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BACKGROUND: Head-and-neck cancer (HNC) is the eighth most common malignancy worldwide. It is often diagnosed late due to a
lack of screening methods and overall cure is achieved in o50% of patients. Head-and-neck cancer sufferers often develop a second
primary tumour that can affect the entire aero-digestive tract, mostly HNC or lung cancer (LC), making lifelong follow-up necessary.
METHODS: Alveolar breath was collected from 87 volunteers (HNC and LC patients and healthy controls) in a cross-sectional clinical
trial. The discriminative power of a tailor-made Nanoscale Artificial Nose (NA-NOSE) based on an array of five gold nanoparticle
sensors was tested, using 62 breath samples. The NA-NOSE signals were analysed to detect statistically significant differences
between the sub-populations using (i) principal component analysis with ANOVA and Student’s t-test and (ii) support vector
machines and cross-validation. The identification of NA-NOSE patterns was supported by comparative analysis of the chemical
composition of the breath through gas chromatography in conjunction with mass spectrometry (GC–MS), using 40 breath samples.
RESULTS: The NA-NOSE could clearly distinguish between (i) HNC patients and healthy controls, (ii) LC patients and healthy controls,
and (iii) HNC and LC patients. The GC–MS analysis showed statistically significant differences in the chemical composition of the
breath of the three groups.
CONCLUSION: The presented results could lead to the development of a cost-effective, fast, and reliable method for the differential
diagnosis of HNC that is based on breath testing with an NA-NOSE, with a future potential as screening tool.
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Head-and-neck cancer (HNC) is the eighth most common cancer
worldwide and a major cause of cancer mortality (Parkin et al,
2005; Pai and Westra, 2009). It comprises a group of diverse
tumour types arising from various anatomic structures including
the craniofacial bones, soft tissues, salivary glands, skin, and
mucosal membranes (Pai and Westra, 2009). More than 90% of all
HNCs are squamous cell carcinoma that arise from mucosa lining
the oral cavity, oropharynx, hypopharynx, larynx, sinonasal tract,
and nasophaynx (Pai and Westra, 2009; Marur et al, 2010).

Head-and-neck cancer is a particularly distressing human
cancer, because both disease and treatment profoundly interfere
with everyday functioning such as eating, breathing, and speech,
and may lead to severe disfigurement (Hanna and Sherman, 1999).
The diagnosis of HNC is not trivial and requires specialist settings.
A general medical evaluation has to be performed, including a
thorough head-and-neck examination by one or more physicians,
followed by contrast-enhanced computed tomography (CT) and/or
magnetic resonance imaging (MRI), and biopsies (Mendenhall
et al, 2008). Head-and-neck cancer lacks specific symptoms and
has a large number of clinical phenotypes so that patients often

turn to a general practitioner or a dentist first, instead of a HNC
specialist. As a result, diagnosis may be delayed. Two thirds of the
patients are diagnosed with locally advanced or metastatic disease
(stages III and IV) (Nagaraj, 2009). Long-term survival rates for
advanced HNC are low and have not improved significantly over
the last decades (Schweitzer et al, 2010). Overall cure is achieved in
o50% of all patients, despite recent advances in surgery and
radiotherapy (Goerner et al, 2010). In addition, HNC patients often
develop a second primary cancer with an annual rate of 3– 7% that
is usually located again in the head-and-neck area or in the lung,
making lifelong follow-up of HNC survivors necessary (Ridge et al,
2010). Therefore, reliable point-of-care diagnostic tests for HNC
are urgently needed to improve survival, to reduce the need of
mutilate surgery and, hence, to minimise the impact of HNC and
HNC treatment on everyday functioning.

