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Abstract

Hepatitis C virus (HCV) infection is a major cause of morbidity and mortality in the HIV co-infected population. Interferon-
alpha (IFN-a) remains a major component of anti-HCV therapy despite its deleterious effects on the immune system.
Furthermore, IFN-a was recently shown to diminish the size of the latent HIV reservoir. The objectives of this study were to
monitor the impact of IFN-a on T cell phenotype and proliferation of HIV and HCV-specific T cells during IFN therapy, and to
identify immune markers that can predict the response to IFN in HICV/HIV co-infected patients. We performed longitudinal
analyses of T cell numbers, phenotype and function in co-infected patients undergoing IFN-a therapy with different
outcomes including IFN-a non-responders (NR) (n = 9) and patients who achieved sustained virologic response (SVR)
(n = 19). We examined the expression of activation (CD38, HLA-DR), functional (CD127) and exhaustion markers (PD1, Tim-3,
CD160 and CD244) on total CD4 and CD8 T cells before, during and after therapy. In addition, we examined the HIV- and
HCV-specific proliferative responses against HIV-p24 and HCV-NS3 proteins. Frequencies of CD127+ CD4 T cells were higher
in SVR than in NR patients at baseline. An increase in CD127 expression on CD8 T cells was observed after IFN-a therapy in
all patients. In addition, CD8 T cells from NR patients expressed a higher exhaustion status at baseline. Finally, SVR patients
exhibited higher proliferative response against both HIV and HCV antigens at baseline. Altogether, SVR correlated with
higher expression of CD127, lower T cell exhaustion status and better HIV and HCV proliferative responses at baseline. Such
factors might be used as non-invasive methods to predict the success of IFN–based therapies in co-infected individuals.
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Disease Network (Réseau FRQS SIDA-MI), the Canadian Institutes of Health Research (CIHR MOP-79529) and the CIHR Canadian HIV Trials Network (CTN222). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Naglaa H. Shoukry is an Academic Editor for PLOS ONE. This does not alter the authors’ adherence to PLOS ONE Editorial policies and
criteria.

* Email: naglaa.shoukry@umontreal.ca

Introduction

Approximately 25% of all human immunodeficiency virus

(HIV) infected individuals are also co-infected with hepatitis C

virus (HCV) [1,2]. HIV infection accelerates the natural history of

HCV and liver disease progression. Combination of anti-retroviral

therapy (cART) has decreased mortality among HIV-infected

individuals but rendered the effect of HCV-induced liver damage

more visible and it is now a major cause of mortality in this

population [3]. The risk of liver failure is estimated to be 6 fold

higher in co-infected individuals as compared to HCV mono-

infected individuals [4]. This accelerated natural history correlates

with the decline in CD4 T cell counts. The reduced frequency of

helper CD4 T cells during HIV infection contributes to a

reduction in HCV-specific humoral [5] and cellular responses in

co-infected patients [6,7]. HCV/HIV co-infected patients exhibit

higher circulating HCV RNA in peripheral blood [8–10], reduced

rate of spontaneous resolution of HCV infection [11,12] and lower

responsiveness (up to 30%) to IFN-based therapy [13,14].

Depletion of CD4 helper T cells was shown to correlate with

loss of mucosal integrity and increased microbial translocation

[15] and consequently immune activation induced by HIV

infection [16–19]. The T cell activation levels observed during

co-infection are greater than those observed in chronic HIV

patients [20–22]. Microbial translocation observed in co-infected

patients is also a negative predictor for an early virologic response

to HCV therapy [23]. Taken together, these observations suggest

an active influence of HCV viral replication in sustaining immune

activation and reducing responses to anti-HCV therapy.

Despite the successful development of direct acting anti-virals

(DAAs) for the treatment of HCV, IFN-a remains a major

component of current treatment regimens. Recent reports have

demonstrated that IFN-a has significantly reduced the size of the
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latent HIV reservoir and suggested that it could have a beneficial

role in achieving complete HIV cure [24,25]. Nevertheless, IFN-a
has multiple side effects that can be deleterious for HIV infected

individuals as it induces pan T cell lympho-cytopenia and has a

profound effect on thymopoeisis. Although, CD4 lympho-cytope-

nia may complicate treatment course and induce anemia [26] it

has not been associated with opportunistic infections [27–29]. In

this study we examined the effect of IFN-a therapy on the

maturation, activation and exhaustion status of CD4 and CD8 T

cells, as well as HCV- and HIV-specific T cell responses. We

demonstrate that the activation and exhaustion status of T cells

were predictive of IFN-a responsiveness in HCV/HIV co-

infection. The success of IFN-a-based therapy was associated

with higher basal expression of CD127 and antigen-specific

proliferation of HCV- and HIV-specific T cells.

