletion leads to a decrease in the levels of other adherens
junction proteins.

Conclusions/Significance: Our data indicate that P-cadherin but not E-cadherin is important for maintaining adherens
junctions in DU145 and MCF10A cells, and that depletion of any of the cadherin-associated proteins, p120ctn, ß-catenin or
a-catenin, is sufficient to disrupt adherens junctions in DU145 cells and increase migration and cancer cell invasion.
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Introduction

During metastasis, cancer cells commonly gain the ability to

migrate and invade tissues by regulating their interaction with

other cells and their extracellular environment. Many studies show

that alterations in cell-cell adhesion correlate with epithelial

tumour progression and metastasis [1]. Cancer cells can invade

either as single cells or collectively as groups of cells [2],[3],[4].

Both types of invasion involve disruption of the epithelium which

usually requires a weakening of cell-cell contacts and a change in

cell shape. Cadherins and catenins form adherens junctions, which

are central mediators of cell-cell adhesion. Expression of adherens

junction proteins is often decreased in tumours, and reconstitution

of functional adherens junctions can revert the invasive phenotype

of cancer cells [5],[6],[7].

The classical cadherins (E-, VE-, N- and P-cadherin) are the

central transmembrane proteins of the adherens junction complex

and mediate Ca2+-dependent homophilic intercellular interac-

tions. b-catenin and plakoglobin/c-catenin bind to cadherin

intracellular domains in a mutually exclusive manner and a-

catenin in turn binds to b-catenin [8]. p120-catenin (p120ctn) on

the other hand binds to a different region of cadherins to b-catenin

[9],[10],[11],[12],[13],[14]. The composition of proteins of the

adherens junction complex depends on the cell type and cadherin

expression. a-catenin provides an important link between

adherens junctions and the actin cytoskeleton. Its interaction with

actin filaments however, appears to be mutually exclusive to its

binding to b-catenin suggesting an indirect link between junctions

and the actin cytoskeleton [15],[16].

p120ctn has been found to regulate adherens junction stability

in vitro [17],[18],[19] and in vivo [20],[21],[22]. Its depletion by

RNAi leads to a decrease in adherens junction proteins and

abolishes cell-cell adhesion [17], in part by increasing cadherin

endocytosis and degradation [19],[23]. p120ctn also affects the

activity of the small GTPases RhoA, Rac1 and Cdc42 in some cell

types [24],[25],[26],[27], which play a central role in regulating

cytoskeletal dynamics, the formation and maintenance of adherens

junctions and cell migration [28],[29]. p120ctn can therefore link

adherens junctions and Rho GTPases.

The effects of p120ctn on cell migration and invasion vary

depending on the cell type, assay conditions and types of cadherins

expressed [30],[31],[32]. It is not clear to what extent the effects of

p120ctn are mediated through adherens junctions or Rho

GTPases. To address this, we have knocked down p120ctn in

DU145 prostate cancer cells and MCF10A mammary epithelial

cells, both of which normally have adherens junctions containing

E-cadherin and P-cadherin. In both cell types depletion of p120ctn

leads to disruption of cell-cell contacts, downregulation of

adherens junction proteins and increased cell motility. Interest-

ingly, the knockdown of p120ctn did not affect activity levels of
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Rho GTPases Rac1 and RhoA but led to an increase in active

Rap1. For the first time we have knocked down cadherins as well

as catenins and show that P-cadherin, b-catenin and a-catenin but

not E-cadherin depletion mimic the effects of p120ctn suppression

and lead to a loss of cell-cell contacts and enhanced invasion.

Results

Suppression of p120ctn expression leads to
downregulation of cell-cell adhesion proteins and
disruption of cell-cell contacts

To investigate the effects of p120ctn on cell-cell adhesion, we

compared the effects of p120ctn depletion in two different cell lines

that have adherens junctions, the human prostate cancer cell line

DU145 and the human mammary epithelial cell line MCF10A.

DU145 and MCF10A cells formed cell-cell contacts and expressed

both E- and P-cadherin, which localized to cell-cell contacts

(Fig. 1A, B). DU145 and MCF10A cells predominantly express

two p120ctn isoforms that, based on their molecular weight, are

predicted to be isoforms 1 and 3 [33] with isoform 3 (lower band)

being expressed at slightly higher levels (Fig. 1).

Knockdown of p120ctn with two different siRNAs in DU145

and MCF10A cells induced disruption of cell-cell adhesion

resulting in a ’scattered’ phenotype (Fig. 1, Fig. 2). In addition,

DU145 cells stably depleted of p120ctn did not have stable

adherens junction (Fig. S1). This phenotype was specifically due to

p120ctn depletion, since expression of shRNA-resistant mouse

p120ctn (GFP-fusion) rescued junction formation, as determined

by localization of p120ctn and E-cadherin (Fig. S1).

