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ABSTRACT
Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically
adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask
whether dehydration is a valuable stressor in stimulating adaptation per se. While hypoxia has had
long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional
stressors have had little interest until the past decade. Heat and dehydration are highly interlinked
in their causation and the physiological strain they induce, so their individual roles in adaptation are
difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for
team sport and endurance athletes despite several recent studies on this topic. Very few studies
have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration
as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations
from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by
thirst), as with most forms of stress, might have a time and a place in physiological or behavioral
adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed
without the appropriate evidence. The present review did not identify such evidence. Future
research should identify how the magnitude and timing of dehydration might augment or interfere
with the adaptive processes in behaviorally constrained versus unconstrained humans.
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Introduction

The purpose of training is to elicit adaptations that
improve relevant aspects of fitness or health. Adapta-
tions that improve endurance fitness occur in most
physiological systems to aid in mobilising, transport-
ing, using or removing respiratory gases, substrates
and heat. These physiological systems can be stressed
in a variety of ways. Therefore, it is likely that several
stimuli contribute to improving endurance fitness and
are induced by exercise itself. Supplemental or adjunct
stressors used as ergogenic stimuli for adaptation have
received little interest by athletes and researchers,
other than hypoxia over several decades and more
recently whole-body heat stress and localized (muscu-
lar) carbohydrate availability. Therefore much more
remains unknown than known as to whether any of
these targeted stressors enhance either fitness or

health per se. Environmental and metabolic heat stress
both result in dehydration, which has widespread
physiological and psychophysical effects alone and
supplemental to those of heat. This review considers
whether heat and associated dehydration in exercise
training and/or exogenous heat stress might provide
any useful stimulus for the adaptations that
mediate improved endurance performance. We are
unaware of any evidence or rationale by which
repeated dehydration might enhance the adaptations
underpinning improved strength or power-related fit-
ness; indeed, some impairment is conceivable due to
neuro-endocrine or local cell-mediated effects on pro-
tein balance. As indicated above, we address dehydra-
tion in the context of heat acclimation and/or exercise
training, rather than the targeted use of dehydration
to reduce body mass for weight-classified sports such
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as boxing or rowing, or decreasing body mass to
improve power to weight ratios for jumping/vaulting
sports. In doing so, we highlight how the often-poten-
tiating, but sometimes-confounding effects of individ-
ual stressors are rarely differentiated in the
contribution to an overall adapted phenotype. The
terms ‘adaptation’ and ‘acclimation’ are used here as
defined by the Thermal Physiology Commission of
the International Union of Physiological sciences1 and
in a recent review2; adaptation refers to phenotypic
and functional changes that reduce the physiological
strain produced by stressful components of the total
environment, whereas acclimation refers to pheno-
typic changes to specific environmentally-induced cli-
matic factors. An important distinction is that
adaptation promotes behavioral changes (an often
under-appreciated fact;3) whereas acclimation empha-
sizes physiological changes that may even reflect a
consequence of behavioral constraints.

Dehydration is the process of losing fluid, which
would typically produce a state of hypohydration
(lower-than-normal body water volume). Hypohydra-
tion is commonly approximated using change in body
mass (% BM), which can be misleading and thus prob-
lematic as an index of functional hypohydration in
strenuous exercise4,5 but is also adopted here for sim-
plicity. In a training context, dehydration occurs
largely as a consequence of heat stress, or heat load,
most of which is endogenous from the thermal energy
(»’heat’) yield of metabolism. Because an athlete’s
rate of heat production is their metabolic rate minus
their work rate (Ḣ D Ṁ – Ẇ;1), the most aerobically-
powerful athletes are subjected to the most heat stress
endogenously. Heat strain can also be incurred or
exacerbated by clothing or from characteristics of the
environment that impair the gradient for heat loss via
convection, radiation and evaporation in particular
(e.g., lack of airflow, sunshine and high humidity,
respectively). Heat stress itself is almost certainly a
principal stressor for both adaptation and acclimation,
and of more importance than dehydration. Therefore,
the relation between heat and dehydration is discussed
before focusing on the role of each.

Heat and dehydration are strongly inter-connected

Heat stress elevates body tissue temperatures, which
stimulate sweating and cutaneous vasodilatation to
increase heat dissipation if the environment permits.

Warmer environments add to heat stress by reducing
(i) internal gradients for convective, conductive and
mass flow heat transfer from the core to the skin, and
(ii) external gradients for heat transfer from the skin
via convection and radiation (conduction is usually
negligible). Humid environments add to heat stress by
reducing the vapor pressure gradient from the skin to
the environment, which reduces the rate at which
sweat can evaporate. Evaporation is already the
dominant means of heat loss at usual training- or
competitive-exercise intensities, so hot or humid envi-
ronments exacerbate the dehydration that normally
accompanies exercise. Dehydration by sweating leaves
a smaller volume of more concentrated body fluid,
including of the blood plasma, i.e., a hyperosmotic
hypovolemic hypohydration; more so in trained and
acclimated athletes because of their higher rates of
work and concomitant heat production, sweating
requirement and capacity for sodium reabsorption.6,7

Not only does heat stress cause hypohydration, but
heat and hypohydration each incur wide-ranging
physiological and psychophysical strain indepen-
dently, several examples of which are illustrated in
Figure 1. In many respects their acute effects are syn-
ergistic – a notable exception being that hyperosmotic
hypovolemia can attenuate vasodilation and sweat-
ing,8,9 thereby further increasing heat strain. Thus,
each can exacerbate the other. The acute effects of
heat strain and hypohydration need to be considered
because they could stimulate or impair adaptations.
Many effects of heat stress and hypohydration are
mediated at least partly via increased tissue tempera-
tures and cardiovascular strain.10-12 Thus, the physio-
logical effects in the left side of Figure 1 tend to drive
those on the right. Cardiac output and muscle perfu-
sion can be compromised by the combination of pro-
longed or intense endurance exercise in warm
conditions, in an upright posture, and hypohydrated,
at least in laboratory conditions.13-15 Heat strain and
hypohydration - even at mild levels in a lab environ-
ment (i.e., low air velocity) - can each reduce central
venous pressure and stroke volume, and increase gly-
cogenolysis16,17 oxidative stress18,19 and several neuro-
endocrine responses.20-22 Given that some of these
stimuli can elicit adaptation, as explained below, it
seems plausible – but speculative - that hypohydration
could therefore potentiate some heat-induced adapta-
tions irrespective of whether it exerts independent
effects. It must be acknowledged however that
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individual stressors may provide interference (e.g.,
potentially with heat and hypoxia on plasma volume)
or an excessive net stress23 and thus act to attenuate
adaptive responses. Heat and hypohydration could
conceivably interfere hypothalamically (discussed
below) but otherwise would seem to have mainly syn-
ergistic effects at least systemically.

