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The human-specific tropism of Human Immunodeficiency Virus Type 1 (HIV-1) has
complicated the development of a macaque model of HIV-1 infection/AIDS that is
suitable for preclinical evaluation of vaccines and novel treatment strategies. Several
innate retroviral restriction factors, such as APOBEC3 family of proteins, TRIM5α, BST2,
and SAMHD1, that prevent HIV-1 replication have been identified in macaque cells.
Accessory proteins expressed by Simian Immunodeficiency virus (SIV) such as viral
infectivity factor (Vif), viral protein X (Vpx), viral protein R (Vpr), and negative factor
(Nef) have been shown to play key roles in overcoming these restriction factors in
macaque cells. Thus, substituting HIV-1 accessory genes with those from SIV may
enable HIV-1 replication in macaques. We and others have constructed macaque-
tropic HIV-1 derivatives [also called simian-tropic HIV-1 (stHIV-1) or Human-Simian
Immunodeficiency Virus (HSIV)] carrying SIV vif to overcome APOBEC3 family proteins.
Additional modifications to HIV-1 gag in some of the macaque-tropic HIV-1 have also
been done to overcome TRIM5α restriction in rhesus and cynomolgus macaques.
Although these viruses replicate persistently in macaque species, they do not result
in CD4 depletion. Thus, these studies suggest that additional blocks to HIV-1 replication
exist in macaques that prevent high-level viral replication. Furthermore, serial animal-
to-animal passaging of macaque-tropic HIV-1 in vivo has not resulted in pathogenic
variants that cause AIDS in immunocompetent macaques. In this review, we discuss
recent developments made toward developing macaque model of HIV-1 infection.

Keywords: HIV-1, HSIV, stHIV, macaque model, pigtailed macaques, interferon, cross-species transmission,
innate restriction

INTRODUCTION

The inefficient replication of HIV-1 in macaques has complicated the development of a true HIV-
based animal model of AIDS. Alternative animal models such as infection of macaques with
Simian Human Immunodeficiency Virus (SIV) or Simian-Human Immunodeficiency Virus (SHIV)
containing HIV envelope (Env) or reverse transcriptase have been developed. These animal models
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have been extremely useful in understanding HIV pathogenesis
and disease progression, as well as understanding the efficacy
of vaccines and drugs. However, these models do have short
comings. A major concern is the genetic difference between HIV-
1 and SIV. These viruses are not likely to share immunodominant
cytotoxic T-cell (CTL) epitopes, and the structural differences in
Env protein may lead to qualitative differences in the antibody
responses. Furthermore, although the SHIV-model allows for
testing of HIV Env based vaccines, it is not possible to
test vaccines or antiretroviral drugs targeting multiple HIV-1
proteins. For example, efficacy of vaccine approaches using HIV
Gag and Nef as immunogens cannot be tested using SHIV as
a challenge virus. Additionally, some of the vaccine candidates
that showed protection against SHIV did not exhibit protective
efficacy in human clinical trials. It is therefore important to
rationally and minimally modify HIV-1 such that it can replicate
and cause AIDS in macaque species. Such an animal model
will be an extremely valuable tool for preclinical evaluation of
vaccines and novel therapeutics. Therefore, there is a need for
developing pathogenic HIV-1 variants that can cause AIDS in
macaque species.

RETROVIRAL RESTRICTION FACTORS

The four major retroviral restriction factors are the
apolipoprotein B mRNA editing enzyme catalytic polypeptide 3
(APOBEC3 or A3) family of proteins, tripartite motif containing
(TRIM) family of proteins, BST2/CD317/Tetherin, and sterile
alpha motif (SAM) and histidine/aspartic acid (HD) domain
containing protein 1 (SAMHD1) [reviewed in Thippeshappa
et al. (2012); Saito and Akari (2013)]. They inhibit retroviral
replication at different stages of the life cycle. The fact that each
of these retroviral restriction factors are upregulated by type 1
interferons (IFN-1) and each gene has been under strong positive
selection in non-human primates and humans in response to
lentiviral infections, suggests the importance of these restriction
factors in controlling infection (Sawyer et al., 2004; Liu et al.,
2005; Sawyer et al., 2005; McNatt et al., 2009; Laguette et al., 2012;
Lim et al., 2012; Zhang et al., 2012). Both HIV-1 and SIV has
counter measures to overcome these restriction in humans, but
not in other species, suggesting the importance of overcoming
these restriction factors for cross-species transmission (CST).
Here, we briefly describe the importance of overcoming these
restriction factors for generation of macaque-tropic HIV-1 and
its derivatives.

The APOBEC3 family proteins are cytidine deaminases that
render Vif deficient HIV-1 progeny virions non-infectious in
non-permissive cells but not permissive cells (Sheehy et al.,
2002; Aghokeng et al., 2010). In the absence of Vif, APOBEC3G
(A3G) is efficiently packaged into HIV-1 progeny virions, while
only small amount of A3G is packaged into wild-type HIV-1,
which results in induction of G to A mutations in the viral
genome (Sheehy et al., 2003). Interestingly, Vif counteraction
of A3G occurs in a species-specific manner (Mariani et al.,
2003; Bogerd et al., 2004; Mangeat et al., 2004; Schrofelbauer
et al., 2004; Xu et al., 2004). HIV-1 Vif protein can antagonize

human A3G (hA3G) but not rhesus macaque (RM, Macaca
mulatta) A3G (Mariani et al., 2003). Interestingly, RM A3G
is antagonized by both the SIVmac and SIVagm Vif proteins
(Mariani et al., 2003), suggesting that Vif-mediated inhibition of
macaque APOBEC3 family proteins could be important for CST
of HIV-1 to macaques.

TRIM5α was identified by screening a rhesus macaque
complementary DNA (cDNA) expression library for genes that
would block HIV-1 infection in human cells (Stremlau et al.,
2004). In New World monkey cells, such as Owl monkeys (OWM,
Aotus trivirgatus), a novel TRIM5-cyclophilin A fusion protein
(TRIMcyp) exhibits a post-entry barrier to HIV-1 infection
(Nisole et al., 2004; Sayah et al., 2004). Prevalence of TRIMcyp
has also been found in pigtailed macaques (PTM, Macaca
nemestrina), cynomolgus macaques (CM, Macaca fascicularis)
and Indian origin RMs (Brennan et al., 2007; Liao et al., 2007;
Brennan et al., 2008; Newman et al., 2008; Wilson et al., 2008;
Kuang et al., 2009; Dietrich et al., 2011). Both TRIM5α and
TRIMcyp proteins exhibit species-specific restriction. Human
TRIM5α does not restrict HIV-1; however, both RM and CM
TRIM5α restrict HIV-1 but not SIVmac (Hatziioannou et al.,
2004; Stremlau et al., 2004; Nakayama et al., 2005). TRIMcyp
proteins also exhibit a diverse range of restrictions. OWM
TRIMcyp interferes with HIV-1 but not SIVmac (Nisole et al.,
2004; Sayah et al., 2004), whereas RM TRIMcyp restricts HIV-
2 and SIVagm but does not inhibit HIV-1 and SIVmac (Virgen
et al., 2008; Wilson et al., 2008). Interestingly, TRIMcyp protein
expressed by PTM and CM do not block either HIV-1 or
SIVmac239 infection (Brennan et al., 2008). However, PTM
TRIMcyp can restrict FIV, HIV-2 and SIVagm infection (Virgen
et al., 2008). These studies suggest that both the TRIM5α and
TRIMcyp proteins can act as barriers for CST of lentiviruses.