Both E-cadherin and P-cadherin as well as b- and a-catenin

were downregulated in p120ctn-depleted cells. Downregulation of

cadherins correlated with the extent of p120ctn depletion: at 72 h

after transfection with siRNAs targeting p120ctn, p120ctn levels

were lower than at 48 h, and E-cadherin levels were lower at 72 h

than 48 h (data not shown).

p120ctn-depleted cells were however not likely to have

undergone epithelial to mesenchymal transition (EMT) as levels

of EMT marker proteins such as vimentin were not increased

compared to control-transfected DU145 cells (data not shown).

p120ctn regulates migration of DU145 and MCF10A cells
To test whether cell migration was affected by p120ctn

depletion, cells were monitored by time-lapse microscopy over

16 h (Fig. 2A, B) and tracked to determine their migration speed.

p120ctn-depleted DU145 and MCF10A cells both migrated faster

than control cells (Fig. 2, Movies S1, S2, S3 and S4). By contrast,

depletion of E-cadherin did not alter cell migration speed (Fig. 2C),

even though its expression level was reduced by p120ctn

knockdown (Fig. 1). The migration speed of control cells was

determined from cells localised within cell colonies (Fig. 2C), but

some cells in the population migrated as single cells (Movies S1

and S3). However, there was no difference in the migration speed

of DU145 cells in colonies or single cells (Fig. 2D), ruling out the

possibility that p120ctn-depleted cells migrated faster because they

were predominantly single cells rather than in colonies.

Cell migration was also analysed in scratch-wound assays on

confluent monolayers of DU145 cells. Most p120ctn-depleted cells

migrated as individual cells into the wound, whereas control cells

migrated as a sheet, maintaining cell-cell contacts (Fig. 3A, Movies

S5, S6). p120ctn-depleted cells migrated faster than control cells

(Fig. 3B). However, p120ctn-depleted cells showed a decrease in

persistence (Fig. 3B), which indicates that they change direction

more frequently. Thus, despite the increased migration speed,

wound closure time was similar to control-transfected cells

(Fig. 3C).

Suppression of p120ctn expression leads to increased
Rap1 activity

Regulation of Rho GTPase activities by p120ctn has previously

been correlated with increased cell motility [25,26]. However, no

differences in the levels of active RhoA, Rac1 or Cdc42 were

observed between p120ctn-depleted and control-transfected

DU145 cells (Fig. 4A, B; data for Cdc42 not shown). Since

p120ctn knockdown induced a loss of cell-cell contacts and the

GTPase Rap1 has previously been associated with stabilisation of

E-cadherin at the plasma membrane and to be activated following

E-cadherin disengagement [34], levels of active Rap1 were

analysed. p120ctn-depleted DU145 cells showed increased levels

of Rap1 activity (Fig. 4A, B).

Depletion of cadherins, ß-catenin or a-catenin does not
affect expression levels of other adherens junction
proteins

Since p120ctn depletion reduced the levels of the adherens

junction proteins E-cadherin, P-cadherin, ß-catenin and a-catenin

(Fig. 1), we investigated the effects of depleting each of these

proteins on adherens junctions. DU145 cells were transfected with

2 or 3 different siRNA oligos for E-cadherin, P-cadherin, b-

catenin, a-catenin and p120ctn (Fig. 5A).

Expression levels of each of these proteins were then determined

by quantification of immunoblots. Levels of P-cadherin, b-catenin,

a-catenin and p120ctn proteins were not affected by E-cadherin

depletion (Fig. 5A, B). Knockdown of P-cadherin slightly reduced

levels of E-cadherin, ß-catenin and a-catenin but not p120ctn, but

this was only observed for siRNA oligo (1) that gave the strongest

(.80%) depletion of P-cadherin. Two other oligos that reduced P-

cadherin levels by ,50% did not affect the levels of other

junctional proteins. ß-catenin or a-catenin depletion did not alter

the levels of other adherens junction proteins significantly (Fig. 5).

It is thus only p120ctn depletion that results in a decrease in the

levels of all the other cell-cell adhesion molecules (Fig. 5B).

Suppression of p120ctn, P-cadherin, b-catenin and a-
catenin but not E-cadherin leads to disruption of cell-cell
contacts and enhances cancer cell invasion

Since downregulation of p120ctn led to a loss of cell-cell

junctions and an increase in cell migration speed, the effects of

depleting other adherens junction proteins on cell-cell adhesion

and cell motility were investigated. Knockdown of E-cadherin, P-

cadherin, ß-catenin and a-catenin by RNAi was highly efficient

both within colonies and in single cells, as observed by

immunofluorescence, but did not discernibly affect p120ctn levels

(Fig. 6).