Patients and Methods

Ethics statement, study subjects and clinical follow-up
The Canadian Co-infection Cohort Study (CCC) is a prospec-

tive open cohort of HCV/HIV-co-infected patients recruited from

16 centers across Canada [30]. This study is approved by the

Biomedical B Research Ethics Board of the McGill University

Health Centre (Protocol No. BMB-06-006t). Written informed

consent was obtained from all participants. Eligible participants

are adults aged 16 years and older (the legal age of informed

consent in Quebec) with documented HIV infection (ELISA with

western blot confirmation) and with chronic HCV infection or

evidence of HCV exposure (e.g. HCV-seropositive by enzyme-

linked Immunosorbent assay (ELISA) with recombinant immuno-

blot assay II (RIBA II) or enzyme immunoassay (EIA) confirma-

tion, or if serologically false negative, HCV RNA-positive). The

study was conducted on blood specimens from 28 individuals from

the CCC who received HCV treatment between 2003 and 2010.

The patients included 4 women, 23 men and one transgender

patient. Patient demographics are listed in Table 1. Each patient

received IFN-based treatment (IFN-a 2a or 2b + ribavirin) for a

planned 48 weeks irrespective of HCV genotype. Patients who

demonstrated ,2 log decline in HCV viral load at week 12 or who

had a positive HCV RNA at week 24 were considered treatment

non-responders and stopped treatment. Patients who demonstrat-

ed $2 log decline in HCV viral load continued another 36 weeks

of treatment if they became HCV RNA negative thereafter. The

study was approved by the research ethics boards of the

participating institutions. HLA typing was performed as previously

described [31].

Flow cytometry antibodies and reagents
Directly conjugated antibodies against the following surface

molecules were used: CD4-PerCP (clone SK3), CD8-APC-H7

(clone SK1), PD1-FITC or-PE (clone MIH4), CD244-FITC (clone

2-69), CD38-PE-Cy7 (clone HIT2) and HLA-DR-A700 (clone

G46-6) (all from BD Biosciences, San Jose, CA); CD127-eFluor

450 (clone eBioRDR5), CD160-Alexa 647 (clone BY55) (both

from eBioscience); CD3-ECD (clone UCHT1) (Beckman Coulter,

Marseille, France); Tim-3-PE or –PerCP (clone 344823) (R&D

Systems, Minneapolis, MN). Live cells were identified using Aqua

Live/Dead Fixable Dead Cell Stain Kit according to the

manufacturer’s protocol (Life Technologies, Burlington, ON).

‘‘Fluorescence minus one’’ control stains were used to determine

background levels of staining. Multi-parameter flow cytometry was

performed using a standard BD LSR II instrument equipped with

blue (488 nm), red (633 nm), and violet (405 nm) lasers (BD

Biosciences) to systematically perform 9-11 color staining using

FACS Diva software (Version 6.0.3) (BD Biosciences). Compen-

sation was performed with single fluorochromes and BD

CompBeads (BD Biosciences). Data files were analyzed using

FlowJo software, version 9.4.11 for Mac (Tree Star, Inc., Ashland,

OR).

Phenotypic characterization of virus-specific T cells using
MHC class I tetramers and CFSE proliferation

MHC class I tetramers were synthesized by either the National

Immune Monitoring Laboratory (NIML) (Montréal, QC, Cana-

da), the NIH Tetramer Core Facility (Emory University, Atlanta,

GA, USA) or purchased from Proimmune (Pentamers, Oxford,

UK) and Beckman Coulter (iTAg MHC tetramers, Mississauga,

ONT, Canada). The following tetramers were used to analyze the

CMV-, HCV- and HIV-specific CD8 T cell responses based on

the patient’s HLA: CINGVCWTV (A2/NS3-HCV), KLVALGI-

NAV (A2/NS3-HCV), ALYDVVTKL (A2/NS5b-HCV),

GPRLGVRAT (B7/core-HCV), NLVPMVATV (A2/pp65-

CMV), TPRVTGGGAM (B7/pp65-CMV), SLYNTVATL (A2/

p17-HIV), TLNAWVKVV (A2/p24-HIV), LTFGWCFKL (A2/

Nef-HIV), SPRTLNAWV (B7/p24-HIV), TPQDLNTML (B7/

p24-HIV), HPVHAGPIA (B7/p24-HIV) and TPGPGVRYPL

(B7/Nef-HIV). All flow cytometry assays were performed on cryo-

preserved samples. Phenotypic analysis using tetramers was

performed as previously described [32]. CFSE proliferation assays

were performed as previously described [33] for 6 days with or

without 1 mg/ml HCV recombinant protein NS3 or HIV

recombinant protein p24 (Feldan, Quebec, QC, Canada) in the

presence of 200 ng/ml anti-CD28/-CD49d (Fastimmune, BD

bioscience) at 37uC and 5% CO2. CMV and SEB stimulation

were used as positive controls for proliferation of T cells.

