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Abstract: Diabetic retinopathy has recently been defined as a highly specific neurovascular complica-
tion of diabetes. The chronic progression of the impairment of the interdependence of neurovascular
units (NVUs) is associated with the pathogenesis of diabetic retinopathy. The NVUs consist of
neurons, glial cells, and vascular cells, and the interdependent relationships between these cells are
disturbed under diabetic conditions. Clinicians should understand and update the current knowl-
edge of the neurovascular impairments in diabetic retinopathy. Above all, neuronal cell death is an
irreversible change, and it is directly related to vision loss in patients with diabetic retinopathy. Thus,
neuroprotective and vasoprotective therapies for diabetic retinopathy must be established. Under-
standing the physiological and pathological interdependence of the NVUs is helpful in establishing
neuroprotective and vasoprotective therapies for diabetic retinopathy. This review focuses on the
pathogenesis of the neurovascular impairments and introduces possible neurovascular protective
therapies for diabetic retinopathy.

Keywords: neurovascular unit; polyol pathway; oxidative stress; advanced glycation-end product;
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1. Introduction

According to the ninth edition of the International Diabetes Federation diabetes at-
las, the estimated prevalence of diabetes will be 10.2% (578 million) by 2030 and 10.9%
(700 million) by 2045 in the world [1]. Diabetic retinopathy is a major complication in
diabetic patients which causes vision loss. After 20 years of diabetes, nearly all patients
with type 1 and 60% of patients with type 2 diabetes develop diabetic retinopathy [2]. The
vision-threatening stages of diabetic retinopathy are clinically significant diabetic macular
edema (DME) and proliferative diabetic retinopathy including tractional retinal detachment
and vitreous hemorrhages. The META-EYE study reported that among 22,896 diabetic
patients, 10.2% had DME and/or proliferative diabetic retinopathy [3]. The Japan Diabetes
Clinical Data Management Study Group reported in 2014 that 23.5% of type 2 diabetic
patients had diabetic retinopathy. Because many younger patients have poor glycemic
control, the prevalence of diabetic retinopathy in younger patients may increase in the
future in Japan [4]. Worldwide, 95 million diabetic patients have diabetic retinopathy, and
the growing number of diabetic patients will cause an increase in the number of patients
with diabetic retinopathy in the future [5].

The Early Treatment Diabetic Retinopathy Study (ETDRS) has classified the stages of
diabetic retinopathy based on vascular changes including dot/blot hemorrhages, hard/soft
exudates, intraretinal microvascular abnormalities, and neovascularization [6]. An increase
in the vascular permeability is related to the development of DME, and the ETDRS study
reported that if the edema involves the center of the macula, the risk of moderate vision
loss is increased tenfold compared to no involvement of the center of the macula [7]. The
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current treatment options for diabetic retinopathy and DME such as laser photocoagulation,
intravitreal anti-vascular endothelial growth factor (VEGF) agent injections, or pars plana
vitrectomy basically target the pathological changes based on the vascular abnormalities.
Thus, most patients have already had moderate to severe vision loss at the commencement
of the treatment. A recent definition of diabetic retinopathy by the American Diabetes
Association is that it is a tissue-specific neurovascular impairment of multiple cell types in
the retina in both type 1 and type 2 diabetes [8]. The different cell types include neurons,
glial cells, and vascular cells. These cells constitute the NVUs, and the interdependence of
these cells is associated with maintaining the homeostasis of the retinal environment under
healthy conditions.

Among the cells that make up the NVUs, the neuronal cells are more susceptible
than the other cells under diabetic conditions. In fact, most studies suggest that neuronal
changes precede the vascular changes in the clinical findings of the retinas of diabetic
patients [9–18]. Because neuronal cell death is irreversible and directly related to vision loss,
neuroprotection is required to prevent the development and the progression of diabetic
neuropathy in the retina at the early stage of diabetic retinas [19,20]. This review focuses on
the pathological changes of the NVUs and possible therapeutic options for neuroprotection
and vasoprotection of diabetic retinopathy.

2. Physiology and Pathology of NVU in Diabetic Retinopathy
2.1. Physiology of NVU in Normal Retina

The NVUs are composed of neurons (ganglion cells, amacrine cells, bipolar cells,
and horizontal cells), glial cells (Müller cells, astrocytes, and microglia) and vascular cells
(endothelial cells and pericytes) [19–21]. The anatomical and functional interdependence of
these cells help to maintain retinal homeostasis and function under healthy conditions.