BST2 or Tetherin is an interferon (IFN) inducible, Vpu
sensitive factor that interferes with the release of HIV-1 progeny
virions from the cell surface (Neil et al., 2008; Van Damme et al.,
2008). HIV-1 Vpu can antagonize human and chimpanzee BST2,
but cannot overcome the activity of BST2 from RM, AGM, and
mustached monkeys (Cercopithecus cephus) (Goffinet et al., 2009;
Gupta et al., 2009; Jia et al., 2009; Lim and Emerman, 2009;
McNatt et al., 2009; Rong et al., 2009). However, Vpu may not be
absolutely required for replication in humans. This is due to the
fact that there are Vpu sequences (derived from primary isolates
or directly from patients) in the HIV database that contain a
mutation in the start codon (Li et al., 1991; Theodore et al., 1996;
Schubert et al., 1999; Dejucq et al., 2000). Interestingly, SIVmac239
Nef can target RM, PTM, and AGM BST2 but cannot antagonize
human BST2 (Jia et al., 2009; Zhang et al., 2009; Yang et al., 2010).
Thus, although BST2 antagonism may not be absolutely required
for HIV-1 infection in humans, counteraction of BST2 function
may be required for CST of HIV-1 to macaques.

Sterile alpha motif (SAM) and histidine/aspartic acid (HD)
domain containing protein 1 (SAMHD1) was identified as a novel
HIV-1 restriction factor in myeloid cells by two independent
groups. They showed that Vpx interacts with SAMHD1 and
results in proteasome-mediated degradation in myeloid cells
(Hrecka et al., 2011; Laguette et al., 2011), which was later found
to be active in quiescent T cells as well (Baldauf et al., 2012;

Frontiers in Microbiology | www.frontiersin.org 2 May 2020 | Volume 11 | Article 882

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00882 May 11, 2020 Time: 19:30 # 3

Thippeshappa et al. Macaque Model of HIV-1 Infection

Descours et al., 2012). It is interesting that HIV-1 does not have
a mechanism to overcome human SAMHD1 function. However,
human and gibbon SAMHD1 can be degraded by Vpx proteins
from HIV-2rod, SIVmac, and SIVsm but not by Vpx from
SIVrcm and SIVmnd2. Interestingly, these Vpx proteins can
induce degradation of rhesus macaque and mangabey SAMHD1
(Laguette et al., 2012). Thus, Vpx-mediated degradation of
macaque SAMHD1 may be required for adaptation of HIV-1 to
macaque species. In addition, importance of Vpx expression for
SIV replication has also been noticed in CD4 T cells and activated
PBMCs where SAMHD1 restriction is inactive (Guyader et al.,
1989; Kappes et al., 1991; Yu et al., 1991; Akari et al., 1992;
Belshan et al., 2012; Shingai et al., 2015). Interestingly, Vpx
protein from SIVrcm and SIVmnd2 enhanced replication of HIV-
1 in resting CD4 T cells in a SAMHD1-independent manner,
suggesting that Vpx overcomes another restriction factor in CD4
T cells (Baldauf et al., 2017). Two recent studies identified the
human silencing hub (HUSH) epigenetic repressor complex as a
potential restriction factor that controls viral expression and is
antagonized by Vpx (Chougui et al., 2018; Yurkovetskiy et al.,
2018). Vpx associated with the HUSH complex and resulted
in proteasome-mediated degradation (Chougui et al., 2018;
Yurkovetskiy et al., 2018). Thus, Vpx-mediated antagonization of
HUSH complex may also be required for efficient replication in
macaque lymphocytes.

ADDITIONAL RESISTANCE FACTORS

There is growing evidence for the existence of additional IFN
stimulated genes (ISGs) that control HIV-1 replication. In vitro,
IFN treatment has been shown to potently inhibit HIV and
SIV replication (Ho et al., 1985; Kornbluth et al., 1989; Shirazi
and Pitha, 1992; Meylan et al., 1993; Cheney and McKnight,
2010; Goujon and Malim, 2010). Several resistance factors have
been identified using in vitro cell culture models that potently
inhibit retroviral replication. Interestingly, how HIV-1 evades the
function of these resistance factors is not clear. (1) Myxovirus
resistance 2 (MX2) was identified, using cDNA screens as a
factor that inhibits viral cDNA accumulation and integration
in IFN-treated cells (Goujon et al., 2013; Kane et al., 2013; Liu
Z. et al., 2013). MX2 has been shown to interact with viral
capsid protein (Goujon et al., 2013; Kane et al., 2013; Liu S.Y.
et al., 2013; Fribourgh et al., 2014; Fricke et al., 2014) and may
prevent viral cDNA from entering the nucleus by mechanisms
that are not clear. (2) Interferon-inducible transmembrane
proteins (IFITMs), particularly IFITM1, IFITM2, and IFITM3,
are type II transmembrane proteins found in various cellular
membranes (Bailey et al., 2013; Li et al., 2013; Jia et al., 2014;
Li et al., 2015). IFITMs restrict a number of enveloped viruses
including HIV-1 (Lu et al., 2011; Yu et al., 2015; Tartour
et al., 2017). They have been shown to block virus entry by
impairing the hemifusion process (Li et al., 2013). IFITM proteins
protect target cells from incoming virus by affecting virus-
cell fusion and targeting virions to endosomal or lysosomal
compartments (Weidner et al., 2010; Desai et al., 2014; Spence
et al., 2019). IFITM proteins also incorporate in to the nascent