The vast majority of HNC cases appear to be induced by chronic
exposure to carcinogens enclosed in all forms of tobacco,
synergised by alcohol consumptions and/or associated with
oncogenic human papillomaviruses (Schweitzer et al, 2010). The
exposure to the carcinogens causes progressive accumulation of
genetic and epigenetic changes in the squamous cells of the head
or neck (Mendenhall et al, 2008; Schmutzhard et al, 2008; Nagaraj,
2009; Goerner et al, 2010), leading to cellular oxidative stress
(Okunieff et al, 2005), and, thus, to the emission of cancer-specific
volatile organic compounds (VOCs) into the blood (Schmutzhard
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et al, 2008). A part of the VOC biomarkers in the blood are likely to
be transmitted to the alveolar exhaled breath through exchange via
the lung. This possibility to detect cancer via VOC biomarkers in
the exhaled breath is supported by several recent gas chromato-
graphy/mass spectroscopy (GC –MS) studies that have shown
specific patterns of exhaled volatile biomarkers in lung cancer (LC)
(Gordon et al, 1985; Preti et al, 1988; Phillips et al, 1999, 2003; Peng
et al, 2009, 2010; Fuchs et al, 2010), breast cancer (Phillips et al,
2003, 2006; Peng et al, 2010; Shuster et al, 2011), prostate cancer
(Peng et al, 2010), and colorectal cancer (Peng et al, 2010). These
are mostly C4 –C20 straight and mono-methylated alkanes, in
addition to certain benzene derivatives (Gordon et al, 1985; Preti
et al, 1988). It has also been shown that this information can be
used to classify subjects as cancerous or not (Phillips et al, 1999,
2003, 2006; Peng et al, 2009, 2010). The compounds of interest are
generally found in healthy human breath, but can be seen in
distinctively different mixture compositions in the breath of cancer
patients (Wang, 2005, personal communication). Schmutzhard
et al have recently shown evidence that concentration profiles of
volatile biomarkers in exhaled breath may also be used to
distinguish HNC patients from both high-risk (i.e., heavy smokers
and drinkers) and low-risk healthy controls. They measured the
concentration of the HNC-specific volatile biomarkers, mainly
hydrocarbons, in particular alkanes, alkenes, alcohols, ketones,
organic acids, by proton transfer reaction-mass spectrometry
(Schmutzhard et al, 2008). However, the compounds were not
identified by name.

Haick and co-workers have recently designed a Nanoscale
Artificial NOSE (NA-NOSE; see Materials and Methods) that
distinguished between the breath of breast, lung, colon, and
prostate cancer patients and healthy controls, irrespective of the
patients’ age, gender, lifestyle, smoking habits, and other
confounding factors (Peng et al, 2009, 2010; Tisch and Haick,
2010). Here, we show that a tailor-made NA-NOSE can be used to
distinguish between HNC and healthy controls, LC and healthy
controls, and HNC and LC. A small-scale clinical trial is presented
as proof-of-concept. The presented results could form the basis of
a future point-of-care diagnostic test for a comprehensive HNC
management, including differentiated diagnosis to enable optimal
treatment at minimal interference with basic functions, and may
hold future potential as screening test for at-risk populations and
lifelong follow-up of HNC survivors.

MATERIALS AND METHODS

Human subjects

The test population included 87 volunteers (22 HNC patients,
25 LC patients, and 40 healthy controls), aged 24– 78 years, which
had given written informed consent according to the guidelines of
the Rambam Healthcare Campus and Technion’s committee for
supervision of human experiments, Haifa, Israel. One fourth of the
tested HNC patients had early-stage (stages I and II) disease. The

clinical characteristics of the test population are summarised in
Table 1. The complete clinical details of each volunteer can be
found in the Supporting Online Information (SOI), Supplementary
Table S1. All cancer patients were recruited from the Oncology
Division, Rambam Health Care Campus (Haifa, Israel), after
conventional diagnosis followed by biopsy and before any
treatment. Most of the healthy controls were recruited from the
same clinical environment.

Study design

The clinical study was cross-sectional. Twenty-two patients with
proven diagnosis of HNC were referred to the Oncology Division at
Rambam Health Care Campus (see Table 1). Diagnosis was
achieved through physical examination in combination with CT
and/or MRI, followed by biopsy. The conventional diagnosis was
used as a reference standard. All the breath samples were collected
before any treatment.

