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Abstract

The COVID-19 pandemic calls for rapid development of effective treatments. Although various drug repurpose approaches
have been used to screen the FDA-approved drugs and drug candidates in clinical phases against SARS-CoV-2, the
coronavirus that causes this disease, no magic bullets have been found until now. In this study, we used directed message
passing neural network to first build a broad-spectrum anti-beta-coronavirus compound prediction model, which gave
satisfactory predictions on newly reported active compounds against SARS-CoV-2. Then, we applied transfer learning to
fine-tune the model with the recently reported anti-SARS-CoV-2 compounds and derived a SARS-CoV-2 specific prediction
model COVIDVS-3. We used COVIDVS-3 to screen a large compound library with 4.9 million drug-like molecules from
ZINC15 database and recommended a list of potential anti-SARS-CoV-2 compounds for further experimental testing. As a
proof-of-concept, we experimentally tested seven high-scored compounds that also demonstrated good binding strength in
docking studies against the 3C-like protease of SARS-CoV-2 and found one novel compound that can inhibit the enzyme.
Our model is highly efficient and can be used to screen large compound databases with millions or more compounds to
accelerate the drug discovery process for the treatment of COVID-19.

Key words: COVID-19; SARS-CoV-2; deep learning; drug repurposing; virtual screening

Introduction
COVID-19 is a newly emerged infectious disease that becomes
a worldwide pandemic. According to the World Health Organi-
zation (WHO) statistics, tens of millions of confirmed cases of
COVID-19 and millions of deaths have been reported [1]. SARS-
CoV-2, a new coronavirus, has been identified to cause COVID-
19 [2, 3]. Coronaviruses (CoVs) are a group of enveloped single
stranded positive-sense RNA viruses, which are able to infect
many animals and humans and cause a wide range of diseases
[4]. Whole genome sequencing showed that SARS-CoV-2 shares
79.6% sequence identify to SARS-CoV [5]. SARS-CoV-2 appears
to have relatively high transmission rate among humans
and causes severe and fatal pneumonia and other damages,
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threatening people at all ages, especially senior ones [6]. As
the number of infections and deaths are rapidly increasing,
there is an urgent call for drug and vaccine development against
COVID-19.

Though immediately needed, developing new drugs within
a short period of time is unpractical. Repurposing of clinically
approved drugs provides a fast and effective strategy to iden-
tify antiviral drugs for immediate use. Several drugs such as
remdesivir [7], chloroquine [7, 8] and lopinavir [9] have shown
antiviral activity in vitro and been tested in clinical trials. FDA-
approved drugs as well as those that were previously found
to inhibit SARS-CoV and MERS-CoV have been screened for
their anti-SARS-CoV-2 activities [10–13]. Nine approved HIV-1
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protease inhibitors were also evaluated for their anti-SARS-
CoV-2 activities in vitro and nelfinavir was found to be active
[14]. Traditional Chinese medicines provide rich resources for
developing antiviral drugs. Baicalein, an ingredient isolated from
Scutellaria baicalensis (Huangqin in Chinese), has been reported
to inhibit the 3C-like protease (3CLpro) of SARS-CoV-2 and SARS-
CoV-2 replication in vitro, which provides potential treatment of
COVID-19 [15, 16]. The crystal structure of 3CLpro from SARS-CoV-
2 was quickly solved [17] and docking-based virtual screening
can be applied to discover more potential 3CLpro inhibitors.

Compared to experimental screening and docking-based
screening, deep learning based virtual screening provides a
new approach in drug discovery. It generally encodes molecules
into vectors and then constructs a mapping relationship from
these vectors to their properties. Artificial intelligence (AI)-
based virtual screening methods enable rapid search against
large molecular libraries containing 106–109 molecules, which
is usually time-consuming for traditional methods. Stokes
et al. [18] discovered a new antibiotic with a broad-spectrum
bactericidal activity by combining in silico predictions and
experimental investigations. Ton et al. [19] applied deep docking
model to screen all the 1.3 billion compounds from ZINC15
library and recommended the top 1000 hits as potential SARS-
CoV-2 3CLpro inhibitors, though no experimental testing has
been reported. In the present study, we combined in silico
methods and in vitro studies to screen anti-SARS-CoV-2 drugs.
We used a directed message passing neural network to learn
the structure–activity relationship from a collection of anti-
beta-CoV active and inactive compounds. The first model
(COVIDVS-1) trained on experimental data on several beta-
CoVs gave good predictions for the recently identified anti-
SARS-CoV-2 compounds when screening the Drug Repurposing
Hub (DRH) library containing 6235 FDA-approved drugs, clinical
trial drugs and pre-clinical tool compounds [20]. We then fine-
tuned COVIDVS-1 successively with recently reported active
and inactive compounds against SARS-CoV-2 and derived the
COVIDVS-3 model. We applied COVIDVS-3 model to screen a
large compound library with 4.9 million drug-like molecules
from ZINC15 database [21]. We suggested a list of potential anti-
SARS-CoV-2 compounds for further experimental testing. As
a proof-of-concept, we experimentally tested the activities of
seven molecules with high prediction scores and good binding
affinities from docking studies against 3CLpro of SARS-CoV-2 and
found one non-covalent inhibitor with novel chemical scaffold.

