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Background and Aims: Although insufficient radiofrequency ablation (RFA)

promotes the recurrence and metastasis of liver cancer, the underlying

mechanism remains unclear. This study aimed to investigate the role and

mechanism of HIF-2a in hepatocellular carcinoma cells (HCCs) after

Insufficient RFA.

Methods: We established a model of insufficient RFA in MHCC97H hepatoma

cells and screened for stable sublines. We inhibited HIF-2a expression in the

Insufficient RFA group using PT2385 and assessed the resulting changes in

proliferation and biological function of HCCs. Cell viability and proliferation

were detected by the MTT method, and scratch and Transwell chamber

invasion tests detected migration and invasion abilities of HCCs. The mRNA

and protein expression levels of VEGF, HIF-2a, and Notch1 were detected using

qPCR, immunofluorescence, and western blotting.

Results: Compared with normal HCCs without RFA treatment, insufficient RFA

enhanced the proliferation and invasion abilities of hepatocellular carcinoma

subline MHCC97H (P < 0.001), as well as their migration ability (P = 0.046). The

HIF-2a-specific inhibitor PT2385 downregulated the migration (P = 0.009) and

invasion (P < 0.001) of MHCC97H cells but did not affect cell proliferation (P >

0.05). Insufficient ablation increased the mRNA and protein expression of

VEGF, HIF-2a, and Notch1 in HCCs, whereas inhibition of HIF-2a reversed

these changes.
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Conclusions: Insufficient RFA increases the proliferation, migration, and

invasion of HCCs via the HIF-2a/VEGF/Notch1 signaling axis; HIF-2a is a

potential target for novel treatments of HCC after insufficient RFA.
KEYWORDS

hepatocellular carcinoma, residual carcinoma, radiofrequency ablation, hypoxia-
inducible factor-2a, metastasis
Introduction

Primary liver cancer is the sixth most common cancer and

was the third leading cause of cancer death globally in 2020, with

approximately 906,000 new cases and 830,000 deaths, of which

410,038 new cases and 391,152 deaths occurred in China,

accounting for 45 and 47% of the totals, respectively, ranking

first in the world (1). Liver cancer is highly malignant and

develops rapidly. The early symptoms of liver cancer are not

obvious; most patients with liver cancer are in the middle and late

stages when diagnosed (2). Currently, the methods for treating

liver cancer include hepatectomy, liver transplantation, and local

ablation (3). However, the lack of liver donors seriously restricts

the clinical application of liver transplantation. Hepatectomy is

still the most effective treatment for liver cancer worldwide.

However, liver cancer in most patients in China is accompanied

by cirrhosis and portal hypertension, elevating the risk of liver

failure after hepatectomy. In recent years, radiofrequency ablation

(RFA) has become an indispensable tool in treating liver cancer

owing to its advantages of being minimally invasive, economical,

simple, and repeatable, as well as its low damage to surrounding

liver tissue and high safety (4).

RFA works by transmitting electrical energy to the top of the

electrode needle through a radiofrequency field formed by a

closed circuit between a radiofrequency generator and the

patient. When energized, the tumor tissue between the

electrodes blocks the conduction of electricity, which generates

heat and high temperatures. Finally, the tumor achieves

coagulation, necrosis and inactivation (5). However, tumor

size, shape, and location complicate the application of RFA

and may result in insufficient tumor ablation. Liver cancer

patients with insufficient RFA have a high risk of recurrence,

metastasis, and disease progression (6–8), though the underlying

mechanisms remain unknown (9). Although RFA triggers

coagulation necrosis of some hepatocellular carcinoma cells

(HCCs), residual cells increase the expression of vascular

endothelial growth factor (VEGF) to promote endothelial cell

proliferation in the hypoxic tumor microenvironment. Tumor-
02
associated angiogenesis increases the recurrence and metastasis

of liver cancer after RFA treatment. In previous studies by our

group and other experts, the activation of neurogenic locus

notch homolog protein 1 (Notch1) signaling was found to play

a vital role in the proliferation of residual carcinoma cells (10,

11). Therefore, VEGF-mediated tumor-associated angiogenesis

and activated Notch1 signal-driven tumor survival are among

the most important molecular mechanisms contributing to HCC

recurrence and progression.

It is well accepted that hypoxia-inducible factor (HIF) is

elevated in residual carcinoma cells after RFA, including HIF-1a
and HIF-2a (12). Overexpression of HIF-1a or HIF-2a has been

detected in patients with HCC and has been closely associated

with poor clinical outcomes (13). When subjected to persistent

hypoxic stimulation, residual carcinoma expresses more HIF-2a
than HIF-1a (14–17). HIF-2a is a key activator of the hypoxia

response and is higher than HIF-1a in the transcriptional

regulation of genes related to angiogenesis, angiogenesis,

invasion, and metastasis (18). Moreover, HIF-2a promotes

VEGF expression to a greater degree than HIF-1a (19, 20).