The knockdown of P-cadherin, b-catenin and a-catenin by each

of 2 different siRNAs (or 3 for P-cadherin) led to disruption of cell-

cell contacts, similar to p120ctn depletion (Fig. 6, Fig. S2, Fig. S3).

Notably, all three siRNAs 1, 2 and 3 targeting P-cadherin induced

loss of cell-cell contacts, although they reduced P-cadherin levels

by different amounts (Fig. 5, Fig. 6, Fig. S3). By contrast,

knockdown of E-cadherin in DU145 cells did not induce a loss of

cell-cell contacts (Fig. 2C, Fig. 6, Fig. 7).

Cells depleted of each adherens junction protein were tracked

from timelapse movies to determine their migration speed (Fig. 7).

Like p120ctn depletion, knockdown of P-cadherin, b-catenin and

a-catenin led to an increase in cell migration speed, similar to

results obtained with p120ctn depletion, whereas E-cadherin

p120ctn, Cadherins in Motility
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depletion did not alter migration speed (Fig. 7). Similarly P-

cadherin but not E-cadherin depletion in MCF10A cells led to

disruption of cell-cell contacts and increased migration speed

(Fig. 8).

Based on the changes in cell-cell adhesion and migration speed

observed, the effects of p120ctn, E-cadherin, P-cadherin, b- and a-

catenin on invasion through Matrigel was investigated. Knock-

down of p120ctn with two different siRNAs increased invasion

through Matrigel whereas E-cadherin depletion did not affect

invasion (Fig. 9A, B). The knockdown of P-cadherin on the other

hand led to an increase in invasion similar to p120ctn depletion

(Fig. 9). The depletion of b-catenin as well as a-catenin induced an

increase in invasion similar to p120ctn and P-cadherin. To rule

out the possibility that differences in the number of cells on the

bottom of Matrigel-coated Transwells were due to altered cell

proliferation, cells were counted 48 h after they had been

transfected with siRNAs. No changes in cell numbers compared

to control siRNA-transfected cells were observed (Fig. 9C). In

Figure 1. p120ctn depletion disrupts cell-cell contacts in DU145 and MCF10A cells. DU145 (A) and MCF10A (B) cells were transfected with
siRNAs for p120ctn (p120ctn (1), (2)), control siRNA or with transfection reagent only (mock). After 72 h, cells were fixed and stained for F-actin,
p120ctn and E-cadherin or P-cadherin (left panels), or lysed and analysed by immunoblotting for the indicated cell-cell adhesion molecules and
p120ctn knockdown efficiency (right panels). Scale bars = 25 mm. ERK was used as a loading control for immunoblots.
doi:10.1371/journal.pone.0011801.g001

p120ctn, Cadherins in Motility
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Figure 2. p120ctn depletion increases motility in DU145 and MCF10A cells. DU145 (A, C, D) and MCF10A (B, C) cells were transfected with
siRNAs for p120ctn (p120ctn (1), (2)), siRNA for E-cadherin (E-cadherin), control siRNA (control) or with transfection reagent only (mock). After 56 h,
cells were monitored by time-lapse microscopy, acquiring an image every 10 min over a period of 16 h. Representative examples of phase-contrast
images of cells from the movies (left panels) and migration tracks (right panels; start point of each cell is plotted at intersection of x- and y-axes) are
shown for control-transfected and p120ctn-depleted DU145 (A) and MCF10A (B) cells. Scale bars = 50 mm. (C, D) Migration speeds are depicted as
box and whisker plots showing median, interquartile range (boxes) and highest and lowest values (whiskers). (C) Migration speeds of DU145 and
MCF10A cells. (D) Migration speeds of DU145 control cells in colonies compared to single cells. Data are from three different experiments, each
carried out in duplicate, analysing 15 cells per field (,90 cells in total). ***p,0.001, compared to control and determined by Student’s t-test.
doi:10.1371/journal.pone.0011801.g002
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conclusion, knockdown of P-cadherin, b-catenin and a-catenin but

not E-cadherin induced a disruption of cell-cell contacts and an

increase in cancer cell migration and invasion similar to the

knockdown of p120ctn.