Material And Methods
Data

Training dataset is essential for deep learning methods. In
order to train a robust model that can predict new antiviral
drugs against SARS-CoV-2, an ideal training set should contain
sufficient positive and negative compounds for SARS-CoV-2.
Unfortunately, SARS-CoV-2 is a newly emerged coronavirus,
and only limited information is available now. SARS-CoV-2, as
well as HCoV-OC43, SARS-CoV and MERS-CoV, belongs to beta-
coronaviruses [3, 22]. They share a high degree of conservation
in essential functional proteins, including the 3CLpro, the RNA-
dependent RNA polymerase, the RNA helicase, etc. [23] For
example, the 3CLpro in SARS-CoV and SARS-CoV-2 share a
sequence identity of 96.1%, indicating that these CoVs share
potential targets for broad-spectrum anti-CoV drugs. Potent
MERS-CoV inhibitors identified by screening an FDA-approved
drug library also inhibit the replication of SARS-CoV and

HCoV-229E [24]. Shen et al. [23] found seven broad-spectrum
antiviral inhibitors through a high-throughput screening of
a 2000-compound library against HCoV-OC43. These studies
provide a list of antivirals for beta-CoVs that can be used to
train a model for screening SARS-CoV-2 antiviral candidates.

We collected a set of inhibitors against HCoV-OC43, SARS-
CoV and MERS-CoV from literatures with a cutoff of EC50 < 10 μM
and selective index >10 [22, 23, 25–27]. All the inhibitors were
identified by screening libraries including FDA-approved drugs
and pharmacologically active compounds. After applying the
cutoff filter, 90 compounds were selected as antivirals and each
of them can inhibit at least one of the three CoVs. The remain-
ing compounds were regarded as negative data. This primary
training dataset (Training Set 1) containing 90 positives and
1862 negatives was used to train the deep learning classification
model for screening anti-beta-coronavirus compounds.

We also constructed an independent dataset containing a
collection of experimentally tested active and inactive molecules
against SARS-CoV-2 [10–14]. In general, compounds were labeled
as actives if their EC50 against SARS-CoV-2 are <50 μM. Several
well tested compounds, including indinavir, were also labeled
as positive data with EC50’s a little bit higher than 50 μM [14].
This gave a dataset (Fine-tuning Set 1) with 70 actives and 84
inactives. We applied this SARS-CoV-2-specific dataset to train
the SARS-CoV-2-specific antiviral prediction model. In addition,
an independent test set (Test Set 1) including 33 actives and 38
inactives was constructed by removing the compounds that also
present in the Training Set 1 from Fine-tuning Set 1.

A recent study experimentally screened the ReFRAME library,
which collects a large number of clinical-phase or FDA-approved
drugs, against SARS-CoV-2 and reported 20 active compounds
(hereafter referred as ReFRAME actives) [28, 29]. Among the 20
active compounds, 3 were already included in our Training Set 1
and Fine-tuning Set 1. We added the 17 newly discovered actives
to Fine-tuning Set 1 to construct a new dataset (Fine-tuning Set
2). For simplicity, we called the combination of Training Set 1
and Fine-tuning Set 1 as Training Set 2 and the combination of
Training Set 1 and Fine-tuning Set 2 as Training Set 3.

The DRH is a curated and annotated collection of FDA-
approved drugs, clinical trial drug candidates and pre-clinical
compounds with a companion information resource [20]. We
applied our model to this library to identify potential antiviral
molecules. Compounds overlapping with the training dataset
were removed and the rest compounds were used to screen
potential antivirals.