Recombinant human IL-2 (20 IU/ml) (NIH AIDS Research

and Reference Reagent Program, Germantown, MD) was added

on day 3. On day 6, cells were directly stained with surface

antigens as described above.

Statistical analysis
All analyses were performed using GraphPad Prism version 5.0

(GraphPad Software, San Diego, CA, USA). The Mann-Whitney

rank sum test was performed to compare median values between

two groups. Wilcoxon signed rank test was used to examine

longitudinal statistical analysis. Correlations were determined

using Pearson correlation test. P-values ,0.05 were considered

significant.

Results

IFN-a treatment induces reduction in CD8 T cell numbers
and limits fibrosis in SVR patients

We examined the effect of IFN-a therapy on the immune

functions of a group of 28 HCV/HIV co-infected patients

recruited through the Canadian co-infection cohort study

(CCC). Patients’ characteristics and demographics are listed in

Table 1. Within that group, 14 patients had acquired HCV prior

to HIV infection, hereafter referred to as group A and 14 patients

had acquired HIV prior to HCV, hereafter referred to as group B.

All patients were on cART and initiated a 48 week pegylated-IFN-

a 2a or 2b + ribavirin therapy according to the Canadian

guidelines at the time as detailed in Materials and Methods.

Patients who demonstrated ,2 log decrease in viral load at week

12 or tested HCV RNA positive at week 24 discontinued

treatment and were classified as IFN non responders (NRs).

Patients testing HCV RNA negative 24 weeks after the end of

treatment were classified as sustained virologic responders (SVRs).
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Relapser patients were not included in this study. Immune

responses were analyzed in peripheral blood mononuclear cells

(PBMCs) collected at three time points: baseline prior to initiation

of therapy, 12 weeks post initiation of therapy and 24 weeks post

termination of therapy whether it occurred at 48 weeks for SVR

patients or earlier for NR patients.

First, we evaluated the overall change in T cell numbers in the

different groups. Pre-treatment total lymphocytes, CD4 or CD8 T

cell numbers were not different between the two groups. As

expected with HIV infected individuals, we observed an inversed

CD4/CD8 ratio. We observed a mild decrease in the CD4 numbers

in SVR patients during therapy (p = 0.05). Similarly, CD8 numbers

were significantly reduced in the SVR group during treatment

(p = 0.01) and remained so after treatment (p = 0.05) (Figure S1).

Moreover, liver fibrosis was measured indirectly by the aspartate

amino-transferase to platelet ratio index (APRI) score [34]. APRI

score was notably reduced in SVR patients after IFN-a therapy

(p = 0.04) (Figure S2), but is likely due to systemic reduction in liver

inflammation and reduction of serum AST as platelet numbers

remained unchanged in most patients (data not shown)

Sustained virologic response to IFN-a therapy correlates
with baseline expression of CD127 and Tim-3 on CD4 T
cells

Although we did not observe a major change in CD4 T cell

numbers during and following IFN-a therapy, we reasoned that

there might still be a change in the activation and differentiation

status or distribution of the different CD4 T cell subsets. It is well

established that HIV continues to replicate in activated CD4 T

cells [35] and persists as a latent reservoir in resting CD4 T cells

[36], which may influence their helper functions. We thus

proceeded to examine expression of activation and exhaustion

markers on CD4 T cells before, during and after IFN-a therapy.