The HNC patients were compared with two control groups:
(i) 40 healthy subjects and (ii) 25 LC patients. The recruitment of
the LC control group was described in Peng et al (2010). Note that
the LC control group was age- and gender-matched to the HNC
study group, but the healthy control group was not. This relaxation
of the control-group criteria is acceptable, as the NA-NOSE sensors
have been specially tailored to show little sensitivity to important
confounding factors such as age, gender, and smoking habits
(cf. sections Breath analysis using the NA-NOSE and Identification
of HNC using the NA-NOSE; Supplementary Figures S1 and S2,
SOI). No patient exclusion criteria were applied after recruitment.

Breath collection

Exhaled alveolar breath was collected in a controlled manner from
individuals with HNC, LC and from healthy subjects in the same
room/atmosphere (see Supplementary Figure S3, SOI). The inhaled
air was cleared of ambient contaminants by repeatedly inhaling to
total lung capacity for 3– 5 min through a mouthpiece (purchased
from Eco Medics, Duerten, Switzerland) that contains a filter
cartridge on the inspiratory port, thus greatly reducing the
concentration of exogenous VOCs and removing 99.99% of the
exogenous compounds from the air during inspiration. Since some
typical hospital contaminations might be present in very large
concentration, we sampled the unfiltered hospital air and
disregarded the identified contaminants in our subsequent
analysis. Immediately after the lung washout, subjects exhaled
through a separate exhalation port of the mouthpiece against
10–15 cm H2O pressure to ensure closure of the vellum so that
nasal entrainment of gas is excluded. Complementary experiments
optimising the breath collection procedure have shown that the
sampling methodology simply measures alveolar breath unconta-
minated by upper airways release and exogenous compounds.
Exhaled breath is a mixture of alveolar air and respiratory dead
space air. The dead space was automatically filled into a separate
bag and the alveolar breath into a 750-ml Mylar sampling bag

Table 1 Summary of the clinical characteristics of 87 volunteers that were tested for this study

NA-NOSE GC–MS

No. of
patients Total Smokers

Non-
smokers Total Smokers

Non-
smokers

Average
age±s.d.

M:F
ratio Stage I Stage II Stage III Stage IV

HNC 22 16 10 6 8 6 2 60±9 19:3 3 1 3 15
LC 25 20 12 8 17 10 7 66±8 22:3 — — 12 12
Healthy 40 26 7 19 15 0 15 45±13 17:23

Abbreviations: NA-NOSE¼Nanoscale Artificial Nose; GC–MS¼ gas chromatography/mass spectroscopy; HNC¼ head-and-neck cancer; LC¼ lung cancer; M:F¼male:female.
For the complete clinical details of all volunteers, please refer to SOI, Supplementary Table S1.
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(purchased from Eco Medics). It should be emphasised that the
described breath collection is a single-step process that does not
require the volunteer to take care of changing between the dead
space and alveolar breath bags. The Mylar bags were re-used and
thoroughly cleaned before each use with flowing N2 (99.999%
purity) gas for 5 –8 min. Notably, GC–MS in conjugation with
solid-phase micro-extraction (SPME) has shown that this purifica-
tion process eliminates 98% of contaminants and/or volatile
biomarkers from the previous sample tested in a specific Mylar
bag. In all, 1– 2 bags were collected per test person for analysis
with GC–MS and/or for analysis with the NA-NOSE – see below.
All bags were analysed within 3 days from the time of breath
collection (Peng et al, 2008, 2009, 2010). Note that currently the
study of cancer biomarkers in exhaled breath suffers from a lack of
standardisation of the breath collection and analysis. Amann et al
(2010) have recently proposed a standardisation of the breath
collection process that might be generally accepted in the future.