Some differential effects of heat stress and hypohy-
dration are evident (Table 1). For example, oxidative
stress may be more attributable to hypohydration
than heat during exercise.18 Whether this stress would
help, hinder or have no effect on adaptation is, to our
knowledge, unknown, and might depend on the ath-
lete’s age, sex, use of exogenous antioxidants24,25 and
balance between exogenous heat stress and exercise
per se.19 Hypohydration is also more important than
heat in driving the fluid regulatory hormones,
although both hot-dry and warm-wet heat stress
potentiate the hypohydration-induced increases in
aldosterone during exercise performed at low inten-
sity.22 In contrast, high core temperature per se
reduces cerebral perfusion, due in part to effects of
hyperventilation-induced hypocapnia and higher cere-
brovascular reactivity to CO2 in exercise.26,27 Heat-

induced hypocapnia does not seem to be exacerbated
by hypohydration, whether at mild levels in exercise
(2.5% BM)28 or moderate levels at rest (5%).29 In turn,
hypohydration at 2% BM does not measurably exacer-
bate heat-induced reductions in cerebral perfusion
during passive heat stress,30 but 3% BM exacerbates
orthostatically-induced reductions in perfusion when
normothermic upon standing, independently of blood
pressure.31,32 Given that prolonged endurance exercise
itself causes marked reduction in orthostatic toler-
ance,33-35 hypohydration might be considered to have
a minor role relative to those of exercise and heat in
impaired cerebrovascular perfusion during or imme-
diately following exercise, including the risk of
syncope.

Strenuous exercise or exercise in the heat can
increase the permeability of tight junctions of the
gut36-39 and blood brain barrier.40,41 At least in the
case of the blood brain barrier, hypohydration may
play a larger role than heat,40 which might account for
the lack of an observable effect of exercise in the heat
in some studies.42,43 Physiologically-relevant levels of
heating increase the permeability of epithelial cell tight
junctions of the gut in rats,44 and in gut and kidney

Figure 1. Heat stress and sweating-induced hypohydration can each cause widespread acute effects, many of which are synergistic.
Hypohydration is usually caused by heat stress, but can then oppose heat-induced increases in skin blood flow and sweating to further
exacerbate heat strain. Abbreviations: ADH D Anti-diuretic hormone; Aldo D Aldosterone; ANP D Atrial Natriuretic Peptide;
BBB D Blood brain barrier; Cats D Catecholamines; LPS D Lipopolysaccharide; ROS D Reactive Oxygen Species.
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Table 1. Acute and adaptive effects of the 3 stressors that typically comprise heat acclimation or heat acclimatization.

Acute Stress Stressor in adaptation (to alleviate strain)

Heat Dehy Orthostasis
Interaction/Evidence

Comment Heat Dehy Orthostasis Combined Comments

Physiological

Thermal strain CCC C C Depends on exercise
parameters, training
status and airflow.
Differentially impact
thermolytic effectors

CC ? ? CCC Rarely differentiated,
could potentiate or
oppose each other

Autonomic strain CC C C Depends on exercise
parameters, training
(and presumably
acclimation) status
and airflow

? ? C ? CC Unclear, could oppose

Cardiovascular strain CCC C CC Depends on CVS
component, training,
acclimation status and
airflow

C ? C ? C ? CCC System dependent?
Potentiate possibly,
but significant
individual variation

Fluid regulatory strain C CCC C Separate and additive
effects evident

? C ? C ? CCC Yet to differentiate heat
effect per se

Metabolic strain C C C May depend on exercise
parameters, training,
acclimation status and
airflow

? ? ? C Unclear could oppose

Immune & ROS C C ? May have differential
roles, e.g., Dehy more
on tight junctions but
heat more on HSP?

CC ? ? CCC Unclear, likely
dependent on
multiple factors

Psychological
Mood ¡ ¡ C ? Validity issues, incl.

opportunities for
behavioral regulation

CC ? ? CCC Unclear, could oppose
but validity issues

Behavior
Cognition ¡ ¡ ? N/Aa Several validity issues,

incl. levels of stress,
familiarization,
opportunity for
behavioral hydration.
Unclear, possibly
differential effects.
Thirst may have
largest role

? ? ? C Unclear, could oppose
but validity issues
incl. familiarisation
to stress and
opportunity for
behavioral
regulation.

Skilled motor
performance

C$ ¡ ¡ ? N/Aa ? ? ? C
Strength C$ ¡ $ N/Aa Unclear C ¡ ¡ ? ? $ Timing dependent, and

probably multiple
confounders. Likely
dehy does not
potentiate heat
responses.

Anaerobic performance $ $ N/Aa Unclear, possibly no effect ? ? ? $ Unclear, possibly no
effect

RHIE performance ¡ ¡$ N/Aa Depends on exercise
parameters, training
and acclimation status
and airflow.
Ecological validity and
methodological issues.
Heat has largest effect.
Possibly additive.

? ? ? CC Depends on exercise
parameters, training
and acclimation
status and airflow.
Ecological validity
and methodological
issues.
Heat has largest
effect. Possibly
additive, but rarely
differentiated.

Endurance performance ¡ ¡ ? N/Aa ? ? ? CCC
Have not differentiated between animal and human studies (see text).
?; Unclear due to either (i) few or no data, (ii) equivocal data, and/or (iii) not reported/controlled for, or differentiated.
aContext specific.
Acute: C -$; increases, decreases, or has no effect on overall strain or behavioral outcomes.
Adaptive:C; beneficial in alleviating the strain in the stressful environment.

$; has no known effect.
The number of C signs (in combined column) can be contributed to by different stressors, or as a product of upstream effects.
For further information regarding differences between dehydration occurring in the lab vs. outdoor setting please see Cotter et al.158
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cell cultures.45,46 Heat stress also stimulates the impor-
tant signaling molecule, mTOR,47,48 as well as glucose
sensitivity at least in aged muscle, via HSP72 induc-
tion.49 Contrary to this, hyperosmotic hypohydration
may oppose both of these effects50 via volume regula-
tory signaling mechanisms and/or oxidative stress. It
is therefore apparent that heat and hypohydration
each elicit a wide range of physiological effects as a
normal part of exercise or additional stress; many of
these effects are synergistic although some are not.