HIV particles during virus assembly and decrease the infectivity
of the virions (Compton et al., 2014; Tartour et al., 2014). (3)
Another ISG that inhibits HIV-1 infection is schlafen (SLFN11),
which inhibits virion production by affecting protein synthesis
(Li et al., 2012). (4) Cholesterol-25-hydoxylase (CH25H) is an
enzyme that converts cholesterol to 25-hyroxycholesterol (25-
HC). Treatment of cultured cells with 25-HC has been shown
to inhibit replication of several enveloped viruses, including
HIV, by impairing fusion of viral envelope with cell membrane
(Liu S.Y. et al., 2013; Gomes et al., 2018). (5) Zinc-finger
antiviral protein (ZAP) is another ISG that inhibits HIV-1
replication in overexpressed cells by translational repression
and viral mRNA degradation through recruitment of cellular
mRNA degradation machinery (Zhu et al., 2011; Zhu et al.,
2012). (6) Guanylate-binding protein 5 is a member of the
IFN-inducible guanosine triphosphatase (GTPases) superfamily
that inhibits HIV-1 infectivity by interfering with the N-linked
oligosaccharide glycosylation modifications of the HIV envelope
glycoprotein (Krapp et al., 2016; Hotter et al., 2017). This
increases the incorporation of unprocessed immature gp160 into
progeny virions resulting in decrease in infectivity of the virions
(Hotter et al., 2017). (7) Interferon-stimulated gene 15 (ISG15)
is a 15 kDa protein belonging to the family of ubiquitin-like
modifiers. The conjugation of ISG15 to target proteins is called
ISGylation. HECT and RLD domain containing E3 ubiquitin
protein ligase 5 (HERC5) mediated ISGylation results in the
in the accumulation of Gag at the plasma membrane (Wong
et al., 2006; Woods et al., 2011). Furthermore, ISGylation inhibits
ubiquitination of Gag and Tsg101, which is a protein involved
in endosomal sorting complexes required for transport (ESCRT)
pathway. So, inhibition of this interaction prevents HIV-1 release
(Okumura et al., 2006; Pincetic et al., 2010).

NON-IFN INDUCED RESTRICTION
FACTORS

Apart from IFN-inducible restriction factors, there are also
constitutively expressed intrinsic restriction factors that inhibit
HIV-1 replication. Serine Incorporator (SERINC) proteins are
a class of proteins, comprising of five members (SERINC 1-5),
that facilitate the incorporation of serines into membrane lipids
(Inuzuka et al., 2005). Recently SERINC 3 and 5 were identified as
inhibitors of HIV-1 infectivity that are counteracted by Nef (Rosa
et al., 2015; Usami et al., 2015). In the absence of Nef expression,
SERINC5 incorporates into budding virions and reduces the
infectivity of virions through mechanisms that are not completely
clear. HIV-1 Nef, as well as MLV GlycoGag and equine infectious
anemia virus (EIAV) S2 proteins decrease the expression of
SERINC5 at the plasma membrane and exclude them from
virions, thus restoring the infectivity of virions (Pizzato et al.,
2007; Usami et al., 2014; Rosa et al., 2015; Usami et al., 2015;
Chande et al., 2016).

Another non-IFN induced restriction that inhibits HIV-1
release is The T cell Ig and mucin domain (TIM) protein (Li
et al., 2019). Release of Nef-deficient HIV-1 is most potently
inhibited by TIM1 compared to wild-type HIV-1. Interestingly,
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SERINC proteins enhance the ability of TIM-1 to block HIV-
1 release likely by increasing TIM-1 expression at plasma
membrane. Nef proteins of HIV-1 and other lentiviruses function
as antagonists to overcome the TIM-mediated restriction in part
by promoting TIM-1 internalization from the plasma membrane
and sequestering TIM-1 within intracellular compartments (Li
et al., 2019). Furthermore, MLV glycoGag and EIAV S2 proteins,
which are known SERINC antagonists, can also relieve the
ability of TIM-1 to block HIV-1 release, suggesting a role for
SERINC proteins in TIM-mediated restriction (Li et al., 2019).
This suggests that lentiviral Nef proteins counteract TIM-1
restriction in part through SERINC to facilitate HIV-1 release
and replication.

ADAPTATION OF HIV-1 TO MACAQUES:
LESSONS FROM CROSS-SPECIES
TRANSMISSION OF LENTIVIRUSES TO
HUMANS

SIVs are present in more than 40 species of non-human
primates (Apetrei et al., 2004; Sharp and Hahn, 2011). The
ones most closely related to HIV-1 and HIV-2 were detected in
chimpanzees and sooty mangabeys, respectively (Hirsch et al.,
1989; Gao et al., 1999). The ability of lentiviruses to infect new
species vary. For example, SIVcol (from colobus monkeys) is
evolutionarily isolated, whereas SIVagm (from African green
monkeys) frequently moves between host subspecies (Bell and
Bedford, 2017). So far, only chimpanzees, gorillas, and sooty
mangabeys have transmitted their viruses to humans. Four
independent transmission events of SIVcpz and SIVgor from
chimpanzees and gorillas to humans gave rise to HIV-1 groups
M, N, O, and P (Gao et al., 1999; Sharp and Hahn, 2011;
D’Arc et al., 2015). HIV-2 groups A through I arose from
nine zoonotic transmission events of SIVsmm from sooty
mangabeys to humans (Hirsch et al., 1989; Gao et al., 1992;
Chen et al., 1996; Ayouba et al., 2013). Studies over the years
have demonstrated the key viral adaptations that led to successful
CST of HIV-1 precursors from monkeys to chimpanzees, and
then ultimately to humans [reviewed in Sauter and Kirchhoff
(2019)]. Early report by Bailes et al. (2003) suggested that SIVcpz
resulted from a recombination between an ancestor of SIVs
found in greater spot-nosed, mona, and mustached monkeys
(SIVgsn/mon/mus) and a SIV precursor found in redcapped
mangabeys (SIVrcm). However, recent phylogenetic analysis
studies from Bell and Bedford (2017) suggest cross-species
transmission of SIV from redcapped mangabeys to mandrills
(Bell and Bedford, 2017). Thus, it is not clear if part of the SIVcpz
genome originated from SIVrcm or SIVmnd2. There are still
large portions of the SIVcpz genome with unknown origins. Bell
and Bedford (2017) also suggest that the genome of SIVcpz may
have resulted from recombination of SIVrcm, SIVgsn/mon/mus,
and an unknown SIV.