ZINC15 is a free database designed for virtual screening,
containing ∼1.5 billion molecules [21]. We extracted a subset
database containing ∼4.9 million molecules that are drug-like
and in stock. Virtual screening was applied to this library to
discover potential antiviral molecules.

A summary of all the datasets used in this study were listed
in Table 1.

Model

In this work, we developed a series of COVIDVS models which
showed satisfied performances and then applied them to
screening potential antiviral drugs from a large compound
library. Our study contains three steps (Figure 1A): (1) we trained
a broad-spectrum anti-beta-coronavirus compounds prediction
model (COVIDVS-1) with Training Set 1; (2) we fine-tuned
COVIDVS-1 model with SARS-CoV-2 specific datasets Fine-
tuning Sets 2 and 3, and obtained the SARS-CoV-2 specific
prediction model COVIDVS-2 and COVIDVS-3 and (3) we applied
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Table 1. Summary of datasets

Dataset Description Source

Training Set 1 Contains 90 antiviral compounds against HCoV-OC43,
SARS-CoV or MERS-CoV and 1862 inactive compounds

Collected from refs 22, 23, 25, 26, 27

Fine-tuning Set 1 A collection of experimentally tested active and
inactive molecules against SARS-CoV-2

Collected from refs 10-14

Test Set 1 A subset of fine-tuning Set 1 with compounds
presented in Training Set 1 removed

–

ReFRAME actives Active compounds against SARS-CoV-2 obtained by
experimentally screening the ReFRAME library

ref. 29

Fine-tuning Set 2 Combination of Fine-tuning Set 1 and ReFRAME
actives

–

Drug Repurposing Hub A curated and annotated collection of FDA-approved
drugs, clinical trial drug candidates and pre-clinical
compounds

https://clue.io/repurposing

Drug-like library from ZINC15 A subset database of ZINC15 containing ∼4.9 million
molecules that are drug-like and in stock

https://zinc15.docking.org/

COVIDVS-3 to screen potential antiviral molecules from large
compound library and selected the molecules with best scores
to make further evaluation. A summary of the training/test data
sets for each COVIDVS model was listed in Table 2 and the details
for each model will be discussed in a later section.

Our COVIDVS models implemented the framework of
Chemprop model which has been used to predict molecular
properties directly from the graph structure of molecules [30].
Based on Chemprop, we constructed a classifier containing a
message-passing neural network (MPNN) module [31] and a
feed-forward neural network (FNN) module [32]. The classifier
takes molecular SMILES as input and converts it to a graph
representation internally. Atoms and bonds are regarded as
graph nodes and edges, respectively and a related feature
vector is assigned to each atom and bond. The MPNN module
aggregates all information from atoms and bonds to a molecule-
level representation. The learned molecular featurization was
then fed to the FNN module to make final prediction. The
architectures of MPNN module and FNN module are shown in
Figure 1B.

The ensemble method has been shown to be able to improve
the performance of machine learning models [33]. An ensem-
ble of N models is constructed by training the same model
architecture for N times with different random initial weights.
The predictions of the N models are usually averaged as the
ensemble’s prediction. Here, we applied the ensemble method
to improve the performance of COVIDVS models.

Transfer learning (TL) is an AI technology that can be applied
to resolve problems of data scarcity by leveraging existing
knowledge from source tasks to a target task with low data
[34]. Transfer learning have achieved success on low data tasks
in many fields including computer vision [35], natural language
processing [36, 37] and drug discovery [38, 39]. In the present
study, we have only 154 data for SARS-CoV-2, which is obviously
insufficient to train a model. We implemented fine-tuning
technique, which is one of the most commonly used transfer
learning techniques to deal with the data scarcity problem.
We trained a source model from scratch with Training Set 1
and regarded it as the source task. Then we constructed the
target model, whose weights were inherited from the source
model and fine-tuned it with Fine-tuning Set. More details
about the transfer learning are provided in Supplementary
Data.