The adaptive responses to exercise or heat acclima-
tion/acclimatization programs are likely facilitated by
a combination of muscular activity, heat, orthostasis,
and dehydration. The highly interconnected nature of
these stressors makes it problematic to attribute
adaptations primarily to an individual stressor or a
defined combination. Rarely are the effects of each
stressor delineated and their individual contributions
accounted for. The left side of Table 1 highlights the
acute contributions of heat, dehydration, and ortho-
stasis to overall physiological and psychological strain
under exertional stress, and the subsequent functional
outcomes. The right side summarizes the state of

knowledge regarding the importance of these stressors
to adaptation, namely reducing the strain to each of
the systems, and improving functional outcomes.
Because of the interconnected acute effects of these
stressors and a lack of research delineating their con-
tributions in acclimation, their separate and poten-
tially combined roles in the acclimated or adapted
phenotype must be scrutinized; hence the purpose,
scope and progression of this review.

Why might heat stress be important for adaptation?

Given the many acute effects of heat stress (e.g.,
Fig. 1), it is unsurprising that repeated exposure
to exogenous heat stress drives adaptations at intra-
cellular, tissue, organ and systemic levels that collec-
tively lessen physiological and perceptual strain2 and
improve exercise capacity, at least in the heat. Several
such adaptations are qualitatively similar to those aris-
ing from aerobic training, which is also unsurprising
given the large endogenous heat stress of training51

and the cross tolerance provided by some adaptations
(described below). For example, acclimation-induced

Figure 2. Factors that acutely and chronically determine blood volume with repeated training bouts, and the consequential effects on
the physiology of exercise. This schematic is based mostly on that developed by Convertino,79 extended to incorporate subsequent
research on the role of central blood volume on renal-, albumin- and EPO- mediated volume expansion.81-84 Abbreviations:
ADH D Anti-diuretic hormone; Aldo D Aldosterone; AngII D Angiotensin II; ANP D Atrial natrietic peptide; BV D Blood volume; CNa D
sodium clearance; ECFV D Extra cellular fluid volume; EPO D Erythropoietin; GFR D Glomerular filtration rate; PV D plasma volume;
RCM D Red cell mass; SNSA D Sympathetic nervous system activity.
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lowering of sympathetic activation52,53 and body tissue
temperatures could both contribute to glycogen spar-
ing in exercise.54,55 The exogenous heat stress provides
large additional physiological and heat tolerance bene-
fits for untrained and moderately-trained individuals
and modest but important gains for well-trained indi-
viduals.56,57 The warmer periphery provides several
benefits over endogenous heat stress alone; it increases
tissue temperatures throughout the body, and signal-
ing therein,58,59 increases central cardiovascular and
fluid regulatory strain, functionally adapts heat loss
effectors in the skin,60,61 and improves familiarity.

In a wider context, short-term (8 weeks) hot water
immersion water has been shown to improve cardio-
vascular and cerebrovascular health in young healthy
individuals,62,63 and may provide similar benefits for
diseased populations.64-67 Regular bouts of passive
heat stress (sauna bathing) have also been associated
with increased longevity among the general popula-
tion in Finland,68 and of improved clinical outcomes
in cardiovascular-diseased cohorts in Japan69 - albeit
with orthostatic and perhaps fluid regulatory stressors
in both instances. The changes in physiological func-
tion with heat acclimation are addressed below.

Thermoregulatory

Heat acclimation widens the core temperature band
available for exercise by reducing the resting core tem-
perature at the time of day in which the acclimation
bouts are performed.70,71 This benefit is more impor-
tant in uncompensable heat stress,52 and can be
negated mostly by prior activity (e.g., warm up) but
also by hypohydration.72 The upper core temperature
at which exhaustion occurs in uncompensable heat
stress seems not to be raised by short-term acclima-
tion but is higher in aerobically-trained individuals.73

Skin blood flow and sweating adapt over a similarly
rapid time course, to concomitantly increase heat loss
power due to both local and central adaptations.51,60,74

The effectors activate at a lower core temperature (Tc),
have higher sensitivity (relative to Tc), and attain
higher maxima (sweating only60), even in highly-
trained athletes.

Cardiovascular

Adaptations occur in all components of the cardio-
vascular system. Peripheral heating increases endo-
thelial shear stress by virtue of increased blood

flow, and can thereby improve flow-mediated dila-
tion75 and vessel calibre.76 A similarly biphasic
adaptation seems to occur in the myocardium, ini-
tially showing increased contractility and stress tol-
erance, then increased metabolic efficiency (in
rats58,77). Microvascular function (using the cutane-
ous circulation as a model) is improved following
prolonged passive heat acclimation at least partly
by way of greater nitric oxide (NO) bioavailabil-
ity.78 Orthostatic tolerance also develops rapidly, in
conjunction with a rapid increase in blood volume
via expansion of the plasma volume (i.e., hypervo-
lemia). Several factors point to the hypervolemic
response to heat acclimation as being a key media-
tor of improved cardiovascular and thermoregula-
tory function; e.g., its extent correlates with the
acclimation-induced reduction in heart rate and the
increases in skin blood flow and sweat rate during
exercise in the heat.79 The lower thermal and car-
diovascular strain is likely to underlie the other
benefits at least in part, such as glycogen sparing
and lower perceived exertion. Improved exercise
tolerance arises from some unknown combination
of these adaptations.