For CST to happen, lentiviruses have to adapt to utilize
a number of cellular virus-dependency factors required for
replication in the host. In addition, lentiviruses have to develop

mechanisms to evade or counteract a variety of intrinsic
restriction factors at every step of the virus life cycle. Recent
studies have provided clues as to how this hybrid virus adapted
to utilize some of the host-dependency factors as well as
counteraction mechanisms required for spread in chimpanzees.
The inability of chimpanzee TRIM5α to restrict many SIVs,
including SIVgsn (Kratovac et al., 2008), probably presented an
advantage for transmission of SIV from monkeys to chimpanzees.
Interestingly, the recombination event that created SIVcpz
resulted in the deletion of vpx coding sequences and generation
of a unique vif that overlaps with vpr (Etienne et al., 2013).
Unlike most SIV Vif proteins, this Vif protein from SIVcpz can
antagonize chimpanzee A3G and A3D (Etienne et al., 2013).
Additionally, chimpanzee A3F and A3H did not constitute a
major barrier as SIVrcm Vif can antagonize these restriction
factors (Etienne et al., 2013). However, the deletion of vpx may
have cost the ability of these viruses to antagonize SAMHD1
and there by affecting the ability of SIVcpz and HIV-1, to
infect myeloid cells and resting CD4+T cells. For adaptation
to new species, lentiviruses also have to overcome additional
restriction factors such as SERINC and BST2 at the late stage
in virus life cycle. HIV-1 and SIV Nef can counteract SERINC5
in a species-independent manner (Heigele et al., 2016). Thus,
it did not constitute a major barrier. However, SIVcpz needed
to evolve mechanism to antagonize chimpanzee BST2. SIVcpz
obtained its vpu gene from SIVgsn/mus/mon lineage, which
can counteract monkey but not chimpanzee BST2 (Sauter
et al., 2009). Although origin of the nef gene in SIVcpz is
not clear, it is either derived from the SIVrcm lineage or
from an unknown SIV (Bell and Bedford, 2017). Interestingly,
during adaptation, SIVcpz evolved nef as a mechanism to
antagonize BST2, and Vpu retained its other functions such
as ability to degrade CD4. Apart from overcoming restriction
factors, adaptation of SIVcpz to chimpanzees also coincided with
changes in Gag that enabled interaction with host dependency
factor RanBP2/Nup358 (Meyerson et al., 2018). This interaction
of capsid with the nuclear pore protein RanBP2/Nup358 is
required for efficient nuclear import of the viral genome
(Ocwieja et al., 2011).

Transmission from chimpanzees to gorillas occurred probably
because the virus was able to maintain interactions with host
dependency factors as well mechanisms to counteract restriction
factors in gorillas. Furthermore, SIVgor also acquired mutations
in nef and vif to overcome gorilla BST2 and A3G mediated
species-specific barriers, respectively (Sauter et al., 2009; Letko
et al., 2013; D’Arc et al., 2015). These additional modifications
probably helped SIVgor to replicate efficiently in gorillas.
Adaptation to chimpanzees and gorillas probably made it easier
for successful transmission of both SIVcpz and SIVgor to
humans. Both SIVcpz and SIVgor Vif can effectively antagonize
human APOBEC3G, F, and D proteins (Etienne et al., 2013;
Zhang et al., 2017). SIVcpz and SIVgor Nef proteins cannot
antagonize human BST2 function due to the deletions of the
cytoplasmic domain (Jia et al., 2009; Sauter et al., 2009; Zhang
et al., 2009). However, Vpu from pandemic HIV-1 M strains can
counteract human BST2 (Sauter et al., 2009). Interestingly, only a
few changes in the transmembrane domain of SIVcpz Vpu result
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in the ability to antagonize BST2 (Lim et al., 2010; Vigan and Neil,
2010; Kluge et al., 2013). Ability to overcome these restriction
factors probably helped HIV-1 adapt to humans.

CST of SIVsmm from sooty mangabeys to humans occurred
on nine independent occasions and gave rise to HIV-2 groups A-I
(Hirsch et al., 1989; Gao et al., 1992; Chen et al., 1996; Ayouba
et al., 2013). This jumping of SIV from monkeys to chimpanzees
and then to humans has provided an excellent opportunity to
understand the events and adaptations that are required for
CST. SIVsmm adaptation to humans may have been easier as
these viruses can replicate efficiently in human PBMCs (Gautam
et al., 2007). SIVsmm Vif can counteract APOBEC3G from
many species including human APOBEC3G (Letko et al., 2013).
Interestingly, SIVsmm uses both Nef and Env to counteract
BST2 in its natural hosts, and Env protein to antagonize human
BST2 (Heusinger et al., 2018). This ability to antagonize human
BST2 may have facilitated zoonotic transmission of SIVsmm
to human. Another advantage for SIVsmm is that its Vpx can
counteract human SAMHD1 and HUSH complex (Laguette
et al., 2012; Chougui et al., 2018). Furthermore, SIVsmm Nef
can antagonize human SERINC5 (Heigele et al., 2016). This
ability of SIVsmm accessory proteins to overcome the function
of human restriction factors may have facilitated the zoonotic
transmission of SIVsmm to humans. However, HIV-2 strains
may not have adapted very well for replication in human hosts.
HIV-2 strains show higher A3G/F induced hyper mutations
compared to HIV-1 (Bertine et al., 2015), suggesting inefficient
degradation of these restriction factor by the HIV-2 Vif protein.
Similarly, HIV-2 capsid is more susceptible to inhibition by
human TRIM5α (Ylinen et al., 2005; Takeuchi et al., 2013). HIV-
2 is also less pathogenic in humans compared to HIV-1. In
most infected individuals, HIV-2 viral loads are controlled and
results in slow disease progression (Martinez-Steele et al., 2007;
Nyamweya et al., 2013).

Overall, these studies demonstrate that adaptation to the
human host requires the ability of these viruses to counteract
interferon-inducible restriction factors and the ability to exploit
cellular dependency factors for virus replication.

ADAPTATION OF RATIONALLY
MODIFIED HIV-1 TO MACAQUE SPECIES

The counter measures used by primate lentiviruses have
guided the rational modification of HIV-1 for replication
in macaque species. These rationally modified HIV-1 with
SIV gene substitutions are designated macaque-tropic HIV-1
(mtHIV-1) or simian-tropic HIV-1 (stHIV-1) or human-simian
immunodeficiency virus HSIV (listed in Table 1). Since, HIV-
1 cannot overcome RM TRIM5α and APOBEC3 family of
restriction factors, a simian-tropic HIV-1 (stHIV-1) was initially
developed by incorporating capsid and vif sequences from
SIVmac239 (Hatziioannou et al., 2006). stHIV-1, whose genome
is 88% HIV-1 derived, replicated robustly in a RM T-cell line and
RM PBMCs after in vitro adaptation (Hatziioannou et al., 2006).
This suggest that avoidance of capsid- and Vif-based restriction
may be sufficient to allow cross-species transmission of HIV-1 to

rhesus macaques. However, the replication efficiency of stHIV-1
in vivo is unknown.