Results
The broad-spectrum anti-beta-coronavirus compound
prediction model

We used the Training Set 1, which consists of 1952 compounds
labeled by their activities against SARS-CoV, MERS-CoV or HCoV-
OC43 to train a general classification model for anti-beta-CoV
activity. Test Set 1 was used to evaluate the model’s performance.
The hyperparameters were defined by Bayesian hyperparameter
optimization method. The MPNN part and the classification part
were trained together, so that the model can learn to extract the
molecular features and classify antiviral molecules automati-
cally. However, the model showed a receiver operating character-
istic curve-area under the curve (ROC-AUC) of 0.99 for Training
Set 1 and an AUC of 0.71 for Test Set 1, which was obviously
overfitting. In order to solve this problem, we concatenated an
additional vector containing molecular features computed by
RDKit [40] (Supplementary Table S6) to the molecular represen-
tation generated by MPNN module. The new model showed an
AUC of 0.97 for Training Set 1 and an AUC of 0.89 for Test Set 1,
demonstrating that the augmentation of data representation can
significantly improve the model’s performance. In order to fur-
ther evaluate the performance of model, we trained models on
the training data from each of the 10 different random splits of
Training Set 1, each with 80% training data, 10% validation data
and 10% test data, resulting in an average of AUC of 0.96 on the
training data and 0.83 on the testing data (Figure S1). However,
the test performance varies a lot when training with different
split of data due to the limited training data size. In order to make
the model more robust, we constructed ensembles containing
5, 10 and 20 models, respectively and tested their performance
on Test Set 1. We found that applying the ensemble technique
significantly improve the performance of model. The ensemble
of 20 models achieved the best performance with a ROC-AUC of
0.89 on Test Set 1 (Figure 2A and Supplementary Table S1), indi-
cating that this model can efficaciously discriminate actives and
inactives for SARS-CoV-2. Therefore, we selected the ensemble of
20 models (COVIDVS-1) for further prediction.

We applied COVIDVS-1 to predict the anti-SARS-CoV-2 activ-
ity of compounds in a library containing 1417 launched drugs
extracted from the DRH. Figure 2B gives the distribution of the
predicted scores. Most of the launched drugs (89.3%) have scores
less than 0.2. Among the 70 top-ranking (5%) drugs, 6 have

https://clue.io/repurposing
https://zinc15.docking.org/
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Figure 1. (A) The pipelines of our transferable deep learning based virtual screening model. (B) The architectures of MPNN module and FNN module. FRDKit represents

the additional vector containing 200 molecular features computed by RDKit. The molecular features calculated by MPNN and the FRDKit were concatenated as the input

of FNN module. MPNN: message passing neural network; FNN: feed-forward neural network.

been reported to be active against SARS-CoV-2 (Table 3). Ceritinib
(also named LDK378), a drug that is used for the treatment of
non-small-cell lung cancer, ranked at position 11 and has been
reported to inhibit the replication of SARS-CoV-2 with an IC50

of 2.86 μM [10]. Terconazole, an antifungal drug that ranked
at position 24, showed an IC50 of 11.92 μM [11]. Osimertinib,
an anti-cancer drug that is used to treat non-small-cell lung
carcinomas with a specific mutation, ranked at position 35 and
has been shown to be active against SARS-CoV-2 with an IC50 of
3.26 μM [10]. Ritonavir, an antiretroviral medication used along
with other medications to treat AIDS, showed 8.63 μM of EC50 and

ranked at position 42 [14]. Abemaciclib, a drug for the treatment
of breast cancers that showed potency against SARS-CoV-2 with
an IC50 of 6.62 μM, ranked at position 46 [10]. Indinavir, a protease
inhibitor used as a component of highly active antiretroviral
therapy to treat AIDS, ranked at position 60 with a reported
anti-SARS-CoV-2 EC50 of 59 μM [14]. These results demonstrated
that COVIDVS-1 can successfully screen out potential antiviral
drugs against SARS-CoV-2, even though the active compounds
in the training set were only tested on beta coronaviruses other
than SARS-CoV-2. We analyzed the chemical structure similarity
between the six drugs and the active compounds in the Training
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Figure 2. The performance and prediction results of COVIDVS-1 model. (A) ROC curve showing the performance of COVIDVS-1 on Test Set 1. (B) Histogram showing the

distribution of predicted scores of the launched drugs library extracted from DRH. Molecules that are in Training Set 1 have been removed.