According to published literature [37,38], we defined resting CD4

T cells as CD127+HLA-DRneg and activated CD4 T cells as

CD127negHLA-DR+. The frequency of CD38+HLA-DR+ CD4 T

cells was very low given that patients were all on cART and did

not undergo significant changes during IFN treatment (data not

shown). In addition, we examined the expression of the exhaustion

markers PD-1, CD160, CD244 (2B4) and Tim-3 on activated

CD4 T cells (Figure 1A). The frequency of CD127+HLA-DRneg

CD4 T cells was higher in SVR than in NR patients at baseline

(p = 0.02) (Figure 1B). This frequency decreased slightly in SVR

patients during therapy and was statistically significant post

treatment (p = 0.02). The cause of this loss in CD127 expression

could be explained by the activation of T cells due to IFN-a
residual viral replication or microbial translocation [15]. Although,

we observed no difference in the frequency of activated

CD127negHLA-DR+ CD4 T cells (Figure 1C) between NR and

SVR patients at baseline, the frequency of activated cells increased

in the SVR group during therapy (p = 0.05) and these activated

cells persisted post treatment (p = 0.03). The analysis of the

exhaustion markers PD1 (Figure 1D), CD160 (Figure 1E) and

CD244 (Figure 1F) did not demonstrate any difference between

the groups at baseline or over time. Tim-3 was the only exhaustion

marker that was differentially expressed between NR and SVR

patients at baseline, being higher in NR patients (p = 0.02) but this

difference became insignificant during IFN-a therapy (Figure 1G).

Hence, the activation and exhaustion status of CD4 T cells may

correlate with the response to IFN-a therapy.

Next, we investigated the correlation between activation status

of CD4 T cells and liver fibrosis before and after IFN-a therapy.

We observed a negative correlation between frequencies of

CD127+HLA-DRneg CD4 T cells and APRI score before

(p = 0.0033, r = -0.6523, n = 18) and after (p = 0.02, r = -0.5331,

n = 18) IFN-a therapy (Figure S3A, C). Conversely, expression of

the inhibitory receptor Tim-3 on CD4 T cells correlated positively

with liver damage but only before treatment (p = 0.0083,

r = 0.6011, n = 18) (Figure S3B, D).

Sustained virologic response to IFN-a therapy correlates
with higher baseline expression of CD127 while non-
response correlates with increased CD8 T cell activation

As described above, we observed a reduction in total CD8 T cell

counts in the SVR group during treatment. Therefore, we

proceeded to investigate whether this was accompanied by a

change in the distribution of resting and activated CD8 T cells

identified as CD127+CD38neg and HLA-DR+CD38+, respectively

[39] (Figure 2A). We investigated if the outcome of HCV therapy

can be predicted by the frequency of CD127+CD38neg CD8 T

cells. The frequency of resting CD8 T cells detected in SVR

patients was significantly higher than in NR patients at baseline

Table 1. Demographics and Clinical Characteristics of HCV-HIV co-infected patients at Recruitmenta.

Group A (HCV/HIV)b (n = 14) Group B (HIV/HCV)c (n = 14)

NR (n = 4) SVR (n = 10) NR (n = 5) SVR (n = 9)

Male gender 4 (100%) 9 (90%) 5 (100%) 5 (55%)d

Age (yrs) 45 (32–60) 46 (37–56) 45 (41–52) 36 (31–64)

Estimated duration of HIV infection (yrs) 8 (2–15) 9 (0.5–20) 15 (3,5–24) 16 (6–46)

CD4 count (cells/mm3) 376 (260–435) 320 (110–880) 460 (307–529) 407 (181–962)

Estimated duration of HCV infection (yrs) 24 (4–37.5) 22 (2–31) 8 (2–24) 6.5 (0.5–20)

HCV genotype (1/2b/3a/4/ND) 2/0/1/0/1 6/2/1/0/1 3/0/0/1/1 5/1/1/1/1

HCV viral load (IU/ml) 86106 (0.6–156106) 156106 (0.8–546106) 26106 (0.3–36106) 66106 (0.7–136106)

Serum ALT (U/L) 94 (68–262) 42 (28–353) 54 (43–95) 50 (6–612)

APRI score a 0.88 (0.7–2.14) 1.42 (0.15–4.07) 0.77 (0.22–1.29) 0.54 (0.32–3.48)

aMedian and range values at recruitment.
bThis group acquired HCV prior to HIV infection.
cThis group acquired HIV prior to HCV infection.
dThis group had one transgender patient.
doi:10.1371/journal.pone.0101441.t001
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(p = 0.03) (Figure 2B). This cell subset significantly increased in

frequency in SVRs during therapy (p = 0.03) then declined back to

baseline levels afterwards. In NRs, although the frequency of

CD127+CD38neg CD8 T cells was lower than in SVRs at baseline,

it still increased during therapy and remained elevated afterwards

(p = 0.02 and p = 0.04, respectively). This may reflect preferential

differentiation and/or selection of this cell subset or their

resistance to IFN-a induced apoptosis.