Breath analysis using the NA-NOSE

Sixty-two breath samples were tested with an NA-NOSE (Peng
et al, 2009, 2010; Tisch and Haick, 2010) developed by Haick and
co-workers. The NA-NOSE is an artificial olfactory system based
on an array of highly cross-reactive gas sensors that can identify
and separate different odours, even if the odorants are present at
very low concentrations and their differences are very subtle (see
Supplementary Figure S2, SOI). Note, that the NA-NOSE sensors
have been designed to show very little sensitivity to volatile
biomarkers stemming from confounding factors such as age,
gender, medication, smoking habits, and environmental effects,
including long-time exposure to clinical environment (see
Supplementary Figure S1, SOI, which was reproduced from Peng
et al (2010)). This allowed us to relax the criteria for the healthy
control population in terms of gender and age. The array
contained five sensors that were based on spherical gold
nanoparticles (GNPs) with tert-dodecanethiol, hexanethiol,
2-mercaptobenzoazole, 1-butanethiol, and 3-methyl-1-butanethiol
ligands. These five sensors showed no or little overlap in average
sensing signal to the breath samples from the three test groups,
under consideration of the 95% confidence interval (CI) defined by
1.96� s.e.. Each sensor showed a characteristic response to all (or
to a certain subset) of the volatile biomarkers found in the exhaled
breath samples. The sensing principle of the NA-NOSE was
described in detail in Peng et al (2009, 2010). Note, however, that a
different set of sensors was used in the present study.

Breath analysis using GC– MS

The VOCs in the collected breath were identified through GC–MS
analysis (GC-6890N; MS-5975; Agilent Technologies Ltd, Santa
Clara, CA, USA) of 40 breath samples. Typical contaminants of the
hospital environment were identified from the collected samples of
unfiltered hospital air. The GC–MS analysis was preceded by
SPME for pre-concentrating the volatile biomarkers in breath
samples. A manual SPME holder with an extraction fibre was
inserted into the Mylar bag for 30 min before being delivered to the
GC– MS. Fibres with polydimethylsiloxane-divinylbenzene coating
obtained from Sigma-Aldrich (Rehovot, Israel). The extracted fibre
in the manual SPME holder was inserted into the injector of the GC
(splitless mode). The following oven profile was used: 601C, 2 min,
81C per min to 1001C, 151C per min to 1201C, 81C per min to
1801C, 151C per min to 2001C, and 81C per min to 2251C. A
capillary column H5-5MS 5% phenyl methyl siloxane (30 m length,
0.25 mm i.d., 0.25 mm thickness from Agilent Technologies Ltd)
was used. The column pressure was set at 8.22 PSI and the initial
flow rate was 1.0 ml per min. Tentative identification of the VOCs
was performed through spectral library match.

Statistical analysis

NA-NOSE The NA-NOSE signals were analysed with standard
principal component analysis (PCA) (Roeck et al, 2008), which
shows the variability of the experimental data and allows the
distinction of tentative clusters through visual perception of the 2D
principal component (PC) plots. Principal component analysis
determines the linear combinations of the input values such that
the maximum variance between all data points can be obtained in
mutually orthogonal dimensions. Thus, PCA effectively reduces
the multi-dimensional experimental data to its main components
and, thus, improves the human perception of the data. However,
PCA does not classify the data. Objective classification was
achieved by studying the statistical distribution of the first two
principal components (PC1 and PC2) using two different
approaches. In the first approach, one-way ANOVA of PC1 was
conducted to compare principal component scores among the
different breath patterns. Separation between the test groups was
analysed using the Student’s t-test. In a complimentary approach,
support vector machines (SVMs) was used to classify the principal
component data and cross-validation was utilised to evaluate the
specificity and sensitivity (Cortes and Vapnik, 1995; Hall et al,
2009). The SVM analysis is a supervised learning method that
finds the best separating line between two data sets. It can be
used for data classification and pattern recognition (Cortes and
Vapnik, 1995). The advantage of SVM over ANOVA combined
with Student’s t-test is that it can be applied to multi-dimensional
data (here PC1 and PC2), and that it does not require normal
distribution of the data points around the average value.
Therefore, SVM is more suitable when dealing with smaller data
sets. The three binary data sets (HNC and healthy states, LC and
healthy states, and HNC and LC states) were analysed by building a
multi-class classifier based on a linear nu-SVC SVM classifier on
PC1 and PC2 (Hall et al, 2009). Cross-validation was utilised to
evaluate the specificity and sensitivity by randomly dividing
the samples into two sets, which are then used as training and
test set. All possible combinations of division into two sets are
tested and the results are averaged. Because of the limited
number of samples, we opted for a high number of folds:
30 out of 36 samples for distinguishing HNC and healthy states,
40 out of 46 for distinguishing LC and healthy states, and 40
out of 42 for distinguishing HNC and LC states. Note that the
results were stable against changing the number of folds in the
cross-validation.