Table 2. Datasets used for constructing the COVIDVS models

Training Fine-tuning Prediction

COVIDVS-1 Training Set 1 – Test Set 1 and Launched drugs in DRH [20]
COVIDVS-2 – Fine-tuning Set 1 ReFRAME actives [28] and DRH
COVIDVS-3 – Fine-tuning Set 2 Drug-like library from ZINC15 [21]

Table 3. COVIDVS-1 predicted ranking positions of the six launched
drugs reported to have antiviral activity against SARS-CoV-2 [10, 11,
14] among the 1417 launched drugs extracted from the DRH

Name Experimental
activity (EC50)(μM)

Ranking position

Ceritinib 2.86 11
Terconazole 11.92 24
Osimertinib 3.26 35
Ritonavir 8.63 42
Abemaciclib 6.62 46
Indinavir 59 60

Set 1 by Tanimoto similarity coefficient with Morgan Fingerprint
(Calculated by RDKit). All these six retrieved active drugs have
maximum similarity <0.4 to the active molecules in Training Set
1, indicating that the model can identify potential candidates
with novel structures.

Development of anti-SARS-CoV-2 compound prediction
model

As we have only 154 data for SARS-CoV-2, we applied transfer
learning to develop the SARS-CoV-2 specific model. We used the
Fine-tuning Set 1 to fine-tune our COVIDVS-1 model, resulting
in the second-generation model, COVIDVS-2. Considering that
the data size of Fine-tuning Set 1 is quite limited and overfitting
may easily happen, we decided to freeze the MPNN parameters
and only fine-tune the classification part. This strategy reduced
the number of trainable parameters and we have demonstrated
that it is less likely to cause overfitting than fine-tuning the
whole COVIDVS-1 model (see Supplementary Data for details).
COVIDVS-2 contains information from Training Set 2, which
was constructed by adding all data in the Fine-tuning Set 1 to

the Training Set 1. Molecules already existed in the Training
Set 1 were relabeled according to their activity against SARS-
CoV-2 and molecules not presented in the Training Set 1 were
directly added. Training Set 2 contains 133 positive data and 1890
negative data. We analyzed the chemical space distribution of
the Training Set 2 and data from the DRH using the t-distributed
stochastic neighbor embedding (t-SNE) dimension reduction
method. The t-SNE plots were created using the scikit-learn
tools [41]. Tanimoto similarity was utilized to quantify the
chemical distance. The ‘perplexity’ parameter, which controls
the balanced attention between local and global aspects of the
data, was set to 30 for an appropriate data projection. All other
parameters were set to the scikit-learn’s default values. The t-
SNE plot showed that the positive data in the training set largely
overlaps with the data from DRH in chemical space (Figure 3A).
We then used this model to screen the full DRH dataset.
The distribution of the predicted scores is given in Figure 3B.
There are 280 molecules with score > 0.8 and 55 molecules
with score > 0.9. The chemical structures of the 55 high-scored
molecules are highly diverse (Figure 3A). About half of the top 55
molecules were reported kinase inhibitors, demonstrating the
potential of using kinase inhibitors as anti-SARS-CoV-2 drugs.
Six anaplastic lymphoma kinase (ALK) tyrosine kinase receptor
inhibitors, three cyclin-dependent kinase (CDK) inhibitors and
eight epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitors were enriched in the top 55 list, which have the same
targets to Ceritinib, Abemaciclib and Osimertinib that are active
on SARS-CoV-2, respectively. We noticed a newly reported work
that carried out a mass spectrometry-based phosphoproteomics
survey of SARS-CoV-2 early infection. Dramatic rewiring of
phosphorylation on host and viral proteins and altered activities
of kinases were observed during the SARS-CoV-2 infection,
making kinases to be ideal drug targets [42]. Compared to the ∼40
known targets of the 55 molecules and the ∼60 known targets of
active molecules in Training Set 2, only 8 targets are the same,
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Figure 3. Comparison the prediction results between COVIDVS-1 and COVIDVS-2 (B, C) and the data distribution of Training Set 2, DRH and ReFRAME actives (A, D). (A)

t-SNE of all molecules from the Training Set 2 (red: negative data, blue: positive data) and DRH (gray). The top 55 high-score molecules were also plotted (black cross). (B)

Histogram showing the difference between prediction results of COVIDVS-1 and COVIDVS-2 on DRH. (C) Distribution of scores for 17 ReFRAME actives predicted with

COVIDVS-1 and COVIDVS-2, respectively. (D) t-SNE of all molecules from the Training Set 2 (blue: positive data, gold: negative data) and ReFRAME actives (black cross:

11 molecules with score < 0.8, red squares: six molecules with score > 0.8).

demonstrating that the molecular targets of predicted results
were not constrained by the training set. We listed all the
55 molecules with score > 0.9 in Supplementary Table S2 and
grouped them according to their clinical study states.