Next we evaluated the effect of IFN-a therapy on the activation

status of CD8 T cells by evaluating co-expression of HLA-DR and

CD38 ex-vivo as was previously described during HIV mono-

infection [40]. There was no significant difference in the frequency

of activated CD8 T cells between NR and SVR patients at

baseline (Figure 2C). However, the frequency of this cell subset

increased in the NR patients during therapy and was significantly

higher than in the SVR patients (p = 0.0003). Although it

Figure 1. Sustained virologic response to IFN-a therapy correlates with baseline expression of CD127 and Tim-3 on CD4 T cells.
Expression of the memory marker CD127 and the indicated activation or exhaustion molecules on CD4 T cells was monitored longitudinally in NR
(n = 7) and SVR (n = 12) HCV/HIV co-infected patients before, during and after IFN-a therapy. (A) Representative flow cytometry plots for one patient
from each group NR (top panel) and SVR (bottom panel) demonstrating expression of the different markers on total CD4 T cells (gated on
CD8negCD3+ lymphocytes). (B) Expression of the memory marker CD127; (C-G) CD4 activation/exhaustion was measured by the absence of CD127
and the expression of the activation/exhaustion markers HLA-DR, PD-1, CD160, CD244 and Tim-3. P-values were calculated using a two-tailed Mann
Whitney U test to compare NR to SVR patients. Wilcoxon signed rank test was used to perform longitudinal statistical analysis. Open symbols
represent patients of group A and closed symbols represent patients of group B. (* p,0.05).
doi:10.1371/journal.pone.0101441.g001
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remained relatively high after therapy, there was no significant

difference between the NR and SVR group.

Non-response to IFN-a therapy correlates with increased
CD8 T cell exhaustion at baseline

Similar to our analysis of CD4 T cells, we sought to determine

whether IFN-a treatment induces exhaustion of CD8 T cells.

Since CD127 is considered a marker of functional memory T cells

[33,41], we examined its expression in relation to the T cell

inhibitory receptors PD1, CD160, CD244 and Tim-3 (Figure 3A).

Cells expressing both CD127 and inhibitory receptors could

represent heterogeneous population of recently activated effector

memory T cells and so they were excluded from analysis. Low

levels of CD127 expression were coupled with elevated expression

of exhaustion markers on CD8 T cells ex-vivo (Figure 3A). The

frequency of CD8 T cells expressing these inhibitory receptors was

significantly elevated in NR patients as compared to SVRs at

baseline, suggesting a higher level of exhaustion. NRs exhibited

nearly 2 fold more CD127negPD1+, CD127negCD160+,

CD127negCD244+ and CD127negTim-3+ CD8 T cells than SVR

patients (p = 0.03, p = 0.01, p = 0.05 and p = 0.01, respectively)

(Figure 3B-E). As CD127 expression increased in response to IFN-

a therapy (Figure 2B), we observed a decline in the expression of

these inhibitory receptors in NR patients. We thus concluded that

the response to IFN-a therapy correlates with the exhaustion status

of CD8 T cells at baseline and that IFN-a may trigger death or

relocalization of these exhausted/activated T cells into the liver.

Sustained virologic response to IFN-a therapy correlates
with higher HIV- and HCV-specific proliferation of CD4
and CD8 T cells at baseline

Next, we sought to examine how IFN-a therapy influences HCV-

and HIV-specific T cell responses. First we used MHC class I

tetramers to monitor the frequency of HCV-, HIV- and CMV-

specific T cells. No HCV-specific CD8 T cells directed against

common HCV tetramers targeting immune-dominant HCV-

Figure 2. Sustained virologic response to IFN-a therapy correlates with higher baseline and on treatment expression of CD127
while non-response correlates with increased CD8 T cell activation. Resting and activated CD8 T cells were defined as CD127+CD38neg and
HLA-DR+CD38+ CD8+CD3+ lymphocytes, respectively, and monitored longitudinally in NR (n = 8) and SVR (n = 14) HCV/HIV co-infected patients
before, during and after IFN-a therapy. (A) Representative flow cytometry plots for one patient from each group NR or SVR at baseline. (B)
Longitudinal expression of CD127 on CD38neg CD8 T cells. (C) Longitudinal activation of CD8 T cells measured as percent of HLA-DR+CD38+ CD8 T
cells. P-values were calculated using a two-tailed Mann Whitney U test to compare NR to SVR patients. Wilcoxon signed rank test was used to perform
longitudinal statistical analysis. Open symbols represent patients of group A and closed symbols represent patients of group B. (* p,0.05, *** p,
0.001).
doi:10.1371/journal.pone.0101441.g002
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epitopes within the core, NS3 and NS5b regions were detected at