The blood–retinal barrier (BRB) is composed of the endothelial cells, pericytes, base-
ment membrane (BM), and glial processes. Physiologically, the retinal blood circulation
is controlled by cells belonging to the NVUs [22]. Functional hyperemia is one of the
representative interdependences of the NVUs. Briefly, activated neurons release glutamate
and K+ from their synapses. Astrocytes uptake the K+ by inwardly rectifying K+ channels
and the glutamate binds to metabotropic glutamate receptors, followed by increasing
inositol triphosphate synthesis and increasing the Ca2+ concentration in astrocytes [22].
High concentrations of Ca2+ produce arachidonic acid (AA) from the membrane phospho-
lipids through the activation of phospholipase A2. AA is metabolized to prostaglandin E2,
prostaglandin I2, and epoxyeicosatrienoic acids, which result in vasodilation. When AA
is converted to 20-hydroxy-eicostateraenoic acid, prostaglandin F2, and thromboxane A2,
vasoconstriction is induced. Müller cells are the unique and major glial cells in the retina.
In the normal retina, light stimulation triggers an increase of retinal blood flow because
photoreceptors require more sources of energy. Müller cells supply oxygen and other nutri-
ents such as lactate to the photoreceptors by regulating retinal blood flow and metabolizing
glucose to lactate for the photoreceptors [23]. Although the precise mechanism for the
maintenance of the BRB is not known, Müller cells can release pigment epithelium-derived
factor (PEDF) and thrombospondin-1, which result in a tightening of the tight junctions of
the endothelial cells and maintain the BRB [24]. PEDF released from Müller cells affects
not only the BRB but also the retinal neurons. Under hypoxic conditions, PEDF, vascular
endothelial growth factor (VEGF), and interleukin-6 (IL-6) are upregulated in Müller cells,
which protects the retinal ganglion cells from ischemic insults [25]. These findings indicate
the existence of interdependence between the neurons and glial cells in the retina.

Astrocytes and Müller cells join in the construction of the BRB, and they regulate the
BRB function because their endfeet cover the surrounding blood vessels. For example, an
electron microscopic 3D reconstruction of the brain demonstrated that over 99% of the
microvessels in the brain were covered with the endfeet of the astrocytes [26]. Thus, it is not
difficult to imagine that astrocytes and Müller cells are one of the components of the NVUs.
The classical BRB is composed of the horizontal adhesion of the endothelial cells with
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tight junction proteins. including zonula occludens-1 (ZO-1), occludin, and claudin-5 [27].
These tight junction proteins have decreased expression under diabetic conditions, which
results in an increase of vascular permeability [27]. The BM surround the vessels and the
endfeet of the astrocytes are connected to the BM. Laminin 1 and 5 and perlecan in the BM
are the ligands of the integrin receptors of the astrocytes, and they are connected to the
astrocyte-specific receptors, dystroglycan [28]. Thus, astrocytes and endothelial cells can
make the vertical adhesions as the second barrier of the BRB. In fact, over 50% of functional
hyperemia depends on astrocytes in the brain. In the retina, the Müller cells may share the
role of functional hyperemia in the retina with astrocytes.

Astrocytes are not only involved in functional hyperemia but are also involved in
the astrocyte–neuron lactate shuttle [29]. Briefly, excited neurons release glutamate and
astrocytes reuptake the glutamate via the glutamate transporter. The glutamate activates
the glycolysis system in the astrocytes which results in the induction of the anti-oxidant
responses through the pentose phosphate pathway and glutathione followed by the protec-
tion of neurons.

Microglia are one of the components of the NVUs. Microglia have two activated
phenotypes, the proinflammatory (M1) state and the anti-inflammatory (M2) state [30]. In
the healthy condition, neurons release fractalkine (CX3C ligand 1). Fractalkine binds to
its CX3C chemokine receptor 1 on the M2 state of microglia, which results in regulating
microglia repopulation and maintaining the retinal homeostasis [31]. The M1 state of
microglia secretes proinflammatory cytokines such as interleukin-6 (IL-6), IL-8, IL-1β, and
tumor necrosis factor-α (TNF-α). The M2 state of microglia releases the anti-inflammatory
cytokines such as IL-4, IL-10, IL-13, or transforming growth factor-β [30]. In diabetes, the
anti-inflammatory state (M2) shifts to the proinflammatory state (M1) and the shift precedes
the neuronal cell death in the diabetic retina [32–34]. Activated astrocytes are known to
specifically produce and release the signaling protein, S100B. The target of S100B is the
receptor of the advanced glycation end-products (RAGE) of microglia [35]. In fact, the
supplementation of S100B in the culture media leads to abnormally activated microglia via
RAGE activation [35].

2.2. Pathology of NVU in Diabetic Retinopathy

In the diabetic retina, the interdependence between different cell types consisting
of the NVUs is impeded by many stresses, including the polyol pathway [36], the hex-
osamine pathway [37], oxidative stress [38,39], protein kinase C (PKC) [40,41], advanced
glycation-end products (AGEs) [42], and inflammation [43]. The hypothetic scheme of the
neurovascular impairments provoked by these stresses in diabetic retinopathy is shown in
Figure 1. These stresses impair the function of the NVUs independently or mutually under
hyperglycemic stress. Most diabetic stress-related pathways, including reductive stress and
the enediol pathway, can culminate in oxidative stress [37].