To test the power of the fine-tuned model, we used the 17
newly identified ReFRAME actives to evaluate our COVIDVS-
1 and COVIDVS-2. We predicted the ReFRAME actives with
COVIDVS-2 and 6 of them have scores >0.8. Compound KW
8232 (EC50 ∼ 1.2 μM) has a score of 0.94, which is above most
of the 4711 DRH molecules. This suggests that our model can
successfully discover novel antiviral drugs against SARS-CoV-2.
We also compared the performance of COVIDVS-2 and COVIDVS-
1 on ReFRAME actives (Figure 3C). Among the 17 compounds, six
got predicted scores > 0.8 by COVIDVS-2, while no molecule
got predicted score > 0.8 by COVIDVS-1. Of course, higher scores
may not guarantee true activity. We mixed these 17 molecules
into the 4711 molecules from the DRH and ranked all of them
by their predicted scores. The top-2 compounds among the 17
ReFRAME actives ranked in 28th and 58th among all the 4728
compounds when predicted with COVIDVS-1, while the ranking
raised to 4th and 29th when predicted with COVIDVS-2. We
posted these ReFRAME actives onto the t-SNE plot of the Training
Set 2. Although all the 6 compounds with good predictions are
close to active compounds in the training set, some of the 11
compounds with predicted scores less than 0.8 are relatively

far from the active compounds in the Training Set 2 (Figure 3D).
This demonstrates that the diversity of active compounds limits
the model’s performance, which can be improved by increasing
the number and chemical diversity of active compounds in the
training set data.

Screening ZINC database to identify novel
anti-SARS-CoV-2 compounds

Though several FDA-approved drugs have shown anti-SARS-
CoV-2 activities using drug repurposing approaches, none of
them were highly effective in clinical trials. Highly effective
novel anti-SARS-CoV-2 drugs need to be developed. Deep learn-
ing models can be easily applied to deal with big data, which
allows us to screen large chemical libraries. We subsequently
applied our method to screen ZINC15 database. We fine-tuned
the COVIDVS-1 model with the Fine-tuning Set 2 to derive the
third-generation model, COVIDVS-3. Similar to Training Set 2, we
constructed Training Set 3 by combining Fine-tuning Set 2 and
Training Set 1, which contains all data that contributed to the
training of COVIDVS-3. As all known active data are included in
Training Set 3, COVIDVS-3 model is the best model we can obtain
with the current data.

We applied COVIDVS-3 to screen the 4.9 million drug-like
molecules selected from ZINC15. This screen run was finished
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Figure 4. Clustering results of high-score ZINC15 molecules. Molecules from

positive data of the Training Set 3 and the predicted ZINC15 molecules with

score > 0.9 were plotted on t-SNE distribution plot. Gray squares represent the

positive data of the Training Set 3. Plus markers with different colors represent

different clusters. Noisy samples which are far away from any clusters are not

plotted for clarity.

within 6 h using 200 CPUs for feature generation and 4 NVIDIA
GPUs for prediction, which can be easily speeded up. We ranked
all the 4.9 million molecules by their predicted scores. This gave
3641 molecules with score > 0.9, and 94.6% of them have the
maximum similarity < 0.4 to positive data of Training Set 3. In
order to understand the structure distribution relationship of the
high-score molecules, we analyzed the chemical space distribu-
tion of the 3641 molecules and the positive data in Training Set
3. A density-based spatial clustering of applications with noise
(DBSCAN) method [43, 44] was performed to cluster the 3641
ZINC molecules with score > 0.9 (see Supplementary Data for
details). There are 46 clusters that have at least 10 molecules,
and 8 clusters with at least 50 molecules. Figure 4 showed the
clustering results on t-SNE plot, as well as the distribution of
positive data of Training Set 3, revealing that the predicted com-
pounds locate in different chemical space, showing the diversity
of results. For each of the 8 clusters with at least 50 molecules,
we selected one molecule with the best score as a represen-
tative compound (shown in Figure 5). The top 100 molecules
with best prediction scores and representative molecules from
the 46 clusters were given in Supplementary Tables S3 and S4,
respectively. We suggest that these compounds can be tested for
their anti-SARS-CoV-2 activities in future experimental studies.
Our method can be easily applied to screen other large library
with millions, even billions of compounds.