Discussion

p120ctn expression is frequently lost or downregulated in a large

variety of human cancers [35] and decreased p120ctn levels

correlate with the tumour grade [36],[37],[38],[39]. We have

shown here that the depletion of p120ctn in E-cadherin and P-

cadherin-expressing DU145 and MCF10A cells disrupts cell-cell

contacts, and increases migration and invasion of DU145 cells,

supporting a model where p120ctn acts as an invasion or metastasis

suppressor [48]. These effects correlated with decreased expression

of the adherens junction proteins E-cadherin, P-cadherin, ß-catenin

and a-catenin. However, only downregulation of P-cadherin and

not E-cadherin was able to induce a similar phenotype to p120ctn

depletion, indicating that E-cadherin is not required to maintain

cell-cell adhesion in DU145 or MCF10A cells.

In contrast to our results, p120ctn has been reported to be

required for invasion of E-cadherin-deficient cells in part by

stabilising the mesenchymal cadherins N-cadherin or cadherin-11,

which are known to promote invasion [32]. On the other hand the

collective invasion of E- and P-cadherin-expressing A431 cells was

inhibited when cell-cell contacts were disrupted either by p120ctn

knockdown or the simultaneous knockdown of E-cadherin and P-

cadherin [35]. In these studies HGF or EGF, respectively, were

used as chemoattractants in invasion and migration assays,

whereas we used serum. One possibility is that p120ctn could

specifically contribute to HGF/EGF-induced migration or inva-

sion as it has previously been linked to HGF- or EGF-induced cell

scattering [40].

p120ctn has been shown to stimulate Rac and/or Cdc42 activity

and/or inhibit RhoA activity in cells lacking E-cadherin, including

fibroblasts and cancer cell lines [32],[41]. In contrast, we found that

Figure 3. p120ctn depletion decreases directional persistence of cells migrating into a scratch wound. DU145 cells were transfected
with siRNAs for p120ctn (p120ctn (2)) and control siRNA (control). After 56 h, a confluent monolayer was wounded using a pipette tip and cells
monitored by time-lapse microscopy, acquiring an image every 10 min over a period of 16 h. (A) Phase-contrast images of cells from the first frame of
each movie are shown without or with representative tracks of cells (7/image; tracked for 16 h) superimposed (top images). Additionally, scratch
wounds of control cells and p120ctn-depleted cells are shown at 0 h and 16 h after wounding (bottom panels). Scale bars = 50 mm. (B) Migration
speed (left) and persistence (right; displacement/track length) were determined. Migration speeds are depicted as box and whisker plots showing
median, interquartile range (boxes) and highest and lowest values (whiskers). (C) Area occupied by cells in scratch wounds was determined from
phase-contrast images taken at different timepoints from movies. Data are from three different experiments, each carried out in duplicates, analysing
15 cells per field (,90 cells in total). *p,0.05; ***p,0.001, compared to control and determined by Student’s t-test.
doi:10.1371/journal.pone.0011801.g003

p120ctn, Cadherins in Motility
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in DU145 cells that express P- and E-cadherin but not N-cadherin,

the depletion of p120ctn did not affect activity of RhoA and Rac1.

Similarly, in E-cadherin/P-cadherin-expressing A431 cells, p120ctn

depletion did not alter RhoA/Rac1 activity [31].

Taken together, these results indicate that the effects of p120ctn

on Rho GTPase activities are cell type-specific. This could be due

to differences in the composition of p120ctn complexes, for

example complexes containing GEFs that could activate Rac1/

Cdc42 or GAPs to downregulate RhoA [26],[41]. Interestingly, in

MDA-MB-231 breast cancer cells, activation of Rac by p120ctn

requires cadherin binding [32], suggesting that mesenchymal

cadherins could specifically contribute to Rac activity. Although

Rho GTPase activity was not affected by p120ctn, we found that

Rap1 activity is increased in p120ctn-depleted DU145 cells. Rap1

is an important regulator of cell-cell junctions, and is activated by

E-cadherin engagement [42,43]. Disruption of adherens junctions

by extracellular calcium depletion also induces an increase in

Rap1 activity [44]. Our results with p120ctn depletion are

consistent with the hypothesis that endocytosis of E-cadherin

increases Rap1 activity [44].