To minimize the sequences from SIV, a variant HIV-1 which
carries only the SIVmac vif gene and a short 21 nucleotide
segment from the SIV capsid sequence corresponding to the HIV-
1 cylophilin A binding loop has been constructed (Kamada et al.,
2006). Long-term passaging of this clone in a CM lymphoid
cell line resulted in an in vitro adapted HIV-1 derivative (NL-
DT5R), which replicated well in the CM T-cell line (HSC-F) as
well as CD8+ T-cells depleted T-cells from five of five PTMs
and one of three RMs. To assess replicative and disease-inducing
properties in vivo, 4 PTMs were inoculated intravenously with
1.9 × 106 TCID50 of NL-DT5R virus generated from CD8 + T-
cell-depleted pig-tailed macaque PBMC. Two of the PTMs were
treated with anti-human CD8 monoclonal antibody (MAb) cM-
T807 subcutaneously on day 1 (10 mg/kg of body weight), and
intravenously on days 4, and 7 (5 mg/kg of body weight) post-
infection. HIV-1 NL-DT5R established productive infections in
all four animals with no substantial difference in the levels
of peak viremia (5.6 × 103 to 3.5 × 104 RNA copies/ml) in
the untreated and anti-CD8 MAb-treated monkeys. However,
plasma viremia became undetectable by week 5 post-infection
in the two untreated macaques, whereas viremia was maintained
until weeks 10 to 11 in the two treated animals. Although NL-
DT5R established a productive infection and elicited humoral
responses against all of the HIV-1 structural proteins in PTMs,
it did not cause CD4+ T cells depletion or disease (Igarashi
et al., 2007). To further adapt NL-DT5R to PTMs, an additional
macaque was inoculated intravenously with virus inoculum
containing lymph node cells collected from each of the 4 monkeys
(7.5 × 107 cells) suspended in 20 ml of pooled whole blood.
This animal was also transiently depleted of CD8 T cells by
treating with the anti-CD8 MAb at the same doses and routes
as two of the monkeys in the initial infection. The plasma
viral loads in this PTM peaked (1.9 × 104 RNA copies/ml) at
week 2.4 post-infection and then rapidly declined, becoming
undetectable at week 6 post-infection (Igarashi et al., 2007).
A new macaque-tropic HIV-1 (named HIV-1mt ZA012) carrying
env from a CCR5 tropic subtype C HIV-1 clinical isolate (HIV-
1 97ZA012) in the back bone of NL-DT5R was generated by
intracellular homologous recombination (Otsuki et al., 2014).
To improve the replication competence, HIV-1mt ZA012 was
serially passaged in PTM PBMCs. Virus supernatant from passage
19 replicated better than NL-DT5R and HIV-1mt ZA012-P0 in
CD8 T cell depleted PTM PBMCs. To study the in vivo replication
capacity, two PTMs were inoculated intravenously with passage
19 virus grown in PTM PBMCs. PTM1 showed peak viremia
of 1 × 106 copies/ml at week 2 post-infection and became
undetectable by 8-week post-infection (wpi). PTM2 exhibited
a peak viremia of 2.3 × 106 copies/ml at 1.5 wpi, maintained
viral loads of 104 copies/ml, became undetectable at 16 wpi
(Otsuki et al., 2014).

In vivo replication and disease-causing potential of NL-DT5R
has also been studied in CMs. NL-DT5R established infection
in CMs. However, viral loads were marginal and disappeared by
week 4 post-infection (Saito et al., 2011). In order to improve the
replication capability of NL-DT5R in CM, long-term passaging
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TABLE 1 | In vivo replication of macaque-tropic HIV-1 derivatives.

Macaque-tropic HIV-1 derivatives In vivo replication

NL-DT5R: HIV-1 carrying SIVmac vif gene and a short 21
nucleotide segment from the SIV capsid sequence
corresponding to the HIV-1 cylophilin A binding loop

2 CD8 MAb-treated PTMs: Peak viremia 3.5 × 104 RNA; detectable viral loads maintained
until 10 to 11 wpi Igarashi et al., 2007
2 untreated PTMs: Peak viremia 5.6 × 103 copies/ml; viral loads undetectable by 5 wpi
Igarashi et al., 2007
1 CM: Viral loads were marginal (around 103 copies/ml) and disappeared at 4 wpi Saito
et al., 2011

HIV-1mt ZA012: NL-DT5R with a CCR5-tropic subtype C env 2 PTMs: Peak viremia of 1 × 106 and 2.3 × 106 copies/ml: detectable viral loads up to
16 wpi in one of the infected PTM Otsuki et al., 2014

MN4-5S: NL-DT5R incorporated with mutations identified
during long-term passaging in CM-derived HSC-F cells as well
as insertion of the loop between alpha helices 6 and 7 (L6/7) of
the SIVmac capsid

3 CMs: 10-fold higher peak viremia (around 104 copies/ml) at 2–3 wpi than NL-DT5R
infected CM; viremia undetectable at 6 wpi Saito et al., 2011

MN4Rh-3: MN4-5S with Q110D mutation on helix 6 in capsid 6 TRIMcyp homozygote CMs: Peak viremia ranging from 1.1 × 104 to 1.5 × 105 copies/ml
(mean 4.2 × 104 copies/ml) at 2-4 wpi; viremia disappeared by 6 to 8 wpi Saito et al., 2013
3 TRIM5α homozygote CMs: Peak viremia of 1.9 × 103 copies/ml and became
undetectable at 4 wpi Saito et al., 2013

CXCR4- tropic MN4/LSDQgtu: MN4Rh-3 with
M94L/R98S/G114Q substitutions in capsid and
transmembrane domain of SIVgsn166 vpu

2 RMs: Peak viremia of ∼105 viral RNA copies and viral loads became undetectable at 5-6
wpi Doi et al., 2018

gtu+A4Cl1: MN5/LSDQgtu carrying env gene from clinical
isolate

1 RM: Peak viremia around 104 copies/ml and undetectable at 3-4 wpi Doi et al., 2018

stHIV-1: HIV-1 derivatives carrying either SIVmac vif or HIV-2 vif 4 PTMs: Peak viremia of 105 to 106 copies/ml; detectable viremia persisted for 25 wpi
Hatziioannou et al., 2009

HSIV-vif: HIV-1 derivative carrying vif gene from highly
pathogenic PTM-adapted SIVmne027

2 Juvenile PTMs: Plasma viral loads peaked (1.4 to 4.04 × 104 viral RNA) at 2 wpi and
showed extended viral replication through 44 wpi and small rebounds in viral titer at 64 and
72 wpi Thippeshappa et al., 2011.
2 Newborn PTMs: Peak viremia of 0.5 × 105 to 1.0 × 105 vRNA copies/ml; rapidly
declined and below the limit of detection within 8 to 20 wpi; modest rebound in viral loads
between 100 and 1,000 vRNA copies/ml around 24 wpi Thippeshappa et al., 2011

stHIV-1 carrying CCR5-tropic env from YU2, BaL, AD8, and
KB9.