Glial dysfunction may occur earlier than neuronal abnormalities because glial cells
monitor the pathological changes of the vascular environment, such as chronic hyper-
glycemia, leukocyte adhesions, inflammatory changes, and metabolic changes, which
result in glial dysfunction [44,45]. For example, in the early stage of diabetes, the glial
fibrillary acidic protein (GFAP) expression is increased in Müller cells [46] and decreased
in astrocytes [47]. Müller cell swelling is observed in the early diabetic retinopathy [48],
probably because the aquaporins and Kir4.1 channels are increased in Müller cells [49].
These changes lead to the production of delta-like proteins, VEGF-A, and angiopoietin-
related protein 4, followed by the promotion of angiogenesis and vascular permeability [49].
However, GFAP expression is a sign of reactive gliosis, but it has not been determined
whether GFAP expression is a marker of the first responses of glial cells under stress. Taylor
et al. demonstrated that the upregulation of GFAP in Müller cells under various stresses
was preceded by the expression of homeostatic regulatory proteins and apoptotic cell
death [50]. They concluded that the loss of Müller cell function is not a consequence of glio-
sis [50]. Thus, pre-gliotic events of the glial cells under diabetic stress should be determined
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to understand the early pathological changes in neurovascular abnormalities of diabetic
retinas. For example, an earlier study showed that Müller cell activation contributed to
the neuroprotection through extracellular signal-related kinase 1/2 (ERK1/2) activation
under hyperglycemic conditions and concludes [51]. The authors concluded that activated
Müller cells do not always lead to neuronal cell death in diabetic retinas [51]. On the other
hand, another study using VEGF knockout in Müller cells showed that Müller-cell-derived
VEGF is essential for vascular leakage and retinal inflammation in diabetic retinopathy [52].
Further studies are needed to determine the role of glial cells in the pathogenesis of early
diabetic retinopathy.
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in a Forkhead box protein O1-dependent manner, which results in regulating the VEGFA 

Figure 1. Hypothetical scheme of NVU impairments in early diabetic retinopathy. The NVUs
are composed of neurons, glial cells, and vascular cells. Chronic hyperglycemia is a trigger for
the impairment of the NVUs. Chronic hyperglycemia causes several stresses, including AGEs
accumulation, oxidative stress, inflammation, activation of the polyol pathway, and PKC activation.
These stresses lead to glial dysfunction and microvascular impairments, which result in increasing
the expression of VEGF and inflammatory cytokines in the eye followed by the BRB breakdown.
Neurons and their axons are degenerated by excitotoxicity, neurotrophic factors reduction, which
is directly related to vision loss. Most neuronal abnormalities may be independent of the vascular
abnormalities in the early stage of diabetes. Not all stresses such as the hexosamine pathways are
included in the figure because of the limited space, and the hexosamine pathways may be involved
in the late stage of the pathogenesis of diabetic retinopathy [44]. NVU: neurovascular unit; AGEs:
advanced glycation end-products; PKC: protein kinase C; VEGF: vascular endothelial growth factor;
BRB: blood–retinal barrier.

Retinal pericytes play the functional role of maintaining the homeostasis of the retinal
vascular system and the formation of the BRB [53,54]. During vascular formation, the
endothelial cells release platelet-derived growth factor subunit B (PDGFB), resulting in the
recruitment of pericytes to make the proper the BRB formation [54] (Figure 2). Pericytes
control the angiopoietin-2 and VEGF receptor 2 (VEGFR2) expressions in endothelial cells
in a Forkhead box protein O1-dependent manner, which results in regulating the VEGFA
signaling [54]. Chronic hyperglycemia reduces the PDGE receptor signaling, resulting in
pericyte apoptosis via protein kinase Cδ (PKCδ) activation and increased Src homology



Int. J. Environ. Res. Public Health 2022, 19, 439 5 of 19

2 domain-containing phosphatase-1 (SHP1) expression [55,56] (Figure 2). As a result, a
pericyte loss via PDGFR signaling reduction results in promoting VEGFA signaling and
vascular permeability. In addition, in experimental diabetic retinopathy, the pericyte loss
occurs before the endothelial cell loss [57]. Although it is a personal hypothesis, pericyte
loss could be a trigger of microaneurysm formation (Figure 2) because the loss of pericytes
may cause a decrease in the local extracellular matrix (ECM) production, which results in
the BM disruption. In addition, an increase of VEGFA signaling may cause endothelial cell
migration followed by microaneurysm formation (Figure 2).
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Figure 2. Hypothetical scheme of microaneurysm formation. PDGFB released from endothelial
cells recruit pericytes and make the BRB formation during the process of retinal vascular develop-
ment [53,54]. Chronic hyperglycemia reduces the PDGFB receptor signaling followed by pericyte
apoptosis via activation of PKCδ and increased expression of SHP1 [55,56]. These molecular events
lead to pericyte loss, which results in reducing VEGFR2 and angiopoietin-2 signaling [55,56]. As a re-
sult, VEGFA signaling is increased, which may cause endothelial cell migration. The BM in the retinal
vessels is composed of ECM components, including fibronectin, collagen IV, and laminin derived from
endothelial cells and pericytes [58]. In general, chronic hyperglycemia or high glucose conditions
promote the synthesis of the ECM components, which results in an increase of vascular permeabil-
ity [58–60]. However, pericyte loss may cause a disruption of the BM locally because of a reduction
of ECM production only in the area of the pericyte loss. Taken together, microaneurysms may be
formed, as shown in Figure 2. PDGFB: platelet-derived growth factor B; HG: hyperglycemia; PKCδ:
protein kinase Cδ; SHP1: Src homology 2 domain-containing phosphatase-1; VEGFR2: vascular
endothelial growth factor receptor 2; Agp2: angiopoietin-2; ECM: extracellular matrix.