A sustained reduction in central venous pressure
(CVP) during and/or after exercise has emerged as
a key mediator of adaptive hypervolemia, hence the
separated inclusion of orthostatic stress in Table 1.
Figure 2 is an extension of a model developed by
Convertino79 to illustrate how exercise may lead to
hypervolemia via reduced CVP, especially when
supplemented with heat stress. Convertino’s model
is extended to incorporate subsequent findings and
theories. First, experiments from the John B Pierce
laboratory confirmed the findings of Convertino80

on the importance of reduced CVP, and the roles
of albumin synthesis and sodium retention.81-83

Upright compared with supine posture during and
following exercise substantially increases the aldo-
sterone response and modestly suppresses the atrial
natriuretic peptide response, leading to an expan-
sion of plasma volume within one day.83 Second, a
role for erythropoietin release in response to reduc-
tions in central venous pressure (independent of
hypoxia) has been proposed.84 Third, additional
benefits of expanded fluid volumes are incorpo-
rated.85,86 The possible roles of hyperosmolality on
ADH, leading to hypervolemia, were also proposed
by Convertino et al.80 as non-thermal factors.
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Endurance athletes already have markedly
expanded red cell and plasma volumes,87 which lim-
its the stroke volume-related benefit of further
expansion for exercise in temperate conditions.88,89

Nonetheless, athletes show further volume expansion
from heat acclimation, along with reduced heart rates
in submaximal exercise and increased maximal aero-
bic power, anaerobic threshold, and time trial perfor-
mance in hot laboratory conditions (Table 2).90,91

Individual differences in the hypervolemic response
to heat acclimation are pronounced.92 The extent of
the increase in exercising, but perhaps not resting,
volume correlates with ergogenic variability between
individuals.93 On average at least, heat acclimation
does not appear to improve the defense of plasma
volume during exercise in the heat.94 As yet it is
unclear whether the key putative adaptation is an
expansion of PV as measured in the resting state79,95

or the exercising state only.93

Muscle and epithelia

Heating skeletal muscle either in the absence of exer-
cise or after exercise can stimulate HSP72 and
mTOR,47 thereby protecting against disuse atrophy
and enhancing muscle regrowth in rats96 and produc-
ing hypertrophy in humans.97 Heating of muscle
might therefore seem attractive for strength athletes,
but it should be noted that (i) heat per se is much less
effective than exercise itself in conditioning muscle
against mechanical overload,98 (ii) when applied
before exercise, heat actually preconditions muscle to
become less perturbed98 and thus less responsive to a
short-term overload,99 and (iii) HSP72 is stimulated
by intense exercise as well. Incorporating heat into a
resistance-training program is therefore not straight
forward, even from a conditioning perspective.
However, heat acclimation is effective for aerobically-
demanding exercise in the heat, and is broadly consis-
tent with the phenotypic responses obtained from
aerobic training.

Heat shock proteins have many intracellular roles,
one of which is to protect against multiple stres-
sors,45,100 including otherwise-lethal heat stress. The
induction of HSP72 in various tissues shows a heat-
dose dependency, with thermal intensity being more
important than its duration.59,101 In regard to acclima-
tion for performance, it is also noteworthy that cellu-
lar stress during sporting competition is characterized

by the intensity of multiple stressors rather than the
more prolonged, lower-grade stress that characterizes
many occupational circumstances. Heat acclimation
includes increased HIF-1a in rat hearts - which also
appears to upregulate renal mRNA erythropoietin,
among other targets - and along with HSP72, strongly
protects the myocardium against ischemia/reperfusion
injury.102,103 Thus, generalized cellular stress protec-
tion, including thermotolerance and ischemia/reperfu-
sion tolerance,102,104 may be as important for athletes
as simply being heat acclimated/acclimatized. In con-
trast, heat acclimation of a systemic nature may suffice
for the less intense demands on workers, coaches and
other athletes (e.g., bowls or archery), and these can
be achieved as much by the volume as the intensity of
heat stress.105,106

The muscle energetics of heat acclimation have
been eloquently described by Horowitz and colleagues
based on extensive research on soleus and cardiac
muscle in animal models (reviewed in ref. 107).
Long-term heat acclimation is characterized by meta-
bolic efficiency, particularly in the heart, achieved
without sacrificing autonomic function, and appears
to be modulated by sustained low plasma thyroxine
concentrations (relative to pre-acclimation and the
short-term acclimated phenotype). The relevance of
this research for untrained and endurance-trained
humans has yet to be determined. For instance, the
30 day heat acclimation used in the rodents has yet
to be replicated in humans, much less in endurance-
trained humans. As such we are unaware of any
human characterization of many features of the long-
term heat acclimated rat; such as sustained low
plasma thyroxine contributing to altered calcium han-
dling mechanics, and increased myocardial work effi-
ciency of the heart.

Horowitz and colleagues77,108,109 have also identi-
fied the response of the heat acclimated phenotype
to novel superimposed hypohydration. Sustained
and severe hypohydration (10% BM) abolished the
beneficial thermoregulatory characteristics of the
heat acclimated rodent,108,109 and disrupted the
gene profile developed by long-term heat acclima-
tion.77 While such findings provide valuable mech-
anistic insight, the extent to which such effects
apply to self-autonomous, exercise-conditioned
humans is yet to be determined, especially given
the self- vs. externally-imposed control of hydration
status, its severity, and its novelty.
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But does supplemental heat improve adaptation for
performance per se?

Several studies have examined whether heat accli-
mation enhances cardiovascular adaptations and
performance in temperate conditions (12–22�C), as
summarised in Table 2 and in recent reviews.110-113

The potential mechanisms are summarised above
and in Table 1 of Corbett et al..110 Heat acclimation
was shown 40 y ago to increase V̇O2max in temper-
ate conditions, although early studies used relatively
untrained participants114,115 or uncontrolled
designs.114,116 To our knowledge, Morrison et al.92

were the first to address the ergogenic effects in
highly-trained athletes, i.e., in an already strongly-
stress-adapted phenotype, in a controlled-design
study. The matched variable during the heat and
control training regimes was the athlete’s perception
of exertion, which has high ecological validity.
Those researchers observed a large variability in
both resting hypervolemia and cycling time trial
performance outcomes, with little relation between
them. Scoon et al.95 and then Creasy et al.117 also
used crossover experimental designs, in which
endurance athletes undertook sauna bathing to voli-
tional tolerance following most training bouts for
3 weeks. The intention was to maximize cardiovas-
cular and thermal strain while already warmed and
vasodilated by the training bout. Scoon et al.95

observed expanded plasma volume (Evans Blue
dye), which correlated closely with a modest but
meaningful improvement in running performance,
whereas Creasy et al.117 found no such benefits on
hypervolemia (CO dilution) or performance in
highly-trained rowers when tested 2, 5 and 9 d fol-
lowing heat acclimation. The reason for the differ-
ent outcomes from these studies is unknown, but it
is noted that running for »15 min and rowing for
<7 min place different demands on the cardiovas-
cular system in regard to orthostatic stress and oxy-
gen delivery to exercising muscle. Both cohorts
were clearly orthostatically stressed in the heat
bouts, but drinking was discouraged in Scoon
et al.,95 whereas participants in Creasy et al.117

drank more fluid than they lost in the sauna. Heat
stress after training was also employed by Zurawlew
et al.118 but using hot-water immersion and a
between-subjects design. They observed an increase
in 5-km time trial performance in hot (338C), but

not temperate (188C) conditions. While hot water
immersion may provide a simple and practical
means for athletes to acclimatize, hydrostatic pres-
sure effects of water could conceivably impact
hematological adaptations, and the most efficacious
method is undetermined (see below).