Surprisingly, the knockdown of P-cadherin, b- and a-catenin but

not E-cadherin led to the disruption of cell-cell contacts. Presumably

P-cadherin substitutes for E-cadherin to maintain cell-cell contacts,

but not E-cadherin for P-cadherin. This hypothesis is supported by

studies in MDCK cells, where it has been shown that E-cadherin is

important only for the establishment but not maintenance of cell-cell

contacts, whereas a-catenin was required to maintain cell-cell contacts

[45]. In addition, P-cadherin depletion alone was reported to induce

loss of cell-cell contacts and downregulation of E-cadherin levels in

MCF10A cells [46] and overexpression of P-cadherin in MDA-MB-

231 breast cancer cells reduced cell migration and invasion [47]. In

cancer most studies have concentrated on the link between E-cadherin

Figure 4. p120ctn depletion does not affect RhoA or Rac1 activity but increases Rap1 activity. DU145 cells were transfected with siRNAs
for p120ctn (p120ctn (1), (2)), control siRNA (control) or with transfection reagent only (mock). After 72 h cells were lysed and incubated with GST-
Rhotekin-RBD, GST-PAK1-PBD or GST-RalGDS-RBD on glutathione beads to pull down active RhoA, Rac1 and Rap1 respectively. Lysates of mock-
transfected cells incubated with GTPcS to preload GTPases were used as a positive control for pulldown assays. (A) Example immunoblots for GTPase
activity assays. ERK levels on immunoblots were used as a loading control. Ponceau staining of immunoblots shows the levels of GST-fusion proteins.
(B) Graphs show data from 3 (RhoA, Rac1) or 4 (Rap1) independent experiments and results are compared to total RhoA, Rac1, Cdc42 and normalised
to control. Error bars represent SEM. * p,0.05, compared to control and determined by Student’s t-test.
doi:10.1371/journal.pone.0011801.g004
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downregulation and increased cancer aggressiveness and invasion,

although there are also indications that P-cadherin affects tumour

progression. For example, P-cadherin levels are downregulated during

melanoma progression [48] and P-cadherin is often lost in prostate

cancers [49]. In DU145 cells, we found that P-cadherin depletion

induces loss of cell-cell junctions without significantly affecting the

levels of other adherens junction proteins, indicating that it is the

major cadherin required for cell-cell adhesion in these cells.

The knockdown of b- and a-catenin also induced disruption of

cell-cell contacts and an increase in invasion but did not change P-

cadherin or p120ctn protein levels. It is possible that they affect the

localization of P-cadherin and/or p120ctn rather than levels. b- and

a-catenins have been reported to affect cadherin-mediated adhesion

[15],[16], and the depletion of b-catenin in an E-cadherin-deficient

cell line led to a decrease in invasion [50], but so far little is known

about their roles in migration and invasion. b-catenin also has an

important role in Wnt-signalling and cancer cell proliferation which

is thought to be independent of its cadherin function [51].

Our results demonstrate that p120ctn regulates the expression

levels of ß- and a-catenin as well as cadherins in DU145 cells.

Since we have shown that P-cadherin levels are more important

than E-cadherin in maintaining cell-cell adhesion in DU145 and

MCF10A cells, we postulate that the increased migration and

invasion we observe following p120ctn, ß-catenin or a-catenin

knockdown is due either to decreased P-cadherin stability or

changes in its localization.

Figure 5. Effects of knocking down adherens junction proteins on expression of other junctional proteins. DU145 cells were
transfected with the indicated siRNAs for E-cadherin, P-cadherin, a-catenin and b-catenin, or with control siRNA (control), or transfection reagent only
(mock). (A) After 72 h cells were lysed and protein levels of indicated proteins analysed by immunoblotting. Total ERK or GAPDH protein levels were
used as a loading control. (B) Graphs show protein levels of P-cadherin, E-cadherin, a-catenin and p120ctn following knockdown of the indicated
proteins , quantified by Odyssey scanning of immunoblots (left) or b-catenin knockdown, quantified by densitometry (right), from 4 independent
experiments. Results are normalised to control. Bars represent SEM. *** p,0.001, ** p,0.01, * p,0.05, compared to control and determined by
Student’s t-test.
doi:10.1371/journal.pone.0011801.g005

p120ctn, Cadherins in Motility
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Materials and Methods

siRNAs
All siRNAs used were obtained from Dharmacon (Fisher Scientific

UK, Loughborough, UK). The following ON-TARGET plus single

oligos were used targeting p120ctn (CTNND1 (1) 59-UAGCUGAC-

CUCCUGACUAA-39; (2) 59-GGACCUUACUGAAGUUA-39), E-

cadherin (CDH1 (1) 59-GGCCUGAAGUGACUCGUAAU-39; (2)

59GAGAACGCAUUGCCACAUA-39), P-cadherin (CDH3 (1)

59GUGACAACGUCUUCUACUA-39; (2) 59-GAGGGUGUCU-

UCGCUGUAG-39; (3) 59-GAAAUCGGCAACUUUAUAA-39), b-

catenin (CTNNB1 (1) 59-GCGUUUGGCUGAACCAUCA-39) and

a-catenin (CTNNA1 (1) 59-GAUGGUAUCUUGAAGUUGA-39;

(2) 59-GUGGAUAAGCUGAACAUUA-39) . Non-targeting siRNA

was used as a control in all experiments (ON-TARGET control #1;

59-UGGUUUACAUGUCGACUAA-39).