Oxidative stress plays a pivotal role in the pathogenesis and the progression of chronic
retinal diseases, such as diabetic retinopathy or retinitis pigmentosa [38,39,61,62]. During
the process of the NVU impairments in diabetic retinopathy, reactive oxygen species (ROS)
including superoxide anion and hydrogen peroxide are generated because of the imbalance
of free radical formation and removal [38,39]. Most pathological pathways, including
the polyol pathway, the hexosamine pathway, the AGE pathway, and the PKC pathway,
can culminate in oxidative stress [37,38]. For example, in the polyol pathway, aldose re-
ductase transfers glucose into sorbitol and sorbitol dehydrogenase converts sorbitol into
fructose [37,38]. The fructose is converted to fructose-3-phosphate and 3-deoxyglucosone,
both of which are the precursors of the AGEs [38]. During this process, an antioxidant
molecule, nicotinamide adenine dinucleotide phosphate (NAPDH), is excessively con-
sumed, which results in reducing the synthesis of glutathione. In addition, nicotinamide
adenine dinucleotide (NADH) is increased, followed by PKC activation. Taken together, the
polyol pathway contributes to the production of ROS [37,38]. The excessive accumulation
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of ROS causes inflammation, NVU impairments, and cell death. The alterations of several
transcription factor signalings, such as activator protein-1 (AP-1), p53, or nuclear factor-
kappa B (NF-κB), are induced by the oxidative stress, which can result in inflammation
and cell death in diabetic retinopathy [39]. These epigenetic changes induced by oxidative
stress are important but are not described in detail in this review because that is beyond
the scope of this review.

Inflammation is one of the pathological factors that can develop through the whole
process in the progression of diabetic retinopathy [63]. For example, DME is one of the
vision-threatening changes in the macula of diabetic patients and 4% of diabetic patients
have clinically significant macular edema [64]. DME can develop even in the early stages of
diabetic retinopathy. The precise mechanism for the development of DME is still unknown
but anti-VEGF therapies are the gold standard for the treatment of DME [65–74]. Thus,
VEGF is highly likely to be associated with the pathogenesis of DME. However, some
patients have refractory DME even after repeated anti-VEGF intravitreal injections. Not
only VEGF, but also other inflammatory cytokines such as IL-6, IL-8, interferon-induced
protein-10 (IP-10), monocyte chemotactic protein-1 (MCP-1), and intercellular adhesion
molecule-1 (ICAM-1) are involved in the development of DME [75,76]. Anti-VEGF agents
cannot reduce the level of the other cytokines in the vitreous, but intravitreal triamcinolone
acetonide injections can reduce these inflammatory cytokines, including IL-6, IP-10, MCP-
1, and VEGF, significantly in eyes with DME [77]. In fact, switching from anti-VEGF
to triamcinolone acetonide injections led to significant therapeutic effects in eyes with
refractory DME treated with repeated anti-VEGF injections [78]. Sub-Tenon triamcinolone
acetonide injections are also known to be effective in the treatment of DME [79–82]. Because
steroids are strong anti-inflammatory agents, inflammation is involved in the development
of DME.

The basic scheme of the mechanism of NLRP3 inflammasome activation is shown
in Figure 3. TLR4 expression is induced by the exposure of retinal endothelial cells to
high glucose [83]. TLR4 is associated with the pathogenesis of streptozotocin-induced
diabetic rats, but inflammatory cytokines such as TNF-α or IL-1β are induced in both
a MyD88-dependent and MyD88-independent manner [84]. In addition, the inhibition
of TLR4 reduces inflammation and retinal ganglion cell apoptosis under high glucose
exposure [85]. The results of another study indicate that TLR2 and 4, NF-κB, TNF-α, and
IL-8 are upregulated in retinal ganglion cells under high glucose conditions [86]. Activated
microglia and Müller cells release proinflammatory cytokines including IL-1β and TNF-
α in diabetic retinopathy [87,88]. Furthermore, pyroptosis, an inflammatory cell death
mediated by gasdermin D, is involved in the NVU impairments in diabetic retinopathy [89].
Taken together, anti-inflammatory therapies may be one of the options for preventing the
progression of diabetic retinopathy.

Chronic hyperglycemia causes glycation between glucose and amino acids, which
is called the Maillard reaction, and the nonenzymatic glycation reactions give rise to
additional irreversible covalently bound Amadori rearrangement products termed the
AGEs [90]. A thickening of the vascular BM is observed in diabetic retinopathy which
results in an increased vascular permeability [59,60]. Aberrant crosslinks between AGEs
and ECM components including fibronectin, laminin, and collagen IV lead to an increase in
the BM thickness [91]. Furthermore, the binding of AGEs to RAGE expressed in various
types of cells, including glial cells, vascular cells, and neurons, results in activating multiple
cellular signaling pathways in diabetic retinopathy. The hypothetic scheme of the cellular
events involved in AGEs is shown in Figure 4.