2 PTMs: peak viremia around 105 copies/ml and one of the infected macaques maintained
viral loads of 103 copies/ml up to 32 wpi Hatziioannou et al., 2014

stHIV-A18+stHIV-A19: infectious molecular clones isolated
from passage 4 PTM

2 PTMs: Peak viremia 6.1 × 105 and 1.2 × 106 copies/ml; detectable viral loads up to 100
to 150 wpi; gradual decline in CD4 T cell in one of the infected macaques
Schmidt et al., 2019

stHIV-A19: infectious molecular clone isolated from passage 4
PTM

3 CD8 depleted PTMs: Peak viremia >106 copies/ml; setpoint viral loads >105 copies/ml;
CD4 T cells depletion by 27 wpi Schmidt et al., 2019
1 untreated PTM: peak viremia >106 copies/ml; persistence of 102 to 103 copies/ml up to
25 wpi Schmidt et al., 2019

in CM-derived HSC-F cells were conducted. Additionally, NL-
DT562 having CCR5-tropic env gene on a background of NL-
DT5R was also passaged long-term in HSC-F cells. Long-term
passaging improved the replication potential of both CXCR4
and CCR5 tropic NL-DT5R and resulted in a total of 14
mutations (10 in the NL-DT5R-derived clone and 4 in the NL-
DT562-derived clone). These mutations were introduced into
the parental NL-DT5R clone to generate a clone named MN4-
5 (Saito et al., 2011). Previously, it was found that insertion of
an SIVmac loop between alpha helices 6 and 7 (L6/7) of capsid
into the corresponding region in HIV-1 significantly enhanced
the NL-DT5R replication in HSC-F cells and PBMCs of CM
by relieving the inhibitory effect of TRIM5α (Kuroishi et al.,
2009). Therefore, A modified MN4-5 clone (named MN4-5S)
was generated by inserting the loop between alpha helices 6
and 7 (L6/7) of the SIVmac capsid into the corresponding
region in HIV-1 (Saito et al., 2011). MN4-5S showed enhanced
replication compared to the parental NL-DT5R in CM-derived
HSC-F cells and CD8+ T-cells depleted PBMCs from CMs. In

intravenously (IV) inoculated CMs, MN4-5S resulted in 10-
fold higher peak viremia at 2-3 wpi compared to NL-DT5R
infected CMs. However, the viremia became undetectable at
6 wpi, partly due to control by CD8+ T-cells as in vivo
depletion of CD8 + cells resulted in the reappearance of viremia
(Saito et al., 2011).

MN4-5S has been further adapted in macaque cells by
passaging and an adaptive mutation in capsid that enhances
growth ability in the cells has been identified (Nomaguchi
et al., 2013b). In silico structural modeling predicted that Q110D
mutation on helix 6 in capsid (CA-Q110D) would promote viral
replication in macaque cells. Therefore, a proviral clone carrying
CA-Q110D, designated MN4Rh-3, was constructed. Indeed,
MN4Rh-3 exhibited marked enhancement of growth potential
in macaque cells relative to other mtHIV-1clones that have
been constructed. Interestingly, the CA-Q110D mutation did not
contribute to enhancement of further resistance to TRIMCyp or
evasion from TRIM5α restriction (Nomaguchi et al., 2013b). To
investigate whether TRIM5 genotypes could influence the growth
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of MN4Rh-3 in vivo, viral stocks propagated in CD8+ cell-
depleted PBMCs were inoculated intravenously into TRIMCyp
homozygotes (n = 6) or TRIM5α homozygotes (n = 3) (Saito
et al., 2013). MN4Rh-3 replicated readily in all TRIMCyp
homozygotes, with plasma viral loads reaching a peak at
2–4 weeks post-inoculation and ranging from 1.1 × 104

to 1.5 × 105 copies/ml (mean 4.2 × 104 copies/ml). In
contrast, MN4Rh-3 replicated poorly in TRIM5α homozygotes
(mean peak viremia 1.9 × 103 copies/ml) (Saito et al., 2013).
As expected, HIV-1-specific antibodies were detected in the
TRIMCyp homozygotes but minimally in TRIM5α homozygotes
suggesting that the strength of antibody response reflected the
level of virus replication (Saito et al., 2013). To adapt MN4Rh-
3 to RMs, gag and vpu were altered to overcome TRIM5α and
BST2 function (Nomaguchi et al., 2013a). Using sequence- and
structure-guided mutagenesis, three amino acid substitutions
in capsid (M94L/R98S/G114Q) were introduced to overcome
TRIM5α susceptibility. Additionally, transmembrane domain
of vpu was replaced with the corresponding region of simian
immunodeficiency virus SIVgsn166 vpu. The resultant clone,
designated MN4/LSDQgtu, antagonized macaque but not human
BST2, and replicated efficiently in a macaque cell line. Notably,
MN4/LSDQgtu grew comparably to SIVmac239 and much better
than other mtHIV-1clones in RM PBMCs (Nomaguchi et al.,
2013a). A CCR5-tropic version of MN4/LSDQgtu carrying HIV-
1 SF162 env, designated MN5/LSDQgtu (or 5gtu) has also
been constructed. However, MN5/LSDQgtu replicated poorly
compared to MN4/LSDQgtu in RM cell line (Doi et al., 2013).
Additional CCR5-tropic clones carrying pSHIVAD8−EH or env
clones from clinical isolates have been generated in the backbone
of MN5/LSDQgtu (Doi et al., 2017). Interestingly, two of the
clones carrying env genes from clinical isolates, designated
gtu + Cl1 and gtu + A4Cl1, grew better than the parental
clone MN5/LSDQgtu (or 5gtu) in RM M1.3S cells. Furthermore,
gtu+A4Cl1 grew comparably well with MN4/LSDQgtu in
PBMCs isolated from two different donor RMs (Doi et al., 2017).
To determine the replication potential in vivo, two RMs were
challenged with CXCR4- tropic MN4/LSDQgtu and one RM
with CCR5-tropic gtu+A4Cl1 (Doi et al., 2018). Although both
viruses established infection in RMs, MN4/LSDQgtu replicated
better with peak viremia of ∼105 viral RNA copies compared
to 104 copies/ml for gtu+A4Cl1. However, virus replication was
transient and became undetectable at 5–6 wpi (Doi et al., 2018).