baseline. This is consistent with reports in the literature demonstrat-

ing that HCV-specific T cells are barely detectable in the peripheral

blood during chronic infection as they may be of low frequency or

localized to the liver [42] Although, HIV-specific T cells were

detectable at baseline, they became undetectable during IFN-a

Figure 3. Non response to IFN-a therapy correlates with increased CD8 T cell exhaustion at baseline. Expression of the indicated
activation/exhaustion molecules on CD8 T cells was monitored longitudinally in NR (n = 8) and SVR (n = 10) HCV/HIV co-infected patients before,
during and after HCV therapy. (A) Representative flow cytometry plots for one patient from each group NR (top panel) and SVR (bottom panel)
demonstrating expression of the different markers on total CD8 T cells (gated on viable CD8+CD3+ lymphocytes). (B-E) CD8 activation/exhaustion was
measured by the absence of CD127 and the expression of the activation/exhaustion markers HLA-DR, PD-1, CD160, CD244 and Tim-3. P-values were
calculated using a two-tailed Mann Whitney U test. Open symbols represent patients of group A and closed symbols represent patients of group B. (*
p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.pone.0101441.g003
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therapy (data not shown). Co-expression of the exhaustion markers

PD1 and Tim-3 (p = 0.03) as well as expression of CD160 (p = 0.02)

were higher on HIV-specific than on CMV-specific CD8 T cells

(Figure S4B). Analysis of inhibitory receptor expression on HIV-

specific CD8 T cells at baseline demonstrated thus an advanced

exhaustion status [43], which may explain their disappearance from

the periphery with the initiation of therapy (Figure S4A). We thus

proceeded with an alternate strategy to examine the proliferative

capacity of antigen-specific T cells. The proliferation of CD4 and

CD8 T cells was assessed in vitro using a CFSE-dilution based assay

following stimulation with HCV (NS3) and HIV (p24) recombinant

viral proteins as described in Materials and Methods. The baseline

proliferation of antigen-specific T cells was generally higher in SVR

than in NR patients for CD4 (p = 0.04 and p = 0.02 for p24 and

NS3, respectively) (Figure 4A and 4C) and CD8 T cells (p = 0.02 for

p24) (Figure 4B). IFN-a treatment induced a reduction in the

proliferative capacity of the limited number of HCV- and HIV-

specific CD8 T cells in NR patients during therapy and did not fully

recover afterwards (p = 0.05) (Figure 4B, 4C). SVR patients

exhibited reduced proliferation of HCV- and HIV-specific CD4 T

cells (p = 0.01 and p = 0.01 for p24 during and after therapy,

respectively and p = 0.02 and p = 0.01 for NS3 during and after

therapy, respectively). The proliferative capacity of CD8 T cells was

also reduced during therapy in SVR patients (p = 0.01 and p = 0.01

for p24 and NS3, respectively). After therapy, the antigen specific

CD4 and CD8 T cells recovered their proliferative capacity although

not completely to baseline levels (p = 0.04 and p = 0.01 for p24 and

NS3, respectively). Moreover, proliferation of NS3 and p24 specific

CD4 T cells correlated positively with the frequency of CD127 CD4

T cells prior to IFN-a therapy (Figure S5). In summary, SVR

patients were characterized by higher proliferation at baseline and

although IFN-a therapy induced a reduction in the proliferative

capacity of CD4 T cells and CD8 T cells, this function was partially

restored after the termination of therapy. In contrast, proliferation of

CD4 and CD8 T cells in NR patients was low at baseline and after

therapy, decreased during treatment and recovered less after

termination of therapy.

Discussion

We demonstrated that CD127 expression was coupled with

lower T cell exhaustion status and fibrosis. Moreover, a higher

virus-specific proliferative capacity correlated with responsiveness

to IFN-a therapy. The cooperation between adaptive immune T

cells and IFN-a to control HCV replication may explain ability of

patients with strong expression of CD127 to a successful HCV

therapy. In contrast, non-response to IFN-a was associated with T

cell exhaustion, defined here by the expression of inhibitory

receptors such as PD-1, CD160, CD244 or Tim-3 [43] and

reduced expression of CD127 [44] at baseline.

IFN-a therapy induced a slight decrease in the frequency of

CD127+CD4 T cells, an increase in activation and a reduction in

proliferation of HIV- and HCV-specific T cells in SVR patients.