We used a 3D collagen gel culture system and cultured rat retinal explants in 10 µg/mL
glucose-AGE-bovine serum albumin (BSA) incubation media [92]. In glucose-AGE-BSA-
exposed retinas, the number of cells undergoing apoptosis in the ganglion cell layer (GCL)
was significantly greater and the regenerating neurites were fewer than those in retinas
cultured in control media [92]. Between 1 and 120 µg/mL of AGEs, which is equal to
4–480 µg/mL of glycated BSA, is known to circulate in diabetic patients [93]. Because
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low concentrations of glucose-AGE-BSA have toxic effects on retinal neuronal cells, the
accumulation of AGEs can induce retinal degeneration in diabetic retinas. Furthermore, in
10 µg/mL glycolaldehyde-AGE-BSA and 10 µg/mL glyceraldehyde AGE-BSA-incubated
retinas, the number of apoptotic cells was greater than in glucose-AGE-BSA incubated
retinas [92]. Thus, glycolaldehyde and glyceraldehyde are more toxic than glucose-AGE.
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cose-AGE. 

Figure 3. Simple scheme of the mechanisms of Nod-like receptor family pyrin domain containing
3 (NLRP3) inflammasome activation. For a better understanding of the mechanism of NLRP3
inflammasome activation, the factors described in the scheme are based on the general inflammatory
reaction. Thus, not all factors are demonstrated in diabetic models. Pathogens or cytokines such
as tumor necrosis factor-α (TNF-α) and IL-1β bind to the Toll-like receptor (TLR), leading to the
activation of NF-κB signaling. NF-κB regulates the transcription of the inflammatory genes including
pro-IL-1β, pro-IL-18, and NLRP3 (Sensor 1). NLRP3 agonists, including damage associated molecular
pattern molecules (DAMPs) and pathogen-associated molecular pattern molecules (PAMPs), cause
mitochondrial damage, which results in ROS production. In addition, NLRP3 agonists induce
potassium efflux via the K channel linked with P2X7 receptors (P2X7R). These changes lead to NLRP3
inflammasome activation followed by caspase-1 activation. This results in the cleavage of pro-IL-1β
and pro-IL-18. After that, mature IL-1β and IL-18 are released externally, and an inflammatory
reaction is induced. Excessive potassium efflux and activation of caspase-1 may cause pyropotsis
by a cleavage of gasdermin D. MyD88: myeloid differentiation primary response gene 88; IRAK:
IL-1 receptor-associated kinase; TRAF6: TNF receptor-associated factor 6; Ub: ubiquitin; TAK1:
TGF-β-activated kinase 1; TAB1/2: TAK1-binding protein 1/2; IκB: inhibitor of κB; MEK7: MAPK
ERK kinase 7; ASC: apoptosis-associated speck-like protein containing a CARD.

When retinas are incubated in 100 µg/mL glucose AGE-BSA, the numbers of apoptosis
and NF-κB immunopositive cells are significantly increased, and in neurotrophin-4 (NT-
4)-incubated retinas cultured in AGE-BSA, these numbers were significantly decreased
compared with retinas cultured in control media [94]. Thus, the toxic effects of AGEs against
retinal neurons are corelated with the expression of NF-κB. Furthermore, 100 ng/mL NT-4,
100 ng/mL hepatocyte growth factor (HGF), 100 ng/mL glial cell line-derived neurotrophic
factor (GDNF), and 100 µM tauroursodeoxycholic acid (TUDCA) significantly reduced
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the numbers of apoptosis and NF-κB expression [94] (Figure 4). Because TUDCA shows
protective effects against AGE-induced retinal neuronal cell death, the ER stress-related
cell death pathways are involved in AGE-induced retinal neuronal apoptosis (Figure 4).
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Figure 4. Hypothetic scheme for both RAGE-dependent and RAGE-independent cellular signaling
pathways. The AGE-RAGE-dependent signaling pathways activate various cellular downstream
pathways including the NADPH–NF–κB axis and the Ras–MAPK axis, which result in inflammatory
reactions [95]. The Ras–ERK1/2 axis is also involved in the inflammatory reactions. The Ras-c-Jun
N-terminal kinase (JNK) axis is associated with apoptotic cell death. The RAGE-independent pathway
is involved in the BM thickening by disturbing the ECM protein turn-over rate [59,60]. The AGEs
upregulate the CCAAT-enhancer-binding protein homologous protein (CHOP) levels and induce
endoplasmic reticulum (ER) stress-related cell death in retinal pericytes [96]. In addition, AGEs,
and Amadori products become the source of the ROS. Raf: rapidly accelerated fibrosarcoma; Rac1:
PAS-related C3 botulinus toxin substrate 1; MEK1/2: MAPK ERK kinase 1/2; MKK4/7: mitogen-
activated protein kinase 4/7; MAPK: mitogen-activated protein kinase; PERK: protein kinase-like ER
eukaryotic initiation factor-2 alpha kinase; IRE1: inositol-requiring ER-to-nucleus signaling protein 1;
ATF4, 6: activating transcription factor-4, -6; Ac: acetylation.