Lorenzo et al.60 have addressed the ergogenic issue
comprehensively in cohorts of well-trained cyclists,
with extensive performance and physiological assess-
ments in both warm and temperate conditions. The
aerobic measures were improved 5–10% on average in
both environments, in conjunction with a typical mag-
nitude of expansion in plasma volume (»4.5%, at rest)
and a substantial increase in maximal cardiac output
in both environments. Similar to other studies, the
standard deviation between individuals approximated
the mean treatment effect, for both physiological and
performance variables. Those researchers used
matched work rate between heat acclimation and con-
trol training conditions, in contrast to the approach
used by Morrison et al.,92 also in cyclists. On the other
hand, Neal et al.119 administered isothermic short-
term heat acclimation to trained cyclists and triath-
letes and found that temperate performance (peak
power output; PPO) tended to increase by »2%
(P D 0.06). A two-week heat acclimatization of 9
trained cyclists improved hot-weather time-trial per-
formance back to temperate-performance levels,
which correlated with the heat-induced hypervole-
mia,120 but performance in the temperate environ-
ment was not improved beyond that of the control
group.121 Interestingly, plasma expanded by >10% in
both groups. Thus, it remains unclear whether heat
acclimation confers cross-tolerance to improve perfor-
mance in less stressful conditions, and what features of
the adapted phenotype convey this (if any) benefit.

The ergogenic effect of heat acclimation via water
immersion is similarly unresolved because the data
are sparse and conflicting. Bradford et al.122 had
swimmers undertake 6 hours of mixed-intensity train-
ing (subjectively matched, to volitional tolerance) in
hot (338C) vs. temperate (288C) water in a crossover
fashion, and demonstrated clearly trivial effects for
swimming performance in both water temperatures,
and unclear effects for terrestrial performance. The
posture, hydrostatic squeeze and lack of heat strain
from swimming in such water were all suggested to
account for the lack of any apparent physiological
adaptations. Conversely, Hue et al.123 had 6
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competitive swimmers undertake 14 swims (»60 km)
in the heat (air 308C and water 358C), or at altitude
(air 48C and water 278C). The 400-m performance
times in temperate water were unchanged 10 d after-
ward but were improved by “10%” in the tropical
group at 30 d afterward.

The ergogenic potential of heat for sports involving
variable exercise intensities is also unresolved. Buch-
heit et al.124,125 and have found that field team sport
athletes (Football/soccer and Australian Football
League) also seem to gain functionally-important
physiological and performance adaptations from heat
acclimation. Those studies have strong ecological
validity in their conditioning, testing in lab and field
settings, and the calibre of athlete tested. Unfortu-
nately the lack of a control group precludes the sub-
traction of any potential camp effects or early-season
training effects in regard to the role of heat as a condi-
tioning stimulus. Chen et al.126 had elite racket sport
athletes undergo short-term heat acclimation using
matched incremental exercise to that of a control
group, and found a trivial increase in time-to-exhaus-
tion in the heat but not in temperate conditions.
Finally, while the combination of hypoxia and heat
may act synergistically to maximise hematologic adap-
tations and improve performance in both endurance
and field sport competition, the scant findings are
inconclusive.115,125

Methods of acclimation: Disparate heat acclimation
regimes have been used with athletes and have pro-
duced meaningful physiological and performance out-
comes (Table 2). In fact, so many variables differ
between the relatively few studies on athletes that it is
impossible to identify an optimal acclimation regime.
Presumably the essential components are: achieving
prolonged (60-100 min) warming of the skin during
or following exercise, perhaps on consecutive days,127

in which core temperature is raised (1–2�C), and
remaining upright (i.e., a combination of all compo-
nent stressors). It is however important to realize that
individual differences to acclimation are larger than
the differences between protocols (Table 2). Thus, any
one optimal or most efficacious heat acclimation
regime seems unlikely to exist for use across athletes,
with little evidence to indicate one method of sustain-
ing thermal strain throughout the regime is more
effective than another.128,129

Adaptation to heat stress attenuates performance
decrements in similarly stressful environments,

secondary to reduced physiological and psychological
strain. Important unresolved issues include the magni-
tude of these effects, particularly in well-trained ath-
letes,112,113 and its usefulness in cross-tolerance to
different stressors and environments, such as cold and
altitude.130-134 Only one-third of studies (6/19) on this
topic have formally compared control against HA
effects (Table 2), and measurement error is seldom
taken into consideration in the design, execution and
interpretation of studies (Table 2,135); both of which
make it even more difficult to establish true effects.
Some behavioral responses should be reported
throughout the conditioning regime (e.g., dietary
behavior before, during and after individual sessions,
particularly sodium, carbohydrate and protein intake)
to appropriately assess the role of other stressors (e.g.,
dehydration), or their contribution to individual dif-
ferences. The right side of Table 1 illustrates the cur-
rent knowledge (or lack of) regarding how individual
stressors contribute to adaptation. While heat appears
to be the primary stimulus in many cases (e.g., in
reducing thermal, cardiovascular, and psychological
strain), it is likely influenced by synergistic or antago-
nistic effects of concurrent stressors.

Why consider dehydration?

It would be valuable to know whether the hypohydra-
tion incurred during bouts of training or acclimation
is harmful, helpful or of no consequence for adapta-
tion,136 at the mild-to-moderate levels (typically <3%)
that develop volitionally and become self-limiting dur-
ing such training and acclimatization. Astoundingly,
the roles of mild dehydration in adaptation appear to
be unknown despite it being a typical stressor for ath-
letes during fitness training, especially in sum-
mer.57,137 Consideration is not given to the resting
situation, because healthy individuals with access to
water become thirsty and drink before body fluid defi-
cits are incurred.138,139 Similarly, severe hypohydra-
tion (>5%) is not considered here for reasons
described below and because it is (i) self-limiting, (ii)
unpleasant and thus distracting, (iii) therefore unnatu-
ral or at least unusual in a non-competitive setting,
(iv) possibly unhealthy, and (v) may not stimulate fur-
ther net compensatory responses especially relative to
catabolic effects.