These effects then recovered slightly but not to baseline levels at 6

months following end of treatment. The slight decline in CD127

expression could be explained by persistent activation of CD4 T

cells in co-infected patients either directly due to residual viral

replication despite being on cART or indirectly due to microbial

translocation. CD127 expression on CD4 T cells also correlated

inversely with liver fibrosis (despite reduction of APRI score in

SVRs after IFN-a therapy). Tim-3 expression (or dual expression

of PD1/Tim-3, data not shown) was less associated with liver

fibrosis in this cohort than previously shown [45]. This may be due

to the limited number of patients in our study, differences in the

duration of cART or adherence to IFN-a therapy. Furthermore, It

is also possible that functional CD127high CD4 T cells were

recruited to the liver and therefore may have reduced tissue

damage by secretion of hepato-protective cytokines [46].

The reduction in CD4 T cell functions in SVR patients despite

no significant change in their counts in the periphery could be due

to a direct inhibitory effect of IFN-a [47], modulation of antigen

presentation [48], reduced thymopoeisis [49] or an imbalance in

the ratio between the inhibitory regulatory CD4 T cells and the

inflammatory Th17 CD4 T cells as observed during pathogenic

SIV infection [50] and primary HIV [51] or acute HCV infection

[32]. Given that CD4 cell counts were already low at baseline, it is

possible that they required longer time to fully recover fully their

phenotype and functional levels.

As suggested by recent reports, IFN-a therapy can induce a

number of HIV restriction factors and interferon stimulated genes

(ISGs) that enhance clearance of the latent HIV proviral reservoir

in CD4 T cells from co-infected patients [24,52]. Induction of such

genes may also disrupt CD4 T cell functions and impact their

survival and thus contribute to limited recovery of these cells.

Further investigations are required to determine if SVR is

associated with a reduction in the cell associated HIV reservoir

and functionality of HIV-specific CD4 T cells.

IFN-a therapy induced an overall reduction in the frequency of

peripheral CD8 T cells only in SVR patients. This may be due to

selective migration (or sequestration) of these activated T cells to

the liver [53] and suggest that better T cell migration may be

important for efficient antiviral responses. Further investigations

examining the expression of chemokine receptors associated with

localization to the liver such as CCR5, CXCR3 or CXCR6 [54–

58] are needed. This may also be more relevant in the NR patients

where CD8 T cells have a higher exhaustion status and may

already be less responsive to IFN-a. Indeed, IFN-a hyper-

responsiveness and increased expression of ISGs at baseline has

been linked to dampened response to additional IFN-a stimulation

upon therapy in HCV mono-infected individuals [59,60].

We observed an increase in the frequency of CD127+ CD8 T

cells in all treated patients. IFN has also been reported to increase

expression of CD127 receptor on cell surface [61] and may

indirectly favor its recycling [62], protein stabilization [63] or

increase transcription of CD127 mRNA [64–67]. These observa-

tions suggest that IFN-a treatment does not affect the different T cell

populations in the same way. Moreover, high expression of anti-

apoptotic molecules such as Bcl-2 [33] may protect CD127+ T cells

from side effects associated with IFN-a/RBV-based therapy.

The HCV- and HIV-specific proliferative T cell response was

low in NR patients at baseline. This correlates with the general

increase in the exhaustion status of CD4 and CD8 T cells in NR

co-infected individuals. The fact that the response does recover

partly after the end of therapy is promising as it suggests that IFN-

a therapy has less deleterious effects on HIV-specific responses and

that ART intensification using IFN-a could be used to eliminate

the latent HIV reservoir and achieve better cure of HIV infection

[25] in co-infected individuals without risk of developing severe

immunodeficiency and/or opportunistic infections.

Although we attempted to differentiate patients based on the

order of infections i.e. HIV first versus HCV first, we did not

observe any remarkable difference between the two groups. Our

data suggest that once chronic co-infection with both viruses is

established, there is very little difference as to what the order of

infection was and other immune factors like CD4 T cell counts and

immune activation could be the key determinant of response to

therapy.
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IFN-a will remain a major component of HCV therapy in

combination with newly developed DAAs that have demonstrated

better response rates in co-infected patients [3,68]. The use of

adjuvants such as IL-7 [69] that may counteract some of the

lymphopenic effects of IFN-a may sustain functionality of CD4

and CD8 T cells and improve treatment efficacy. We have shown

in this study that baseline levels of CD127 expression and antigen

specific proliferation may together provide good predictors of the

response to therapy. The role of IL28B single nucleotide

polymorphism (SNP), an established predictor of IFN-a therapy

outcome [70], could not be addressed in this study due to the

limited number of patients. A more expanded study examining the

influence of IL28B SNP on HIV- and HCV-specific T cell

immunity in the co-infected population and elimination of the

latent HIV proviral reservoir is warranted.