ADAPTATION OF MINIMALLY MODIFIED
HIV-1 TO PTMS

Among non-human primates, PTMs are known to be uniquely
susceptible to HIV-1 infection (Agy et al., 1992; Frumkin et al.,
1993; Gartner et al., 1994a,b; Agy et al., 1997; Bosch et al.,
1997; Bosch et al., 2000). Agy et al. (1992) first showed that
PTMs can be infected with HIV-1. All the eight infected animals
experienced sustained seroconversion to a broad range of HIV-1
proteins. Furthermore, virus could be recovered from the infected
macaque PBMCs by co-cultivation and proviral sequences could
be detected in DNA isolated from PBMCs. However, cell free

virus was detected in the plasma of only one infected macaque
(Agy et al., 1992). To accelerate adaptation of HIV-1 to PTMs,
blood from infected macaques was serially transfused into three
groups of naive macaques. At three to 5 weeks after transfusion,
plasma viral loads from several macaques in the first two
groups exceeded those of the initially inoculated macaques.
Unexpectedly, animals in the third group had diminished RNA
levels, virus culture negative, and did not seroconvert. It was later
found out that the blood used for transfusion was virus-culture
negative (Agy et al., 1997).

In another study, four PTMs were inoculated with autologous
cells expressing low amounts of HIV-1 (Gartner et al., 1994a).
Infectious virus could be recovered from PBMCs and lymph
nodes up to 10 wpi in 3 out of 4 infected macaques. Further, HIV-
1 DNA was frequently detected in uncultured PBMCs from all
three animals. In one of the infected animals, virus could be re-
isolated at 38- and 61-weeks post-infection, suggesting that the
animal was persistently infected with HIV-1. Interestingly, in vivo
passaging of the virus at week 6 post-infection did not select
for pathogenic variants. One PTM and one CM that received
transfusion of virus-positive blood and lymph node cells failed
to become detectably infected (Gartner et al., 1994b). Attempts
have also been made to adapt HIV-1 to newborn PTMs. In the
case of neonate PTMs, three out of five rectally exposed and
two of two intravenously inoculated macaques became infected
with HIV-1. However, none of the four orally exposed animals
showed evidence of HIV-1 infection. Although HIV-1 replicated
more vigorously in newborns, passaging of HIV-1 in newborn
PTMs did not result in the emergence of pathogenic variants
capable of causing CD4 depletion (Bosch et al., 1997; Bosch
et al., 2000). However, the long-term presence of HIV-1-specific
antibodies, proviral sequences, and the recovery of infectious
virus in these studies indicate the unique susceptibility of PTMs
to HIV-1 infection.

We have also observed that PTM PBMCs can be more easily
transduced with VSVG pseudotyped HIV-1 than RM PBMCs,
suggesting the absence of a post-entry block (Thippeshappa
et al., 2011). Several groups have observed the absence of the
retroviral restriction factor, TRIM5α, in this macaque species.
Moreover, novel isoforms of TRIM5 [TRIM5θ, which lacks
B30.2 (SPRY) domain and TRIM5η, which has a deletion
of the entire exon 7] expressed by PTMs do not restrict
HIV-1 infection (Brennan et al., 2007). Interestingly, PTMs
express a TRIM5-cyclophilin A fusion protein (TRIMcyp) due
to LINE-mediated retrotransposition of the cyclophilin A cDNA
into the untranslated region of exon 8 of the TRIM5 locus
(Liao et al., 2007; Brennan et al., 2008; Newman et al.,
2008; Virgen et al., 2008). However, unlike OWM TRIMcyp,
the PTM TRIMcyp does not restrict HIV-1 infection (Liao
et al., 2007; Brennan et al., 2008; Newman et al., 2008;
Virgen et al., 2008).

Absence of TRIM5α presents an advantage for the
development of a minimally modified HIV-1 that can potentially
infect and cause AIDS in PTMs. Since Vif expressed by SIVmac
and HIV-2 can degrade RM APOBEC3G, Hatziioannou et al.
(2009) constructed HIV-1 derivatives carrying either SIVmac vif
or HIV-2 vif in place of HIV-1 vif. Intravenous (IV) Inoculation
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of PTMs with an admixture of these two viruses resulted in
acute infection, and viremia persisted for 25 wpi. However,
infection was controlled thereafter and it did not result in
CD4+T-cell depletion. We also constructed an Human-Simian
Immunodeficiency Virus, named HSIV-vifNL4−3 by substituting
pNL4-3 vif with vif gene from highly pathogenic PTM-adapted
SIVmne027 (Kimata et al., 1998; Kimata et al., 1999). IV
inoculation of PTMs with HSIV-vifNL4−3 virus, generated from
transfecting 293T cells, extended viral replication through 44
wpi and small rebounds in viral titer at 64 and 72 wpi in juvenile
PTMs (Thippeshappa et al., 2011). Furthermore, viral DNA could
be detected in PBMCs upto 92 wpi, suggesting that the animals
were persistently infected for nearly 2 years (Thippeshappa et al.,
2011). Hatziannou et al. conducted animal-to-animal transfer
to generate pathogenic variants [discussed in Kimata (2014)].
Passage 1 PTMs were IV inoculated with an inoculum containing
four clonal HIV-1NL4−3–derived viruses, each encoding a gp120
Env protein from a prototype HIV-1 strain that uses the CCR5
co-receptor (YU2, BaL, AD8, and KB9). Passage 2 to 4 PTMs
were transiently depleted of their CD8 T-cells at the time of
inoculation. The resulting virus from passage 4 only caused
CD4 depletion in animals transiently depleted of CD8 T cells.
However, immunocompetent macaques controlled the viral loads
(Hatziioannou et al., 2014). Interestingly, HIV-1 Vpu acquired
mutations during in vivo adaptation to antagonize PTM BST2.
Furthermore, in vivo adaptation also led to changes in HIV Env
that improved its ability to bind macaque CD4 (Hatziioannou
et al., 2014). Recently, they also reported acquisition of amino
acid changes in capsid that conferred partial resistance to PTM
MX2 resistance factor (Schmidt et al., 2019). To recapitulate
the phenotype observed with viral swarm from the blood of
passage 4 animal, the group of Hatziioannou also generated
several IMCs. One of the clones, named stHIV-A19, caused CD4
depletion only in macaques that were transiently depleted of
CD8 T cells. However, it was controlled in immunocompetent
PTMs (Schmidt et al., 2019). We also conducted animal-to-
animal transfer of infected blood in 3 immunocompetent
PTMs. Our initial inoculum contained a mixture of transfection
supernatants of HSIV-vifNL4−3, HSIV-vifAD8, and HSIV-
vifYU2, and virus recovered from co-culture of PBMCs isolated
from previously infected macaque and naïve CD4 T cells.
However, the viral loads remained controlled in all 3 macaques
(unpublished data).