Cell culture and transfections
DU145 prostate cancer cells were grown in RPMI supplement-

ed with 10% FCS, 100 IU/ml penicillin and 100 mg/ml

streptomycin. MCF10A mammary epithelial cells were grown in

DMEM/F12 supplemented with 5% horse serum, 100 IU/ml

Figure 6. Depletion of P-cadherin, b-catenin and a-catenin but not E-cadherin leads to the disruption of cell-cell contacts. (A) DU145
cells were transfected with the indicated siRNAs for E-cadherin, P-cadherin, b-catenin, a-catenin, control siRNA (control) or with transfection reagent
only (mock). After 72 h, cells were fixed and stained for P-cadherin, E-cadherin, b-catenin, a-catenin and p120ctn to correlate knockdown phenotypes
with expression of knocked-down proteins. Scale bars = 25 mm.
doi:10.1371/journal.pone.0011801.g006
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penicillin, 100 mg/ml streptomycin, 20 ng/ml EGF, 0.5 mg/ml

hydrocortisone, 100 ng/ml cholera toxin and 5 mg/ml insulin.

Cells were seeded at 1.86105 per well in 24-well plates and reverse

transfected with siRNAs (final concentration 20 nM) in antibiotic-

free medium using Lipofectamine 2000 (Invitrogen, Paisley, UK),

according to the manufacturer’s instructions. After 6–8 h, cells

were reseeded at 26104 cells per well (DU145) or 104 cells per well

(MCF10A) for immunofluorescence and time-lapse microscopy

and at 16105 per well (24-well plate) for immunoblotting and

scratch-wound assays. For creation of stable p120ctn-depleted

DU145 cells, the pSuperior vector system (Oligoengine, Seattle,

WA) was used. The sequence of the shRNA oligo targeting

human p120ctn was designed as described [52]. A stable cell

pool containing the shRNA was selected in medium containing

Figure 7. Effects of E-cadherin, P-cadherin, b-catenin and a-catenin depletion on cell migration. DU145 cells were transfected with the
indicated siRNAs for E-cadherin, P-cadherin, b-catenin, a-catenin and p120ctn, with control siRNA (control) or transfection reagent only (mock). 56 h
after transfection, cells were monitored by time-lapse microscopy, acquiring a phase-contrast image every 10 min over a period of 16 h.
Representative examples of phase contrast images at the start and migration tracks after 16 h are shown. Scale bars = 25 mm. (B) Migration speed
was determined using ImageJ Software. Analysis of migration speed is depicted as box and whisker plots showing median, interquartile range
(boxes) and highest and lowest values (whiskers). Data are from at least 50 cells from three different experiments. ***p,0.001, compared to control
and determined by Student’s t-test.
doi:10.1371/journal.pone.0011801.g007

p120ctn, Cadherins in Motility
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5 mg/ml puromycin. For rescue experiments murine p120ctn-GFP

[26], which is not sensitive to the shRNA targeting human

p120ctn, was transiently transfected into DU145 cells using

Amaxa nucleofection (Lonza, Cologne, Germany) according to

the manufacturer’s protocol (www.lonzabio.com).

Immunoblotting
Cells grown to approximately 80% confluency were washed

once with cold PBS and lysed in either cold 26SDS sample buffer

(Invitrogen) directly and homogenized with a 21G needle or in

lysis buffer (50 mM Tris pH 7.5, 1% Triton-X-100, 0.5% sodium

deoxycholate, 0.1% SDS, 500 mM NaCl, 10 mM MgCl2, 2 mM

EDTA, 10% glycerol, 1 mM Na3VO4, 25 mM NaF, complete

mini EDTA-free protease inhibitor (Roche, Welwyn Garden City,

UK), PhosSTOP phosphatase inhibitor (Roche)) and then cleared

by centrifugation. Lysates were separated by SDS-PAGE and

subjected to immunoblot analysis. For reprobing, PVDF mem-

branes were incubated with stripping buffer (50 mM Tris HCl

(pH 7.5), 100 mM b-mercaptoethanol, 2% SDS) for 20 min at

65uC. Primary antibodies were used at a dilution of 1:1000:

p120ctn (# 610134), E-cadherin (# 610182) were purchased from

BD Biosciences (Oxford, UK), P-cadherin (# 05-916), Rac1 (#
05-389) from Upstate (Millipore, Watford, UK), b-catenin (#
C2206), a-catenin (# C2081) from Sigma-Aldrich (Dorset, UK),

ERK (# sc-94), RhoA (# sc-418) from Santa Cruz Biotechnology

(Insight Biotechnology, Wembley, UK) and Rap1A/Rap1B (#
4938) from Cell Signaling (New England Biolabs, Hitchin, UK).