Identifying novel SARS-CoV-2 3C-like protease
inhibitors

We have applied our COVIDVS model to screen ZINC15 database
and predicted a set of potential antiviral molecules, which
may act on different targets, including the SARS-CoV-2 3CLpro.
3CLpro plays an important role in mediating viral replication
and transcription [45]. The sequence identity of 96.1% between
3CLpro in SARS-CoV and SARS-CoV-2 makes it an ideal target
for developing broad-spectrum anti-CoV drugs. In order to
further screen 3CLpro inhibitors from the prediction results, we
performed molecular docking using Autodock Vina software
[46]. The structure of SARS-CoV-2 3CLpro (PDB ID 6 LU7) and
candidate molecules were prepared with AutodockTools [47]. All

the 3641 ZINC15 molecules with prediction score > 0.9 from the
previous section were subjected to docking. Their docking scores
ranges from −10.5 to −6.3 kcal/mol. From the top 40 results, we
manually selected seven compounds to experimentally evaluate
their activities.

We purchased these seven compounds and tested their
SARS-CoV-2 3CLpro inhibition activity (see Supplementary Data
for experimental details). The prediction scores, docking scores
and inhibition rates at 50 μM of the seven molecules were shown
in Supplementary Table S5. Among all the seven compounds
tested, ZINC000017053528 showed strong inhibition at 50 μM and
has an IC50 of 37.0 μM (Figure 6). To the best of our knowledge,
no bioactivity of this molecule has been reported before. We
calculated the 2D structure similarity between the active
compound and the 405 reported SARS-CoV 3CLpro inhibitors
from PubChem AID1706 assay [48] with ECFP4 fingerprint [49].
All the known active compounds have the similarities less
than 0.4.

In the past two decades, many synthetic compounds and
natural products with inhibitory activity against coronaviruses’
3CLpro have been reported [50, 51]. Most of them are covalent
inhibitors targeting the active site Cys145. The currently
reported SARS-CoV-2 3CLpro inhibitors were mainly discovered
by testing the previously developed 3CLpro inhibitors or by drug
repurposing screen. Only a few non-covalent inhibitors were
reported with modest activity. For example, Jin et al. predicted
that cinanserin as a potential inhibitor by docking-based
virtual screening and the experimentally measured IC50 value
was 125 μM. They also found seven hits by high-throughput
experimental screening method. Three of them are non-covalent
inhibitors and their IC50 values are in the range of 1.55–15.75 μM
[17]. Alice et al. identified 23 non-covalent hits by performing
a large-scale screen of fragments through a combined mass
spectrometry and X-ray approach against the SARS-CoV-2 3CLpro.
These hits can be used to rapidly develop more potent inhibitors
[52]. Recently, Yang et al. developed a ligand-based method
named D3Similarity to evaluate molecular similarity between
a submitted molecule and molecules in the active compound
database containing all the reported bioactive molecules against
the coronaviruses [53]. We submitted ZINC000017053528 to the
D3Similarity web server to evaluate its 2D and 3D molecular
similarity to the known bioactive molecules. ZINC000017053528
is not similar in chemical structure to all the bioactive molecules
in the database (with 2D similarity < 0.4), although it showed
certain degree of three-dimensional similarity with the 3D
similarity scores between 0.64 and 0.75. Molecules in the top
10 similarity rankings (sorted by the product of 2D and 3D
similarity) have seven different targets and four molecules are
3CLpro inhibitors. As the chemical structure of ZINC000017053528
is different from all the reported 3CLpro inhibitors as well as anti-
coronavirus compounds, it provides a novel scaffold for further
development and optimization of anti-SARS-CoV-2 compounds
targeting 3CLpro.

Discussion
The data scarcity problem is the major problem for developing
anti-SARS-CoV-2 molecules prediction model. In this study,
we successfully extended the data source from anti-SARS-
CoV-2 molecules to anti-beta-coronavirus molecules with the
help of transfer learning. Our model was firstly trained with a
collection of broad-spectrum anti-beta-coronavirus compounds
against SARS-CoV, MERS-CoV or HCoV-OC43 and then migrated
the extracted knowledge to anti-SARS-CoV-2 prediction model
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Figure 5. 2D structures of the eight ZINC15 molecules with best score from each of clusters that have at least 50 molecules.