Adolph and colleagues undertook extensive
research on dehydration and acclimation more than
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75 y ago,140 but they focused more on whether
humans could acclimate to dehydration, i.e., in reduc-
ing the volume of fluid intake required to offset BM
losses during work in the heat. Water requirements
were not lessened to any functional extent by repeated
dehydration, which is logical and important for physi-
cal activity in a hot environment because heat balance
is governed by the requirement for evaporation. Other
studies have looked at various physiological and geno-
mic impacts of hypohydration before and after heat
acclimation.22,72,73,77,108,109,141,142 Notwithstanding the
important contributions of such studies, again, they
were not designed to address the issue of a possible
role of ecologically-valid dehydration in adaptation.
The extent of hypohydration imposed in such studies
(5–6% in non-athlete humans and 10% in rats) is also
larger than would reasonably occur in training, accli-
mation or acclimatization, and the participants were
not permitted any behavioral regulation other than
avoidance of further dehydration by volitional cessa-
tion of exercise.

Before considering the potential relevance of voli-
tional hypohydration in adaptation, its acute effects
on physiology and aerobic performance must be cri-
tiqued briefly for three reasons. First, adaptation is the
cumulative outcome from additive bouts of stress, so
knowledge of the acute effects in the self-regulated set-
ting of training or acclimation is important (e.g., see
Figures 1 and 2, and left side of Table 1). Second, if
quality conditioning is that which maximizes its work
volume (absolute intensity and/or duration), then
volitional dehydration might be ill-advised because
even these magnitudes are advocated as impairing
work tolerance and promoting fatigue.143-146 Third, if
ecologically-valid extents of hypohydration have little
or no effect on thermal or cardiovascular strain when
training outdoors in temperate or warm conditions
(see below), then hypohydration would presumably
also fail to provide a stimulus for adaptation in train-
ing or in heat acclimatizing exercise where airflow is
high (e.g., cycling, running, rowing). Hypohydration
would still be relevant for heat acclimation though.

Does dehydration affect physiological strain and tol-
erance? Of relevance to the heat acclimation context,
hypohydration has been advised against in a general
sense because it can increase Tc at rest and during
exercise, and reduce the maximal Tc tolerated57,147

thus potentially truncating the volume of exposure.
But, the reduced tolerance to hyperthermia was

demonstrated in the setting of a hot lab environment
with an imposed prior hypohydration of 8% BM. In
free-living field settings, fit individuals will voluntarily
exercise intensely at high Tc even at these rarely-
encountered magnitudes of hypohydration.148,149 In
fact, even during the artificial setting of externally-
imposed hypohydration at a more typical magnitude
(2–2.5% BM) while encapsulated in protective cloth-
ing in a research laboratory, thermal tolerance
remains high in fit individuals.73,86 While some aero-
bic training takes place indoors (e.g., in northern
hemisphere winters), the thermal strain caused by
being indoors with limited airflow would be at least as
important as any impact of volitional hypohydra-
tion.150,151 On the other hand, if being indoors is for
the purpose of heat acclimating, then the purpose is
not to maximize work volume, but to promote cardio-
vascular and thermal strain. So, effects such as
impaired mood, increased glycogenolysis, reduced
CVP, increased heart rate, and increased tissue tem-
peratures become relevant - some beneficially and
others detrimentally. Further, if hypohydration con-
fers greater strain than when euhydrated, then its’
presence may provide a time efficient alternative for
conditioning (i.e., same strain in less time). Several
recent studies using ecologically-valid designs, along
with quantitative reviews (meta-analysis) have shown
that hypohydration of 2–3% has little or no measur-
able effects on physiological strain, and no effect on
psychophysical strain or performance.152-156 In con-
trast, if participants are deprived of fluid before or
during exercise against their behavioral drive, are not
given opportunity to familiarize to that stressor157 or
are tested in lower airflow environments, then physio-
logical, psychophysical strain and tolerance of exercise
are all affected substantially (reviewed in ref. 158). In
summary, volitional dehydration might be relevant in
heat acclimation, but less so in outdoor training or
acclimatization because its effects are smaller than is
typically conveyed in the literature.

Why might dehydration enhance adaptation? One
reason is by exacerbating strain (Fig. 1) and enhanc-
ing compensatory adaptations (e.g., ECFV; Fig. 2).
Another possible candidate for adaptation to dehydra-
tion transients would be in fluid regulation, since
most physiological systems adapt and at multiple lev-
els in response to repeated stress. Fluid regulatory
adaptations could involve afferent, central or efferent
structural or functional components.159,160 Renal
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concentrating ability is markedly (40–50%) increased
during short-term (3-d) sustained hypohydration, and
is inhibited during short-term over-drinking in
humans.161,162 While these renal adaptations would
theoretically improve fluid balance during the often-
obligatory dehydrative stress of athletic competition,
they seem unrealistic because they were demonstrated
using a sustained, high magnitude of hypohydration,
which might interfere with muscle metabolic control,
protein synthesis and hypothalamic adaptations to
heat acclimation,50,77,163 not to mention cognitive and
psychosocial effects. Secondly, any reduction in renal
excretion of water during sporting competition would
have only small effects on fluid balance in view of the
dominance of sweating in dehydration during com-
petitive-intensity exercise.

Horowitz and colleagues164,165 highlighted the
ability of animals (desert spiny mouse) to acclimate
to prolonged dehydration, namely to better main-
tain plasma volume in the face of acute dehydra-
tion. Such defense was attributed to decreased
permeability of the vascular capillary bed, and thus
less ultrafiltration. Whether such effects would
occur in humans is unknown, and may be even
less likely for the self-limited magnitudes and dura-
tions of hypohydration involved with training and
heat acclimatization.

Plasma volume expansion is reported as being
observed most commonly after 5 d of exercising
upright in the heat, while “properly hydrated.”166

Such appraisals acknowledge the value of exercise,
heat and orthostasis166 while precluding that of
dehydration. As mentioned above, if dehydration
independently, and in combination with heat and
exercise, reduces CVP, even in a temperate environ-
ment,167 and increases fluid regulatory, thermal, and
cardiovascular strain, then it seems reasonable to
suggest that its addition could augment the stimulus
for adaptation.