POSSIBLE ROLE OF INTERFERON
RESPONSE IN CONTROL OF
MACAQUE-TROPIC HIV-1 INFECTION

The reasons for virologic control in the immunocompetent
PTMs remain unclear. CD8+ T-cell depletion studies suggest
that cellular immune responses may be limiting replication of
the macaque-tropic HIV-1 clones (Hatziioannou et al., 2009).
Additionally, the Type 1 IFN response induced during acute
infection might restrict viral replication to a level that may
prevent establishment of infection to achieve high peak viremia
and set point viral loads. Indeed, IFNs are upregulated during

HIV-1 and SIV infections (Bosinger et al., 2009; Jacquelin et al.,
2009; Stacey et al., 2009; Sandler et al., 2014). Induction of
IFNα results in the expression of many IFN-stimulated genes
(ISGs) and the establishment of an antiviral state in the cell.
Significantly, retroviral restriction factors (i.e. APOBEC3 family
proteins, TRIM5α, BST2, and SAMHD1) are upregulated by IFN,
linking restriction to the innate immune response [reviewed in
Thippeshappa et al. (2012); Misra et al. (2013)]. Furthermore,
IFN response also induces the expression of several resistance
factors such as, myxovirus resistance 2 (MX2), IFN-induced
transmembrane (IFITM) proteins, schlafen 11 (SLFN11), and
other yet to be identified restriction factors that inhibit HIV-
1 replication [reviewed in Doyle et al. (2015)]. Thus, it is
possible that the IFN response during acute infection in PTMs
restricts HIV-1 replication to a level that is not sufficient for
adaptive mutations to occur. Therefore, Type 1 IFN response
induced during acute infection suggests that these PTM-tropic
HSIV-vif viruses should overcome the effect of restrictive ISGs
in order to replicate to high levels and cause disease. We
have previously demonstrated that the prototype PTM-tropic
HSIV-vifNL4−3 is inhibited by IFNα in PTM cells. However,
pathogenic SIVmne and SIVmac clones resist IFNα-induced
inhibition (Bitzegeio et al., 2013; Thippeshappa et al., 2013).
Interestingly, we have identified a HSIV-vif derivative with
YU2 Env that resists IFNα treatment in PTM CD4+ T cells.
Using chimeric viruses between HSIV-vifNL4−3 and HSIV-
vifYU2, we demonstrated that YU2 Env is the determinant that
contributes to IFN-resistance. We also demonstrated, using Vpr-
beta lactamase fusion assay, that HSIV-vifYU2 overcomes IFN-
induced restrictions at the entry step of the virus life cycle
(Thippeshappa et al., 2013). However, further experiments need
to be conducted to identify the IFN-induced restriction factors
at the virion fusion step that restrict HSIV-vifNL4−3 but not
HSIV-vifYU2.

Since many of the retroviral viral restriction factors are
upregulated in the presence of IFN, it will be critical for
the virus to overcome IFN responses to establish productive
infection. Indeed, Transmitted/Founder (T/F) viruses have been
shown to be IFN-resistant (Fenton-May et al., 2013; Iyer et al.,
2017). Furthermore, adapting SHIVs to rhesus macaques (RMs)
selects for Env-mediated IFNα-resistance (Boyd et al., 2016).
Additionally, inhibition of the IFN-response by administration
of a IFNα receptor antagonist has been shown to result in
high viral loads during acute infection and faster progression
to AIDS in a pathogenic SIV-RM model (Sandler et al., 2014).
Thus, inoculating PTMs with IFN-resistant HSIV-vif may help
to overcome the IFN response induced during acute infection
leading to higher peak viremia. We have identified a variant
PTM-tropic HSIV-vifYU2 that resists IFNα-treatment in both
human PBMCs and PTM CD4 T cells. Additionally, Vpx is
essential for replication of SIV in macaques (Belshan et al.,
2012; Shingai et al., 2015) and it enables the replication of
SIV in non-dividing cells by overcoming SAMHD1 function
(Hrecka et al., 2011; Laguette et al., 2011). SIV Nef has also
been shown to inhibit the effects of macaque BST2 (Jia et al.,
2009; Zhang et al., 2009). Therefore, additional modifications
to the HSIV-vifYU2 viral genome to overcome BST2-mediated
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and SAMHD1-mediated restriction may be required to establish
persistent viremia in vivo. First generation SHIV constructs
replicated poorly in macaques although long-term persistence
was observed. Thus, serial in vivo passages were conducted to
enhance the infectivity or replicative capacity of several SHIV
strains (Luciw et al., 1995; Joag et al., 1996; Reimann et al.,
1996; Igarashi et al., 1999; Chen et al., 2000; Song et al., 2006).
We anticipate that serial in vivo passaging of IFNα-resistant
HSIV-vifYU2 or its derivatives carrying SIV nef or vpx genes will
generate pathogenic variants with enhanced infectivity. However,
a consequence of adapation to restriction factors may be fitness
cost. Interestingly, a molecular clone with adapted capsid that
showed complete resistance to PTM MX2 exhibited impaired
replication capacity (Schmidt et al., 2019). This suggests that
complete resistance to certain restriction factors may incur fitness
defect to the virus. Therefore, adaptation to a new species may
require acquisition of mutations to overcome restriction factors
without incurring replication fitness cost.

CONCLUSION

Inability of passaged viruses to cause AIDS in non-CD8 depleted
macaques suggest that more work is required to develop a bon-a-
fide macaque-model of HIV-1 infection. Overcoming initial IFN
responses induced during acute infection may enable efficient
replication of HSIV-vif in PTM host. Thus, we hypothesize that
successful CST of HIV-1 to PTMs depends on inhibiting and
evading IFN-induced restriction factors and that appropriate
modifications to the genome will enable HIV-1 replication in
the PTM host. We believe that infection of PTMs with IFN-
resistant variants could provide insight into whether evasion of

IFNα response is critical for viral replication in the host. Thus,
IFN-resistant HSIV-vif viruses will be an excellent starting point
for adaptation to PTMs and eventual development of macaque
model of HIV-1 infection. Such an animal model would be
extremely valuable for preclinical evaluation of novel vaccines
and therapeutics, as these HSIV-vif clones have all the HIV
immunologic and vaccine targets such as Gag, Env, Tat, Rev, and
Nef. This is the drawback with SIV and SHIV models which are
not ideal for testing vaccine approaches targeting HIV Gag and
Nef antigens. Furthermore, establishment of HIV reservoirs in
this model also provides an avenue for developing therapeutic
vaccination approaches targeting HIV Gag and Env, apart from
testing latency reversal agents. Once these models are established,
they would also positively inform the process of refining models
of HIV co-infections and co-morbidities, such as the Mtb/HIV
co-infection model, which until now has relied on the use
of SIV as a co-infecting agent in either rhesus (Mehra et al.,
2011; Foreman et al., 2016; Bucsan et al., 2019) or cynomolgus
macaques (Diedrich et al., 2010).
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