Figure 6. The chemical structure (left) and the in vitro anti-SARS-CoV-2 3CLpro activity (right) of molecule ZINC000017053528. Values represent the mean ± SE of two

independent experiments, each based on three biological replicates.

through fine-tuning technique. The three types of beta-
coronaviruses have been widely studied. Molecules screened
for one of the CoVs often showed broad-spectrum anti-CoVs
activities, indicating that these data can help us to discover new

antiviral compounds for SARS-CoV-2. We have demonstrated
that the broad-spectrum antiviral prediction model COVIDVS-
1 trained with Training Set 1 can successfully screen out
potential active molecules against SARS-CoV-2 in the top list
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of prediction results. Fine-tuning COVIDVS-1 with SARS-CoV-
2 related data introduced more task-specific information and
allow the model more suitable for our target task. It is expected
that more data will further improve the prediction ability of
transfer learning-based model. The experimental testing results
of high score molecules predicted by fine-tuned model can in
turn be used to fine-tune new model. The model performance
can be improved by iterating the fine-tuning, model prediction
and experimental estimation process. This strategy can be
easily achieved when we are facing an interesting target
lacking enough data. The newly discovered active compounds
targeting SARS-CoV-2, as well as the other three coronaviruses,
can also be used to enhance the performance of the broad-
spectrum model, which can be applied to screen potential
broad-spectrum drugs for newly emerged coronaviruses in the
future.

We utilized ensemble technique to improve the performance
and robustness of our COVIDVS model, however, it also increased
the computational cost proportionally. Therefore, the balance
between performance and cost should be taken into consider-
ation. Although the ensemble of 20 models showed the best
performance, we have demonstrated that the ensemble of 5 or 10
models are quite effective to improve the model’s performance
(Supplementary Table S1) and can be applied when screening
ultra-large compound libraries to reduce the computational cost.

Due to experimental limitations, we tested if our predicted
compounds contain inhibitors that specifically targeting SARS-
CoV-2 3CLpro in vitro. We used our COVIDVS prediction together
with protein-ligand docking to screen potential SARS-CoV-2
3CLpro inhibitors. The screening process on the 4.9 million drug-
like compounds from ZINC15 took about 6 hours with 100 CPUs
and 4 GPUs, and only the 3641 top-ranking molecules were
subject to docking calculations. In a similar setting, traditional
docking-based virtual screening method would need 2 days
with 1000 CPUs. The difference of time cost will further be
enlarged when screening larger compound library. Although
many 3CLpro inhibitors have been reported, most of them only
showed activity in in vitro enzyme assay. As our COVIDVS models
were trained with antiviral activity data, compounds with in
vitro 3CLpro inhibition activity and good COVIDVS prediction
scores may have high probability of anti-viral activity. Similar
to COVIDVS-2 and 3, a target-specific model for 3CLpro can be
trained by fine-tuning COVIDVS-1 with known 3CLpro inhibitors
and non-inhibitors, which is expected to increase the success
rate of prediction.

COVID-19 remains as a global pandemic that is waiting for
effective vaccines and drugs. A number of FDA-approved drugs
and clinical-phase molecules are being tested in clinical trials.
However, no magic bullets have been found yet. More efforts are
necessary to identify safe and efficacious therapeutic solutions
for COVID-19 and emerging CoV related diseases in the future.
Here, we combine in silico method and in vitro experimental
test to screen potential antiviral compounds from large virtual
screening library and successfully identified an inhibitor against
3CLpro target. We hope our method can help to accelerate the
drug discovery process for SARS-CoV-2 and other challenged
targets and diseases.

Availability of Data

The Training Set, Fine-tuning Set, Test Set and other related
data can be downloaded via https://disk.pku.edu.cn:443/link/6
F8366DBBA21B841CB7C8844E54471E8. The source code can be
accessed via https://github.com/pkuwangsw/COVIDVS.

Key Points
• A broad-spectrum anti-beta-coronavirus drug predic-

tion model was developed based on the experimen-
tally identified SARS-CoV, MERS-CoV and HCoV-OC43
inhibitors.

• Specific anti-SARS-CoV-2 drug prediction model was
derived by fine-tuning the broad-spectrum model
with SARS-CoV-2 specific antiviral compounds.

• Potential anti-SARS-CoV-2 compounds were sug-
gested for experimental testing by screening the ZINC
drug-like library containing 4.9 million compounds.

• Several possible SARS-CoV-2 3C-like protease
inhibitors were predicted from the suggested anti-
SARS-CoV-2 compound list and one 3C-like protease
inhibitor with novel chemical scaffold was found.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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