GC–MS The volatile biomarkers common for o80% of the
healthy and/or cancer samples, as well as their average abundance
with s.e., were identified by their masses and retention times, using
the Automated Mass Spectral Deconvolution and Identification
System (ADMIS) software. Standard principal component analysis
was applied to the set of tentatived volatile HNC biomarkers
(Roeck et al, 2008) to determine tentative patterns of HNC states.
The volatile biomarkers that (i) were present in both o80% of the
HNC and o80% of the healthy controls and (ii) that showed no
overlap in average abundance (under consideration of the 95%
CI¼ 1.96� s.e.) were used as input values for the PCA. The first
two principal components were plotted and tentative clusters
corresponding to the different test groups were identified through
visual perception.

RESULTS AND DISCUSSION

Identification of HNC using the NA-NOSE

Figure 1A shows the first two principal components that contain
480% of the variability within the data. A very clear separation
between 16 tested HNC patients and 26 healthy subjects can be
observed, with no overlap between the clusters for the small study
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population. As can be seen, the separation is almost entirely along
the PC1 axis, with negative values for the healthy and positive
values for the HNC states, respectively.

Note that PCA alone does not classify the data. The statistical
distribution of the PC1 values was studied using ANOVA and
Student’s t-test. (Note of caution: the Student’s t-test is based on
normal distribution of the data points and equal variances within
the two groups that are compared.) The PC1 values of the healthy
and HNC test groups were distributed around �1.59 and 2.59,
respectively (see Figure 1A and Table 2A). The s.d. (containing
68% of the PC1 values under the assumption of normal
distribution) and the 99.9% CIs of the PC1 mean values are also
listed in Table 2A. The CIs are relatively large, as a result of the
small test population. Nevertheless, they do not overlap,
but are, on the contrary, very well separated (Po0.0001; see
Table 2A). Figure 1B shows that excellent discrimination is
achieved also between LC and healthy states, using the same 5-
sensor NA-NOSE. This is in agreement with our earlier results
(Peng et al, 2010). The separation occurs almost entirely along the
PC1 axis, with negative PC1 values for the healthy states and
positive values (see Figure 1B and Table 2B) for the LC states, and
with two healthy misclassified as LC. As before, very good
separation was achieved even between the 99.9% CIs (Po0.0001;
see Table 2B). Figure 1C shows that the NA-NOSE also achieved
excellent separation between HNC and LC states along PC1, using
the same NA-NOSE based on five GNP sensors, in contrast to the
chemical analysis of the constituent compounds. The 99.9% CIs of
the PC1 values for the two study groups were fully separated
(Po0.0001; cf. Table 2C). These three tests are sufficient for the
unambiguous identification of HNC, and the separation of HNC
and LC states in a future screening breath test that might serve the
same high-risk group (for HNC and LC) of tobacco users.
Figure 1D shows that even HNC, LC, and healthy states together
might be separated in the same statistical analysis, since they form

three well-defined clusters in 2D principal component space.
However, in this case PC1 and PC2 have to be considered for a full
separation of the three clusters (cf. Table 1). Note, that PCA on
only two of the three study groups (Figures 1A–C) is different
from PCA on all three study groups (Figure 1D).