Supporting Information

Figure S1 IFN-a therapy induces a reduction in CD8 T
cell counts in SVR patients. Total lymphocytes and CD4 and

CD8 T cell counts were measured as part of the clinical follow-up

of patients at baseline, during and 6 months after the termination

of IFN-a therapy in NR (n = 9) and SVR (n = 17) HCV/HIV co-

infected patients. Wilcoxon signed rank test was used to perform

statistical analysis. P-values were calculated using a two-tailed

Mann Whitney U test to compare NR with SVR patients but no

statistical differences were observed. (* p,0.05)

(TIF)

Figure S2 IFN-a therapy induces a reduction in APRI
score in SVR patients. APRI score was measured as part of the

clinical follow-up of patients at baseline, during and 6 months after

the termination of IFN-a therapy in NR (n = 9) and SVR (n = 19)

HCV/HIV co-infected patients. Wilcoxon signed rank test was

used to perform statistical analysis. Open symbols represent

patients of group A and closed symbols represent patients of group

B.

(TIF)

Figure S3 Liver fibrosis correlates with baseline ex-
pression of CD127 and Tim-3 on CD4 T cells. Expression

of CD127 (A-C) and Tim-3 (B-D) on total CD4 T cells is

associated with clinical parameter of liver injury in HCV/HIV co-

Figure 4. Sustained virologic response to IFN-a therapy correlates with higher HIV- and HCV-specific proliferation of CD4 and CD8
T cells at baseline. Proliferation of HIV- and HCV-specific CD4 and CD8 T cells in response to HIV P24 (A, B) and HCV NS3 (C, D) antigens was
measured in NR (n = 9) and SVR (n = 11) HCV/HIV co-infected patients before, during and after IFN-a therapy. Briefly, patient PBMCs were labelled with
CFSE and stimulated with 1 ug/ml of the indicated antigens for 6 days then stained as described in Materials and Methods. Proliferating antigen-
specific T cells were identified by gating on viable CFSElowCD4+CD3+ (A, C) or CFSElowCD8+CD3+ lymphocytes (B, D). Stimulation Index (SI) was
calculated using the following formula: % CFSElow (antigen stimulated)/% CFSElow (unstimulated). P-values were calculated using a two-tailed Mann
Whitney U test to compare NR to SVR patients. Wilcoxon signed rank test was used to perform longitudinal statistical analysis. Open symbols
represent patients of group A and closed symbols represent patients of group B. (* p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.pone.0101441.g004
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infected patients before (A-B) or after IFN-a therapy (C).

Correlations between memory (A-C) or exhaustion (B-D) markers

on CD4 T cells and their corresponding APRI score were

calculated using the Pearson correlation test. NR and SVR

patients are represented respectively by closed circles (n = 6) and

squares (n = 12).

(TIF)

Figure S4 Baseline exhaustion status of HIV–specific
CD8 T cells. The frequency and phenotype of CMV and HIV-

specific CD8 T cells was measured using the following MHC class

I CMV (A2/pp65 and B7/pp65) and HIV (A2/p17, A2/p24, A2/

Nef, B7/p24 and B7/Nef)–specific tetramers. (A) Representative

flow cytometry data demonstrating detailed phenotypic charac-

terization of CMV- and HIV-specific CD8 T cells using tetramers

at baseline. Cells were gated on tetramer+CD8+CD3+ viable

lymphocytes (black dot plot) overlaid on total CD8+CD3+ viable

lymphocytes (grey contour plot). (B) Advanced exhaustion status of

HIV-specific CD8 T cells as compared to CMV in co-infected

patients at baseline irrespective of treatment outcome. Expression

of the inhibitory receptors PD1, Tim-3 and CD160 was assessed

on the surface of CMV- and HIV-specific CD8 T cells as

identified by tetramers in panel A (n = 16 and n = 39, respectively).

P-values were calculated using a two-tailed Mann Whitney U test.

(* p,0.05, ** p,0.01).

(TIF)

Figure S5 Virus-specific CD4 T cell proliferation corre-
lates with baseline expression of CD127 on CD4 T cells.
HIV-specific (A-C) and HCV-specific (B-D) CD4 T cell prolifer-

ation correlates with expression of CD127 on total CD4 T cells in

HCV/HIV co-infected patients before (A-B) but not after IFN-a
therapy (C-D). Correlations were tested using the Pearson

correlation test. NR and SVR patients are represented by closed

circles (n = 3) and squares (n = 10), respectively.

(TIF)
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