Similarly, the phosphorylated-JNK and p38 expressions were significantly increased
in 100 µg/mL glucose AGE-BSA incubate retinas compared to retinas cultured in normal
medium [97] (Figure 4). Thus, the AGE-RAGE pathways are, in part, associated with
neuronal cell death in AGE-induced cell death in retinas.

However, in AGE-exposed retinas incubated with the RAGE inhibitor, the number
of apoptotic cells was partly reduced, and the number of neurites was partly increased
compared to retinas cultured in normal medium, and the neuroprotective and regenerative
effects of the RAGE inhibitor are weaker than that of other neurotrophic factors [98].
Thus, the AGEs induced retinal neuronal apoptosis in both RAGE-dependent and RAGE-
independent manner [98], and single RAGE inhibition therapy may not be sufficient for
protecting retinal neurons in diabetic retinas (Figure 4).
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3. Therapeutic Options for NVU Impairments in Diabetic Retinopathy

Evidence for the therapeutic options for diabetic retinopathy has been greatly increased
recently. Most researchers have been focusing on the treatments for the NVU impairments
of diabetic retinopathy, i.e., treatments for both vascular and neuronal abnormalities in
diabetic retinopathy.

3.1. Antioxidants

There are mainly two types of antioxidants, the flavonoids and carotenoids, which
reduce oxidative stress in diabetic retinopathy. Because most of diabetic stress-induced
pathways may culminate in oxidative stress [37], antioxidants may be one of the promising
therapeutic options for preventing the progression of early diabetic retinopathy.

One of representative flavonoids is curcumin. Administration of curcumin in diabetic
rats improved both the vascular abnormalities and neuronal abnormalities, i.e., reduced
the VEGF and TNF-α, protection of capillary BM thickening, oxidative stress reduction,
and protection of the inner retinal damage [99–101]. A recent clinical trial indicates that
curcumin slightly reduces the levels of proinflammatory cytokines and soluble mediators in
the vitreous of patients with proliferative diabetic retinopathy (n = 28) [102]. Representative
carotenoids are lutein and zeaxanthin. Both clinical and experimental studies demonstrated
their therapeutic effects on diabetic retinopathy. In experimental diabetes, lutein and
zeaxanthin reduced the production of ROS, inflammatory cytokines, vascular abnormalities,
retinal apoptosis, and protect the visual function [103,104]. In clinical trials, lutein and
zeaxanthin improved the macular function in eyes with DME [105] and improved the
retinal response density in type 2 diabetic patients [106]. However, in the former study, n
values were small, i.e., 30 in the control, 30 in the diabetic retinopathy, and 30 in the diabetic
retinopathy with treatment, and the follow-up period was short (3 months) [105]. The latter
study is a retrospective study with no control group [106]. Thus, further randomized large
control trials are required to demonstrate the effect of lutein and zeaxanthin for treatment
of diabetic retinopathy.

An oxygen free radical scavenger, calcium dobesilate (CaD), has been used as a vaso-
protective agent because CaD inhibits vascular permeability and reduces vascular leakage
by the downregulation of VEGF, ICAM-1, and proinflammatory cytokines [107–109]. In ad-
dition, CaD improves the electroretinogram (ERG) responses by preventing glutamate
transporter downregulation in diabetic mice retinas [110]. Previous clinical trials indicated
that in the early stage of diabetic retinopathy, CaD prevented the progression of diabetic
retinopathy [111,112]. However, a later clinical trial demonstrated that CaD did not reduce
the development of clinically significant macular edema [113]. Thus, further studies are
needed to demonstrate the effect of CaD in preventing the development and the progression
of diabetic retinopathy. Now, a single-blind, multicenter, 24-armed cluster-randomized,
controlled trial is performing to evaluate the effect of CaD on preventing the progression of
diabetic retinopathy (NCT04283162) [114].

Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates many antioxidant genes as
a master transcription factor, and Nrf2 activation protects tissues from oxidative stress [115].
In fact, the Nrf2 activator dh404 reduces the oxidative stress and inflammatory mediators
including VEGF and improves the increase of the vascular leakage [116]. An intracel-
lular inhibitor, Kelch-like ECH-associated protein 1 (Keap1), mediates the translocation
and transcriptional activity of Nrf2 [115]. In diabetic retinas, the Keap1 levels are in-
creased, which results in decreasing the nuclear translocation and transcriptional activity of
Nrf2 [117]. Long noncoding RNAs (LncRNAs), classes of transcribed RNA molecules with
more than 200 nucleotides, regulate gene expression by bringing the transcription factors
to the transcription start site and interacting with DNA at the gene promotor site [118].
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) conserves LncRNAs
that are involved in inflammation, cell death, and angiogenesis in diabetic retinopathy [119].
The results of a recent study indicated that LncRNA MALT1 facilitated its transcription
by increasing the binding of the transcription factor at the Keap1 promoter, which results
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in preventing a translocation of the master regulator Nrf2 and losing the antioxidant de-
fense in diabetic retinopathy [120]. Thus, inhibition of LncRNA MALT1 may become
one of the therapeutic options for preventing the development and the progression of
diabetic retinopathy.