In a complimentary approach, we have used SVM analysis to
find the best separating line between two data sets (Cortes and
Vapnik, 1995). Support vector machine does not require normal
distribution of the data points. We analysed the three binary data
sets (HNC and healthy states, LC and healthy states, and HNC and
LC states). The specificity and sensitivity were determined through
cross-validation as described in the section Statistical analysis. The
numbers of correct and incorrect patient classifications are listed
in Tables 3A–C. For example, HNC classified as HNC are true
positive (TP), HNC classified as healthy are false negative (FN),
healthy classified as healthy are true negative (TN), and healthy
classified as HNC are false positive (FP). From this, we can extract
sensitivities of 100% and specificities of 92% for detecting both
HNC and LC. The distinction between HNC and LC was even
clearer, with sensitivity and specificity of 100%. However, the very
encouraging results of this proof-of-concept study have to be
verified in a larger clinical trial.

Table 1 shows the HNC, LC, and healthy study groups for the
NA-NOSE analysis contain both smokers and non-smokers.
However, while the HNC and LC groups contain more smokers,
the number of non-smokers is higher in the healthy control group
(see Table 1). As tobacco smoking could affect the chemical
composition of the exhaled breath, we carefully excluded possible
confounding effects of the smoking habits of the tested subjects on
the presented results. For this purpose, a separate PCA analysis of
the collective NA-NOSE response to the breath samples of the
healthy control group (containing 7 smokers and 19 non-smokers)
was performed. We observed, that the same NA-NOSE based on
five GNP sensors that clearly identified HNC states (cf. Figure 1),
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showed no separation at all between smokers and non-smokers
(see Supplementary Figure S2, SOI).

In this small-scale clinical trial, we have not attempted to
distinguish between early-stage and late-stage HNC. Note, how-
ever, that a fifth of the tested and correctly classified HNC patients
had early-stage disease (see Table 1 and Supplementary Table S1 in
the SOI). This indicates that the NA-NOSE can identify HNC at an
early stage (stages I and II) and opens exciting future prospects for
application as a novel screening method.

Identification of tentative volatile HNC biomarkers in the
breath

GC– MS analysis was carried out as supportive method to validate
the patterns that stem from response of the NA-NOSE to the breath
samples of the HNC and LC patients, and healthy controls. The
chemical analysis of the collected exhaled alveolar breath identified
several substances that differ in average abundance in breath
samples taken from the HNC patients and healthy controls. Hence,
it is likely to consider these substances as potential volatile
biomarkers of HNC. For this purpose, a representative subset of
the collected breath samples were analysed (8 HNC, 15 healthy
controls; see Table 1) using GC–MS in combination with SPME.
The right panel of Figure 2A lists six common compounds that
(i) are present in both 480% of HNC and 480% of healthy
subjects and (ii) differ sufficiently in their average abundances in
the two sub-populations (no overlap of the 95% CIs represented by
1.96� s.e.,). Note that the identification of the biomarkers through
spectral library match and retention times is tentative, because
confirmation of identity through GC–MS analysis of reference
substances was carried out only for p-xylene. However, the
comparison between patients was based on compound masses
and retention times.

Figure 2A shows that this combination of compounds allows the
establishment of tentative HNC volatile fingerprints in principal
component space. Very good separation can be observed between
the clusters that are associated with HNC and healthy states.
Note that hospital contaminants were identified from unfiltered
air in the room where the sampling took place. The following
typical hospital contaminants were found: 2-methyl-2-propanol,
ethanol, and methyl-isobutyl-ketone. These substances were found
in low abundance in o30% of the study population, indicating
that the air filtration was efficient. Therefore, these substances

were not considered in the analysis. Note that limonene and
p-xylene have been mentioned as possible environmental con-
taminants in the literature (Amann et al, 2010), but were not
detected in the sampled hospital air. Therefore, they were listed as
potential biomarkers in Figure 2. Straight chain hydrocarbons are
known to be products of lipid peroxidation (Miekisch et al, 2004).
Lipid peroxidation is a chain reaction that is initiated by the
removal of an allelic hydrogen atom through reactive oxygen
species. The alkyl radicals undergo further reactions that generate
saturated hydrocarbons. However, the metabolic origin of
the detected compounds was not clarified in this study, and
the proposed set of tentative HNC biomarkers should be handled
with care.