Relative to untrained individuals, athletes have
altered neuroendocrine control (ADH vs. plasma
osmolality) and are less sensitive to thermal and car-
diovascular effects of hypohydration when exercising
with high airflow in both temperate160,168 and warm
environments,155 but not when exercising with com-
promised airflow in the heat.72,169 Athletes perceive
thirst as sensitively as untrained individuals, and vol-
untarily rehydrate to a similar extent – at least during
cycling in lab trials168 - so they do not appear to be
more predisposed to an insidious progression of
dehydration during training or acclimation (Fig. 3).
Athletes dehydrate more quickly in outdoor train-
ing,168,170 due to higher endogenous heat production,
but less markedly so during indoor training and heat

Figure 3. Plasma sodium (A), osmolality (B), and AVP (C) concentration in trained and untrained groups at rest and during exercise
(»70% V̇O2 peak); and thirst as a function of osmolality (D) during the same exercise when receiving 100% rehydration (EUH) or 20%
rehydration. Reproduced with permission from ref. 168.
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acclimation bouts because of the imposed (exogenous)
heat exposure (and thus similar sweat rates attained).
Even indoors, their higher Tc tolerance, work rates
and sweat rates will incur more hypohydration.
However, drinking behavior increases as heat acclima-
tion progresses, apparently in relation to the renin-
angiotensin-aldosterone (RAAS) pathway more than
ADH.170 Hyperosmolality in exercise may contribute
to a rise in anti-diuretic hormone (ADH) and to fluid
expansion with repeated exposures but the increase in
osmolality is at least partly attributable to exercise per
se.80 The modest exercise intensities used in prolonged
heat acclimation bouts involve little increase in osmo-
lality or ADH.170 In conclusion, some fluid regulatory
differences exist for athletes relative to untrained indi-
viduals, but not in their behavioral drive to limit dehy-
dration. Although renal concentrating ability can be
improved by hypohydration, this adaptation is not
warranted. Adaptations to dehydration in training or
acclimation should be studied using athletes during
heat acclimation, for reasons discussed above.

Is there evidence for enhanced or attenuated
adaptations from volitional dehydration?

The available studies do not reveal whether voluntary
dehydration enhances or impairs adaptation during
heat acclimation because the requisite information is
not always available (Table 1), and the studies are too
disparate in other respects (Table 2). If an effect exists
it is presumably not dramatic because heat acclima-
tion regimes using almost no replacement or full
replacement have achieved similar hypervolemic and
performance outcomes. Fleming and James157 have
recently demonstrated that familiarisation can occur
within 4 exposures to hypohydration and exercising
heat stress, such that its ergolytic effect became non-
significant, as mentioned above. It is unclear how
much of this recovery in performance was physiologi-
cal, but participants still showed higher heart rates,
RPE and Tc in exercise with hypohydration in that
low airflow environment, so the habituation was pre-
sumably psychological rather than physiological.

We studied the separated role of dehydration in heat
acclimation, using 9 fit male volunteers (V̇O2 peak 60
§7 mL/kg/min).171 Participants were acclimated on
two occasions, once with no dehydration and once with
minimal rehydration (0.1 L; achieving »2% hypohydra-
tion), in crossover fashion, for 7.5 h (90-min/d for 5 d)

using controlled hyperthermia (Tc D 38.5�C). Impor-
tantly, core (rectal) temperature was clamped to prevent
the additional thermal strain that would otherwise ensue
in the calm lab conditions, so any difference in outcome
was delineated from any such thermal effect. Participants
were given no verbal or written expectation as to which
direction the effects might be, if any. The acclimation-
induced expansion in plasma volume tended to be larger
across acclimation with dehydration than euhydration
(by 4.5%; 95%CI: ¡1 to 10%; P D 0.06; Fig. 4A), and be
correlated with a rise in the aldosterone response across
acclimation. Similarly, the change in body mass from pre
to post acclimation was significantly (albeit trivially)
larger with dehydration than euhydration (by 0.8 kg;
95%CI: 0.1 to 1.5; P D 0.03; unpublished results; see
Fig. 4B), potentially reflecting the higher total body water
content subsequent to greater fluid retention. The accli-
mation-induced reduction in end-exercise heart rate dur-
ing a standardized heat stress test was also larger across
the dehydration acclimation regime (by 11 b/min: ¡1 to
22; PD 0.05; Fig. 4C). But the differences between hydra-
tion regimes were unclear for most endocrine, cardiovas-
cular, psychophysical and ergogenic outcomes (e.g.,
Fig. 4D). Thus, dehydration to »2% BM did not impair
heat adaptation in fit males, and may have enhanced
some aspects of short-term heat acclimation.119,171 How-
ever, in view of the distinct lack of research on the role of
hydration when conditioning the cardiovascular, ther-
moregulatory and fluid regulatory systems, and the
inconsistent findings from the two studies, it is clearly
not possible to suggest whether dehydration during stress
is beneficial, counterproductive, or neither.

Caveats with dehydration: Research from the lab of
Dr Hiroshi Nose has demonstrated the importance of
replenishing protein and carbohydrate soon after a
bout of exercise, especially in older individuals.172-174

Partial rehydration with carbohydrate and amino acid-
containing fluids (1.8 g amino acids/kg BM, in 3.2 mL
water/kg) increased plasma albumin content and
plasma volume restoration following a single bout of
interval exercise, in old and young men.173 Post-exer-
cise supplementation, when applied across 8 wk of aer-
obic training in older men, enabled expansion of
plasma albumin content and plasma volume.174 This
hypervolemia was somewhat defended during exercise,
in conjunction with less cardiovascular strain and
enhanced thermoeffector responses, compared to
responses obtained from an equivalent fluid volume of
placebo replenishment following each training bout.

TEMPERATURE 425



Similar results were obtained with young men training
for 5 d in warm conditions.172 Given those findings
and existing knowledge that older individuals are slow
to perceive hypohydration and subsequently rehy-
drate,175 early nourishment following exercise seems
warranted, especially in older individuals and regardless
of the magnitude of hypohydration caused by exercise.
Since mild hypohydration can also impair mood176,177

and cognition178 at rest, full rehydration early following
exercise may be merited. This actually remains unre-
solved because of the multiple problems of validity
with such studies (see ref. 158), and because of oppos-
ing data on effects of early rehydration (see below).