3.2. Anti-Inflammatory Agents

IL-1β, a pivotal inflammatory cytokine, plays a critical role in the pathogenesis of
diabetic retinopathy (Figure 3) [121]. In addition, ICAM-1, IL-6, IL-8, MCP-1, VEGF, and
IP-10 are associated with the pathogenesis of diabetic retinopathy [75–77]. Although TNF-α
is also associated with the pathogenesis of diabetic retinopathy [121], TNF-α antagonist,
etanercept, adalimumab, and infliximab fail to improve refractory DME [122,123]. Thus,
other anti-inflammatory agents including triamcinolone acetonide [78–82] may be better
than anti-TNF-α agents.

Suppressor of cytokine signaling (SOCS) 1 is one of the family members of the SOCS,
intracellular cytokines inducible protein. SOCS1 is a negative regulator of IL-6 and TNF-
α and regulates cytokine receptor signaling by a negative feedback loop [124]. SOCS3
is the suppressor of the intrinsic neuroprotective and regenerative pathway, the Janus
kinase–signal transducers and activators of transcription pathway [125]. The results of a
recent study found that the topical instillation of SOCS1-derived peptide in diabetic mice
reduced the activated microglia, proinflammatory cytokines including IL-1β and IL-6, and
improved the abnormal retinal function and vascular leakage [126].

Microglia play a pivotal role in the inflammatory responses in diabetic retinopathy [30].
Minocycline is one of the tetracycline antibiotics, and it reduces the inflammatory cytokines,
including IL-1β, by inhibiting microglia activation in diabetic retinopathy [127]. Minocy-
cline rescues retinal neuronal cell death by reducing caspase-3 activation and abnormal
histone methylation levels, which are induced by microglia activation in the diabetic rat
retinas [128]. However, the results of a recent study indicated that minocycline partially
improved diabetic retinopathy in both type 1 and type 2 mice models, but was not better
than the currently available therapies, insulin, or pioglitazone [129]. Thus, minocycline
may have limited use for the treatment of diabetic retinopathy.

3.3. Neurotrophic Factors and Others

BDNF is one of the nerve growth factor family members and is associated with the
pathogenesis of diabetic retinopathy and one of the therapeutic options. The BDNF level in
the serum and the aqueous humor in patients with diabetes is significantly reduced [130],
which corresponded with the results of animal models [131]. Thus, the serum level of
BDNF can be an indicator of the progression of diabetic retinopathy [132]. BDNF and
NT-4 bind to the same high affinity receptor, trkB, and they regulate the intrinsic survival
and regenerative pathways [133]. Exogenous BDNF protects retinal neurons [134] and
facilitates neurite regeneration under high glucose conditions [135]. In our previous study,
the regenerative effect of NT-4 appeared to be better than that of BDNF in retinas cultured
in high glucose medium [135]. Another study indicated that an overdose of BDNF can
cause inflammation of the retina [134]. Thus, the optimal concentration of BDNF should be
found for the treatment of diabetic retinopathy. Because the half-life of the BDNF protein is
short, several nanoparticles delivery systems have been recently developed [136,137].

PEDF, an intrinsic antioxidant, is secreted by various retinal cells, including the retinal
pigment epithelial cells, and it has two actions, viz., vasoprotection and neuroprotection.
In diabetic animal models, intravitreal injection of PEDF reduces retinal neuronal damage
and VEGF expression as an antioxidant [138]. Furthermore, topical instillation of PEDF
reduces retinal ganglion cell death, Müller cell activation, and vascular leakage in diabetic
mice retinas [139]. Recently, PEDF-derived peptides with angiogenic inhibitory activities
have been developed for the translation of the PEDF treatment into clinical practice [140].

Somatostatin has both antiangiogenic and neuroprotective effects and it acts through
somatostatin receptor 2. Topical administration of somatostatin ameliorates neuronal
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degeneration in diabetic murine models [141]. However, in a multicenter, randomized
controlled clinical trial, the EUROCONDOR study, somatostatin eye drops did not protect
the retinal neurons but reduced the progression of pre-existing neuronal dysfunction in
subpopulations of retinal neurons [142]. In a clinical trial, multifocal electroretinography
(ERG) was used to evaluate the primary end point. Other methods such as microperimetry
may be better to evaluate the neuroprotective effects of somatostatin [142].

Glucagon-like peptide-1 (GLP-1) and GLP-1 receptors are expressed in the retina [143],
and their expression is decreased in diabetic patients [144]. Topical administration of
GLP-1 receptor agonists ameliorates the retinal neurodegeneration in diabetic animal
models [145]. However, in the LEADER trial, liraglutide, a GLP-1 analogue, did not
prevent the progression of diabetic retinopathy. Relatively higher rates of retinopathy
events were observed with liraglutide than with the placebo [146]. Furthermore, in the
SUSTAIN-6 trial, semaglutide, another GLP-1 analogue, exacerbated the development of
diabetic retinopathy more with semaglutide than with the placebo [147]. Taken together,
GLP-1 analogues are not effective in treating diabetic retinopathy.