We have previously reported that LC and healthy states can be
distinguished using the concentration profiles of six tentative
volatile breath biomarkers (for details, see Peng et al (2010)). What
remains to be shown is that we can identify suitable compounds in
the breath that would allow the distinction of HNC and LC, as HNC
patients often develop a second primary lung tumour. We could
not find compounds that (i) are present in 480% of both HNC
and LC samples and (ii) do not overlap in abundance. However, we
were able to identify a tentative set of seven compounds that are
present in at least 80% of either HNC or LC states, and do not
overlap in abundance (see the list in the right panel of Figure 2B).
They allow moderate separation between HNC and LC, with one
HNC state clearly misclassified as LC and a slight overlap at the
separating line between the clusters.

It is important to verify that the proposed sets of tentative
biomarkers are not related to smoking, because the HNC, LC, and
healthy study groups for the GC–MS analysis are not well matched
with regard to their smoking habits (see Table 1). The effect of
smoking on the chemistry of exhaled breath has been studied by
several groups; and a variety of breath VOCs has been associated
with smoking (e.g., see Amann et al (2010), Fuchs et al (2010),
Kischkel et al (2010), and references therein). In a separate pilot
study, we have investigated smoking-related compounds in
exhaled breath, using eight healthy smokers and eight healthy
non-smoking controls that have never smoked in their lives (for
details refer to Supplementary Table S2, SOI). Our preliminary
results showed that the proposed tentative HNC biomarkers were
not present in elevated abundance in the smoker test group.
Differences to the smoking-related compounds in exhaled breath
that were reported by other groups may be due to the different

Table 2 One-way ANOVA analysis of the PC1 values for the correctly classified subjects and Student’s t-test for detecting statistically significant
differences

Sub-
population

No. of
subjects

Mean
PC1 s.d. s.e.

Lower
99.9% CL

Upper
99.9% CL

Difference of the
PC1 mean values

Lower 99.9%
CL difference

Upper 99.9%
CL difference P-value

(A)
HNC 16 2.59 1.17 0.29 1.20 4.00 4.20 2.58 5.81 o0.0001
Healthy 26 �1.59 1.77 0.35 �2.70 �0.50

(B)
LC 20 3.13 1.13 0.25 2.15 4.11 5.53 4.00 7.08 o0.0001
Healthy 26 �2.41 1.82 0.36 �3.74 �1.08

(C)
HNC 16 2.20 0.34 0.08 1.86 2.55 3.97 5.45 2.48 o0.0001
LC 20 �1.76 1.69 0.38 �3.23 �0.29

(D)
HNC 16 2.92 1.93 0.48 0.96 4.89
LC 20 1.25 3.48 0.78 �1.77 4.28
Healthy 26 �2.76 2.13 0.42 �4.32 �1.21

Abbreviations: ANOVA¼ analysis of variance; PC1¼ first principal component. Mean value of PC1, s.d., as well as upper and lower 99.9% confidence limit (CL), differences in
PC1 values and CLs, and P-values for (A) healthy controls and head-and-neck cancer (HNC) patients, (B) healthy controls and lung cancer (LC) patients, (C) HNC and LC
patients, and (D) healthy controls, LC and HNC patients.
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methods of pre-concentration, viz. the use of a different solid
phase during SPME (Amann et al, 2010; Fuchs et al, 2010; Kischkel
et al, 2010). However, the small sample size of the pilot study does
not allow to confirm or to exclude any smoking biomarker as such.
This separate study is ongoing and the results for an extended
study population will be published elsewhere. Since this is so, we
have carefully excluded possible confounding effects of the
smoking habits of the tested subjects on the presented GC– MS
results. For this purpose, we calculated three additional PCA maps,
using the three proposed marker sets, for the subgroup of the LC
patients, as a representative example. The LC group was selected,
because it contained a sufficient number of well-distributed
subjects (10 smokers and 7 non-smokers), while all the healthy
controls studied by GC–MS were non-smokers and the HNC
group were mostly smokers. Our PCA analysis of the LC study

group confirmed that the three sets of VOCs that distinguished
between (i) HNC and healthy states, (ii) HNC and LC states, and
(iii) LC and healthy states, showed no separation at all between
smokers and non-smokers (see Supplementary Figures S4 A– C,
SOI).