The adaptive stimulus of a given exercise bout, or heat
exposure, may be also be determined by the time course
and extent of rehydration. Plasma volume expansion is
consistently evident in response to acute and repeated
exercise bouts, particularly utilizing 8 £ 4 min at »85%
peak V̇O2 with 5-min active recovery between repetitions
(John B. Pierce Laboratory). In these and similar studies
characterizing post-exercise plasma volume expansion,
fluid is not made available during the exercise, and rehy-
dration begins after one hour179,180 or at least
2 hours82,83,181,182 following the exercise. Yet fluid retention
is consistently stimulated, producing a rebound hypervole-
mic response. It appears that fluid regulatory hormonal

responses (particularly plasma aldosterone) is apparent
with prolonged maintenance of hypohydration, up to at
least 6 hours post exercise,183 and may be attenuated on
provision of food and fluid.183 Similarly, Costill et al.184

found an impaired accrual of plasma volume if drinking
carbohydrate and electrolyte beverage relative to water
only, early after each of 5 daily bouts of dehydrating to 3%.
Further, the reduction in CVP following prolonged dehy-
drating (»3% BM) exercise is evident even after eating
and drinking to satiety 1 hour after exercise cessation,167

and thus the timing of rehydration (and nutrient
replenishment) may provide a window for manipu-
lating an adaptive stimulus. As some functional
hypohydration is likely following exercise and partic-
ularly exogenous heat stress (see Fig. 3 in ref. 158),
individual differences in adaptive responses (particu-
larly hematological) may therefore be influenced by
rehydration regimes following the conditioning stim-
ulus. Further research is warranted to determine the
role of hydration before, during, and following con-
ditioning sessions on adaptive responses.

Individual differences

The effects of dehydration do not impact all individuals
equally. The degree to which dehydration will stimulate

Figure 4. Individual responses of resting plasma volume (A), resting body mass (B), end-exercise heart rate (C), and subsequent time-to-
exhaustion ((TTE) D) to short-term heat acclimation undertaken with euhydration (EUH) or dehydration (DEH). Mean values are illus-
trated as a black diamond, offset slightly for visual clarity. The smallest worthwhile difference is shown as a gray band, where able to be
calculated. Data for A, C and D are individual responses of data published in ref. 171.
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behavioral (thirst), and physiological responses (e.g.,
ADH secretion) differs due to genetic variation in the
threshold and sensitivity of the osmoregulatory sys-
tems.185 This variability makes some individuals reluc-
tant to drink during prolonged exercise,186 and can be
further influenced by their fitness (neuroendocrine
response;168) or acclimatization to heat (quantity of fluid
consumed;170). It therefore seems likely that if permissive
dehydration were beneficial during heat acclimation, or
ergogenic in its own right, the degree of dehydration
that is beneficial would likely differ between individuals.
As indices of hydration used for prescribing drinking
are confounded by the same variability,187 it would
appear that self-regulated rehydration is as appropriate
as a prescribed drinking regime for most individuals.

Sex effects on chronic adaptations to heat stress are
conspicuously under researched,188 whereas those on
chronic adaptations to hydration stress are still relatively
unknown. It appears that females may require more heat
acclimation to achieve the same attenuation in cardiovas-
cular and thermoregulatory strain asmales,189 and anydif-
ferences in adaptive responses may be partly explained by
body composition.190 The female heart also appears to be
less sensitive to heat acclimation-induced HSP induction,
possibly due to an inhibitory role of estrogen onHSP tran-
scription and expression (in rats;191). Sexdifferences there-
fore seem likely to contribute to variability in adaptive
responses to heat, but this requires further research.

Several other issues remain unresolved or unexam-
ined, including the separate and interactive roles of typi-
cally-encountered magnitudes of heat and dehydration
in regard to (i) intracellular responses in vivo, especially
on oxidative stress, energy metabolism and cellular toler-
ance18,19,50; (ii) adaptation, especially in young versus
older adults, and in regard to anti-inflammatory inter-
ventions192,193; (iii) red cell volume, (iv) the large individ-
ual differences in cardiovascular and functional impacts
of heat acclimation, and (iv) short vs. long term adapta-
tions, especially for endurance athletes. Functional effects
should be assessed under psychologically and physically
valid conditions; if representing training, these should
ideally include blinding and strong airflow, respectively,
whereas if representing heat acclimation, indoor envi-
ronments or encapsulation, then airflow is unwarranted.

Conclusions and perspectives

Voluntary dehydration is an inherent part of exercise,
with athletes typically drinking only half of their fluid

loss (as approximated from mass loss, with its limita-
tions). It remains unclear whether ad libitum drinking
optimizes performance in competition, partly because
laboratory-based research has limited validity in
addressing that issue. Nonetheless, a far greater num-
ber of exercise bouts are performed in training, the
major purpose of which is to adapt multiple systems
to improve fitness. It is therefore remarkable that
almost no research has been undertaken to determine
whether dehydration enhances, impairs or does not
substantively affect these adaptations. Dehydration is
increased by exogenous heat stress, such as heat accli-
mation or acclimatization. Dehydration exacerbates
the magnitude of strain in several physiological sys-
tems, and can increase thermal strain by attenuating
the heat loss effectors. While heat is almost certainly
the stress of major benefit in driving adaptations,
more research is needed to delineate the roles of heat
and dehydration. The effectiveness of heat acclimation
for enhancing adaptations and performance remains
unclear for team sport and for endurance athletes
despite a surge in studies on this topic. Whether team
sport or endurance athletes should drink ad libitum,
or more avidly during aerobic training and heat accli-
mation is also not known, but rehydrating in conjunc-
tion with amino acids, carbohydrates, and sodium
after training seems valuable, especially in older ath-
letes. It is clear that prolonged orthostasis (during or
following exercise or heat exposure) facilitates a more
beneficial hormonal profile (for enhanced fluid regula-
tion), however the time course of rehydration (in
recovery), and its possible potentiating role194 in pro-
longing cardiovascular and fluid regulatory strain
remain unclear. As is stands, the effectiveness of heat
acclimation as a strategy to enhance adaptation for
performance in a cool environment is unclear, as is
the role of volitional dehydration within such heat
acclimation or within normal training for endurance
performance in hot, warm or cool environments.

Abbreviations
ADH Antidiuretic hormone, or vasopressin
BM Body mass
CVP Central venous pressure
HIF-1a Hypoxia-inducible-factor 1 a
HSP72 Heat shock protein 72
mTOR Mammalian target of rapamycin
mRNA mRNA (ribonucleic acid)
NO Nitric oxide
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RAAS Renin-angiotensin-aldosterone system
Tc Core temperature
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