Although it is not a neurotrophic factor, fenofibrate may be an ideal drug to prevent
the development and the progression of diabetic retinopathy. Fenofibrate, a peroxisome
proliferator-activated receptor alpha (PPARα), is used as a drug to treat hyperlipidemia
worldwide. Two randomized clinical trials found that fenofibrate significantly reduced the
progression of diabetic retinopathy [148,149] (n = 9795 and 10,251, respectively; Table 1).
Fenofibrate reduced overexpression of the ECM components, fibronectin and collagen
IV, in endothelial cells [150] and retinal pigment endothelial cells [151], which resulted in
reducing the BRB leakage [151,152]. Chen et al. reported that PPARα agonists reduced the
overexpression of MCP-1, ICAM-1, and VEGF, and inhibited the hypoxia-inducible factor-1
and NF-κB. These changes resulted in an ameliorating vascular leakage in diabetic reti-
nas [152]. Furthermore, fenofibrate reduced glial activation and retinal neuronal apoptosis,
followed by improving the ERG parameters [153]. Because of having both vasoprotective
and neuroprotective effects, fenofibrate is an ideal drug to target the NVU impairments of
early diabetic retinopathy.

Table 1. Summary of treatment options for early diabetic retinopathy.

Treatment Options Compounds References Remarks

Antioxidants

Curcumin (flavonoids)
[99–101] Basic studies

[102] Clinical study (n = 28) (positive)

Lutein (carotenoids)
Zeaxanthin (carotenoids)

[103,104] Basic studies

[105] Clinical study (n = 30 × 3 groups,
3 months) (positive)

[106] Clinical study (n = 60, 120 eyes,
retrospective) (positive)

CaD (free radical scavenger)

[107–110] Basic studies

[111] Clinical study (n = 41, randomized)
(positive)

[112] Clinical study (n = 194, randomized
double-blind) (positive)

[113]
Clinical study (n = 635, randomized

double-blind, placebo-controlled,
multicenter) (negative)

Nrf2 (master transcriptional factor) [117,120] Basic studies
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Table 1. Cont.

Treatment Options Compounds References Remarks

Anti-inflammatory agents
TNF-α antagonists [122,123] Clinical studies (negative for DME)

Triamcinolone acetonide
(sub-Tenon) * [78–82] Clinical studies (positive for DME)

SOCS1
(cytokine-inducible protein) [126] Basic study

Minocycline [127–129] Basic studies

Neurotrophic factors

BDNF
[130,132] Clinical studies (as a biomarker)

[131,134–137] Basic studies

PEDF [138,140] Basic studies

Somatostatin

[141] Basic study

[142]
Clinical study (n = 449, randomized,

placebo-controlled, phase II–III)
(partly positive)

GLP-1

[144,145] Basic studies

[146]
Clinical study (n = 9340, r multicenter,
double-blind, placebo-controlled trial)

(negative)

[147]
Clinical study (n = 3297, randomized,

double-blind, placebo-controlled,
parallel-group trial) (negative)

Others Fenofibrate (PPARα)

[150–153] Basic studies

[148]
Clinical study (n = 9795, randomized,
placebo-controlled, multicenter trial)

(positive)

[149]
Clinical study (n = 10,251, randomized
placebo-controlled, multicenter trial)

(positive)

* In Japan, sustained release steroid agents have not been approved yet. Instead, sub-Tenon triamcinolone
acetonide injections are frequently used.

DME is one of the common causes of vision decrease in the early stage of diabetic
retinopathy. Although several therapeutic procedures are effective for improving DME,
anti-VEGF therapies have become the gold standard for the management of DME [63–72].
However, VEGF is an endogenous neurotrophic factor for retinal ganglion cells [135,154].
Furthermore, VEGF expressed in vascular cells is considered to play physiological roles
for the retinal vascular system. A Japanese survey indicated that a new and strong anti-
VEGF agent, brolucizumab, has various side effects including intraocular inflammation
(9.4%), retinal vasculitis (3.1%), and retinal vascular occlusion (1.6%) [155]. The direction
of strengthening VEGF inhibition may be a limitation for the complete management of
diabetic retinopathy. The early intervention of preventing the development of the NVU
dysfunction is one of the options for resolving this limitation.

4. Conclusions

Diabetic retinopathy is a disease accompanied by NVU impairments, and all the
pathological changes, including to vascular cells, glial cells, and neuronal cells, should
be ameliorated so to prevent the development and progression of diabetic retinopathy.
Neuronal cell death is an irreversible event which directly results in vision loss. Thus,
neuroprotective therapies for diabetic retinopathy should be established. However, the
target of ideal therapies for a neurovascular disease such as diabetic retinopathy should
focus on the NVU impairments; thus, both vasoprotective and neuroprotective therapies
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are required for preventing vision loss in patients with diabetic retinopathy. Understanding
the NVU impairments and establishing therapies for neurovascular protection should be
helpful for establishing new ways of managing diabetic retinopathy in the future.
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