The above GC–MS analysis has shown that the abundance of
certain substances differs for the three study groups, that is, that
there are certain differences in the average chemical composition
of the breath, that may be detected with the NA-NOSE (see section
Identification of HNC using an NA-NOSE). Note, however, that
this study did not clarify whether the VOCs identified by GC– MS
are indeed the same VOCs that cause the HNC-specific NA-NOSE
patterns.

Comparison between the discriminative power of the
NA-NOSE and the chemical analysis through GC –MS

The superior discriminative abilities of the NA-NOSE, as compared
with statistical analysis of the averaged abundance of the
constituent compounds of the breath samples, detected by
GC– MS/SPME, are in agreement with our earlier study (Peng
et al, 2010), and can be understood if one considers the
fundamental differences between the two methods. The NA-NOSE
sensors are broadly cross-reactive and all respond (mainly) to the
compounds of interest. While the responses to the same
compound at a certain concentration are individually different
between the constituent sensors, due to the chemical diversity of
the GNP ligands, the signals to the mixture compounds that are
present in the breath sample are additive, so that the overall signal
of one sensor stems from a total tens to hundreds of ppb of cancer
volatile biomarkers. Hence, the sensors’ responses are less affected
by noise than the detected (sub) ppb concentrations of the separate
compounds in the GC–MS/SPME analysis. Also, the NA-NOSE
sensors have been tuned, through suitable choice of the GNP
ligands, to show very little sensitivity to volatile biomarkers that

Table 3 Number of correct and incorrect patient classifications using
supportive vector machine (SVM) and cross validation

(A) Classified as healthy Classified as HNC

Healthy 24 2
HNC 0 16

(B) Classified as healthy Classified as LC

Healthy 24 2
LC 0 20

(C) Classified as HNC Classified as LC

HNC 16 0
LC 0 20

Abbreviations: HNC¼ head-and-neck cancer; LC¼ lung cancer. The accuracy of the
diagnostic method was (A) 95%; (B) 96%; and (C) 100%.
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Figure 2 PCA of the PC1 and PC2 values resulting from statistical analysis of the abundance of volatile biomarkers determined by GC–MS/SPME analysis,
using (A) six common volatile biomarkers for distinguishing HNC from healthy states; (B) seven common volatile biomarkers to distinguish HNC from LC.
The compound names, masses, and CAS registry numbers are listed in the tables on the right of the PC plots.
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stem from confounding factors such as age, gender, medication,
smoking habits, and other lifestyle factors (cf. Supplementary
Figures S1 and S2, SOI; and Peng et al (2010)). This is particularly
relevant to this study, and allowed us to relax the criteria for the
healthy control population in terms of gender and age. In contrast,
GC– MS detects also these confounding volatile biomarkers, which
introduces noise into the measurement of the abundance of the
compounds of interest and, hence, affects the overall accuracy of
the method.

SUMMARY AND CONCLUSION

We have delivered a proof-of-concept for the ability of a tailor-
made NA-NOSE to identify unambiguously HNC patients in a
population that contains healthy subjects and LC patients. In a
complimentary approach, we have identified two tentative sets of
six and seven VOCs that allowed distinguishing HNC from healthy
states and LC states, respectively, using GC– MS/SPME. An
extended, double-blind study with a larger study population is
necessary to fully validate the method. The NA-NOSE proved
superior to GC–MS in separating HNC and healthy, LC and
healthy, and HNC and LC states. This method could form the basis
of a future cost-effective, fast, and reliable point-of-care diagnostic
test for HNC that could be available to general practitioners or
dentists, outside of specialist head-and-neck clinics. Moreover, this
method holds potential as screening test for populations at risk of

developing either HNC or LC, and as follow-up medical test for
HNC survivors who tend to develop a second primary cancer.
Considering that currently no adequate diagnostic and screening
tests for HNC are available, this approach could have a significant
impact on HNC mortality in the future.
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