Secondary HRP-conjugated mouse (GE Healthcare, Chalfont St

Giles, UK) or rabbit antibodies (Dako, Ely, UK) were used at a

dilution of 1:5000. Where indicated, bands on immunoblots were

quantified by densitometry using VisionWorksLS analysis software

(UVP, Cambridge, UK), automatically subtracting the back-

ground from the reading. Alternatively, secondary antibodies

conjugated to IRDye 800CW (LI-COR, Cambridge, UK) or

Alexa Fluor 680 (Molecular Probes, Invitrogen) were used and

membranes scanned and bands quantified with an Odyssey IR

scanner (LI-COR) using Odyssey imaging software 2.1.

RhoA, Rac1 and Rap1 activity assays
GST-Rhotekin-RBD, GST-PAK-PBD and GST-RalGDS-

RBD were expressed in Escherichia coli and purified as previously

described on glutathione beads [53]. Cells were transfected with

siRNAs on 10-cm dishes. After 72 h, cells were lysed in 50 mM

Tris pH 7.5, 1% Triton-X-100, 0.5% sodium deoxycholate, 0.1%

SDS, 500 mM NaCl, 10 mM MgCl2, 2 mM EDTA, 10%

glycerol, 1 mM Na3VO4, 25 mM NaF, complete mini EDTA-

free protease inhibitor (Roche, Welwyn Garden City, UK),

PhosSTOP phosphatase inhibitor (Roche). Lysates were cleared

by centrifugation (17,000 g, 30 min, 4uC). A 50 ml aliquot was

retained for determination of total levels of each GTPase, and

GTPases in 500 ml of control lysate were loaded with GTPcS by

incubation with 10 mM EDTA and 100 mM GTPcS for 15 min,

followed by 60 mM MgCl2 to stop the reaction. This and

remaining lysates were incubated with 20 ml of GST-fusion

proteins on beads (1 h, 4uC, rotating). Proteins were eluted by

boiling in 26 SDS sample buffer, resolved by SDS-PAGE

analysed by immunoblotting as described above.

Immunofluorescence
Cells were seeded on glass coverslips, fixed with 4% parafor-

maldehyde, permeabilized with 0.1% Triton X-100 and blocked

with 2% BSA before staining. Primary antibodies (as listed above;

Immunoblotting) were used at a dilution of 1:200. Alexa Fluor

488, or 546 or 647-conjugated goat anti-mouse IgG or goat anti-

rabbit IgG (Invitrogen) were used at a dilution of 1:1000. F-actin

was detected by staining with phalloidin conjugated to Alexa Fluor

488, 546 or 647 (Invitrogen) at a dilution of 1:1000. Cells were

visualised using a Zeiss LSM510 confocal laser-scanning micro-

scope with an EC Plan-Neofluar 406/1.3 oil DIC M27 objective

Figure 8. Depletion of P-cadherin but not E-cadherin disrupts
cell-cell contacts and increases migration in MCF10A cells. (A)
MCF10A cells were transfected with the indicated siRNAs for E-cadherin,
P-cadherin or with control siRNA (control). After 72 h, cells were fixed
and stained for F-actin and p120ctn. Scale bars = 25 mm. (B) 56 h after
transfection, cells were monitored by time-lapse microscopy, acquiring
a phase-contrast image every 10 min over a period of 16 h. Migration
speed was determined using ImageJ Software. Analysis of migration
speed is depicted as box and whisker plots showing median,
interquartile range (boxes) and highest and lowest values (whiskers).
Data are from at least 50 cells from three different experiments.
***p,0.001, compared to control and determined by Student’s t-test.
doi:10.1371/journal.pone.0011801.g008
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Figure 9. Depletion of p120ctn, P-cadherin, b-catenin and a-catenin but not E-cadherin increases invasion. DU145 cells were
transfected with the indicated siRNAs for p120ctn, P-cadherin, E-cadherin, a-catenin and b-catenin, with control siRNA (control) or transfection
reagent only (mock). After 55 h cells were seeded onto Transwell membrane inserts containing a layer of Matrigel. FCS was used as a chemoattractant
in the bottom chamber. Assays were stopped after 17 h by fixing cells on the bottom of the membrane inserts using crystal violet. Images of eight
different fields of view were acquired and cells in all images counted and analysed. (A) Graphs show data from three independent experiments, each
carried out in triplicate. Results are normalised to control. Bars represent SEM. **p,0.01, *p,0.05, compared to control, determined by Student’s t-
test. (B) Representative images of cells on the bottom of the Transwell membranes. Scale bars = 50 mm. (C) 48 h after transfection cells were counted
and compared to sicontrol. Graphs show data from at least three independent experiments. Results are normalised to control. Bars represent SEM.
doi:10.1371/journal.pone.0011801.g009
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and ZEN software (Zeiss, Welwyn Garden City, UK). Photoshop

and Illustrator (both CS4; Adobe) were used to generate figures.

Time-lapse microscopy
Time-lapse movies were acquired over a period of up to 16 h

using a Nikon TE2000-E microscope with a Plan Fluor 106 or

206objective (Nikon, Kingston, UK) and a Hamamatsu Orca-ER

digital camera. Image series were captured at 37uC and 5% CO2

at 1 frame/10 min using Metamorph software (Molecular

Devices, Wokingham, UK). Cells were tracked and migration

speed (in mm/min) and persistence (displacement/track length,

where displacement is the distance from the start to end point for

each cell) were determined using ImageJ analysis software (http://

rsb.info.nih.gov/ij) and ibidi chemotaxis and migration tool (www.

ibidi.com). For scratch-wound assays, area occupied by cells in

scratch wounds was determined from phase-contrast images taken

at 0 h, 4 h, 12 h and 16 h after wounding using Photoshop (CS4,

Adobe).

Matrigel invasion assays
Matrigel-coated transwell filters with a PET membrane

containing 8 mm pores (BD Biosciences) were rehydrated for 2 h

at 37uC in medium without supplements. Transfected cells were

washed once in PBS, and 105 cells were seeded into the upper

chamber of the transwells in antibiotic-free medium containing

0.1% FCS and 0.1% BSA. Medium containing 2% FCS and 0.1%

BSA was placed in the bottom chamber as a chemoattractant.

Cells were allowed to invade for 17 h. Remaining cells and matrix

were then removed from the upper side of the membrane facing

the upper chamber. The cells on the bottom part of the membrane

were fixed in methanol containing 0.1% crystal violet. Eight

separate bright-field images were taken of each transwell filter

using a Nikon TE2000-E microscope with a Plan Fluor 106
objective. The cells per image were counted and analysed

compared to control transfected cells.

Statistics
Statistical analysis was carried out where indicated using data

from three or more independent experiments. Statistical signifi-

cance was calculated in Excel (Microsoft) using an unpaired

Student’s t-test.

Supporting Information

Figure S1 p120ctn expression rescues the disruption of adherens

junctions by p120ctn depletion. Stable p120ctn-knockdown

DU145 cells were transiently transfected with plasmids encoding

GFP or GFP-p120ctn (wild-type murine cDNA). After 24 h, cells

were fixed and stained for E-cadherin. The boxed region (left

panel) is shown enlarged in the magnified panels. Scale bars

= 50 mm.

Found at: doi:10.1371/journal.pone.0011801.s001 (1.93 MB TIF)

Figure S2 Effects of adherens junction protein depletion using

additional siRNA oligos. DU145 cells were transfected with the

indicated siRNAs for E-cadherin, P-cadherin, a-catenin, b-catenin

or p120ctn. After 72 h, cells were fixed and stained for p120ctn

and F-actin.

Found at: doi:10.1371/journal.pone.0011801.s002 (2.73 MB TIF)

Figure S3 Disruption of cell-cell adhesion following depletion of

P-cadherin using 3 different siRNA oligos. DU145 cells were

transfected with the three different siRNAs targeting P-cadherin

used in Figure 5. After 72 h, cells were fixed and stained for P-

cadherin and F-actin.

Found at: doi:10.1371/journal.pone.0011801.s003 (0.93 MB TIF)

Movie S1 DU145 cells, si-control.

Found at: doi:10.1371/journal.pone.0011801.s004 (8.62 MB AVI)

Movie S2 DU145 cells, si-p120ctn.

Found at: doi:10.1371/journal.pone.0011801.s005 (8.83 MB AVI)

Movie S3 MCF10A cells, si-control.

Found at: doi:10.1371/journal.pone.0011801.s006 (8.84 MB AVI)

Movie S4 MCF10A cells, si-p120ctn.

Found at: doi:10.1371/journal.pone.0011801.s007 (8.84 MB AVI)

Movie S5 DU145 cells, si-control, scratch wound.

Found at: doi:10.1371/journal.pone.0011801.s008 (9.48 MB AVI)

Movie S6 DU145 cells, si-p120ctn, scratch wound.

Found at: doi:10.1371/journal.pone.0011801.s009 (9.48 MB AVI)
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