Few studies have reported that HIF-2a is a crucial upstream

regulator of VEGF and Notch1 signaling. However, the

functional role of HIF-2a in HCC recurrence after insufficient

RFA remains unclear. This study aimed to explore the role of

HIF-2a in an in vitro insufficient RFA cell model.
Materials and methods

Reagents and chemicals

Our study incorporated the following reagents/materials at

different stages: DMEM medium, fetal bovine serum (Gibco,

USA), tetrazolium blue (MTT) powder (Dongguan Science and

Technology Biology Company), Transwell chambers, Matrigel

matrix glue (Corning, USA), mouse anti-VEGF monoclonal

antibody (Proteintech), rabbit anti-human HIF-2a, rabbit anti-
human Notch1, rabbit anti-human b-actin (monoclonal
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antibodies; CST), and PT2385 (MCE). Shanghai Shenggong

Bioengineering Company synthesized the PCR primers. The

reverse transcription kit and fluorescence quantitative PCR kit

were obtained from Takara Bio.
Clinical samples

Cancerous and paracancerous tissues were obtained from

six patients (with complete clinical records) with HCC treated

by RFA between June 2018 and June 2021 in the Department

of Hepatobiliary Surgery, Affiliated Hospital of Guangdong

Medical University (Zhanjiang, China). All patients were

diagnosed with HCC by the pathology department after

surgery. Insufficient RFA was diagnosed after one month by

arterial contrast enhancement and port venous washout

within the RFA site suggestive of residual tumor tissue on

enhanced CT or MR imaging, confirmed by pathology. The

ethics committee of the Affiliated Hospital of Guangdong

Medical University approved this study (LCYJ2021B002),

and written informed consent was obtained from all patients.
Immunohistochemistry

Tissue samples were harvested and fixed in 10% formaldehyde

(pH 7.4), dehydrated, and embedded in paraffin. We deparaffinized

and rehydrated 4-mm sections of the paraffin-embedded tissue,

performed epitope retrieval and blockade of endogenous

peroxidase, incubated the sections with primary and HRP-

conjugated secondary antibodies, followed by DAB

immunostaining and hematoxylin counterstaining. Images were

obtained using a light microscope equipped with a DP74 digital

camera (Olympus, Japan).
Cell culture and establishment of
insufficient RFA cell model

The HCC cell line MHCC97H (NC) was purchased from the

cell bank of Chinese Academy of Science (Shanghai, China), and

cells were cultured in DMEM supplemented with 10% FBS

containing 100 U/mL penicillin and streptomycin at 37°C and

5% CO2. The medium was changed once daily. The cells were

digested with 0.25% trypsin and separated into single-cell

suspensions for passaging.

To mimic RFA treatment in vitro, MHCC97H cells were

seeded in a 96-well plate and cultured at 47°C for 10 min. The

surviving cells were named MHCC97H-H (NC-H) and their
Frontiers in Oncology 03
evaluation confirmed insufficient RFA (21). Different doses (10

nM to 100 mM) of the selective HIF-2a inhibitor PT2385 were

tested to determine the optimal concentration for further analysis.
MTT cell proliferation assay

MTT cell proliferation assay kit (Dongguan Science and

Technology Biology Company) was performed according to the

manufacturer’s instructions. The optical density was measured

using a multimode reader at 492 nM.
Wound healing assay

The 105 cells of suspension were added to a 6-well plate with

inserts in place and then cultured until a monolayer was formed.

A wound was created by scraping the monolayer with a 1 mL

pipette tip. The cells were washed once and the medium was

replaced. The cells were monitored for migration into the wound

field after a 24-h culture. The results were observed using an

inverted microscope with phase contrast.
Invasion/migration assay

Matrigel was added on top of the membrane of a 24-well

Transwell plate and solidified in a 37°C incubator for 15–30 min

to form a thin gel layer. Cells in the logarithmic growth phase

were digested with trypsin and resuspended in a serum-free

medium. A cell suspension (200mL) was added to the upper

chamber of the Transwell insert and 600 mL medium containing

20% FBS was added to the bottom chamber. After culturing for

24-h, the Transwell insert was fixed with methanol for 15 min

and then stained with crystal violet. The upper layer of the

unmigrated cells was gently wiped with a cotton swab (22). Ten

random fields were photographed under a microscope at 200×

magnification. We considered the relative number of invasive

cells to correspond with the migratory ability of the tumor cells.
Real-time quantitative PCR

Total RNA from cultured cells was extracted using TRIzol

reagent. Complementary DNAwas synthesized using theM-MuLV

First Strand cDNA Synthesis Kit (Sangon Biotech, Shanghai,

China), and real-time PCR was performed as previously

described (23), using the following primers: human HIF-2a
(Forward 5′-GTCATCTACAACCCTCGCAACCTG-3′, reverse
frontiersin.org
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5′-ACCACGTCATTCTTCTCAATCTCACTC-3′), human

Notch1 (Forward 5′-ACCACTGCGAGACCAACATCAAC-3′,
Reverse 5′-CAGAAGCAGAGGTAGGCGTTGTC-3′), human

VEGF (Forward 5′-CGAAACCATGAACTTTCTGC-3′, Reverse
5′- CCTGAGTGGGCACACACTCC-3′), and human glycolytic

glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Forward

5′-ACATCGCTCAGACACCATG-3′, reverse 5′-TGTAGTTG
AGGTCAATGAAGGG-3′).
Western blotting

Western blotting was used to detect the expression of

target proteins. Protein samples were extracted by RIPA lysis

buffer and subjected to 12% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis. All proteins were

transferred from sodium dodecyl sulfate-polyacrylamide gel

electrophoresis to sodium dodecyl sulfate-polyacrylamide gel

electrophoresis, followed by incubation with the primary and

HRP-conjugated secondary antibodies. GAPDH was used as

the loading control. The integrated optical density and the

area of the protein bands were quantified and analyzed using

ImageJ software (National Institutes of Health, Bethesda,

MD, USA).
Statistical analysis

Data are shown as mean ± standard error of the mean (SEM)

from at least three independent experiments. The student’s t-test was

used for between-group comparisons. One-way analysis of variance

was used for comparisons among multiple groups, followed by
Frontiers in Oncology 04
Tukey’s post hoc test. Statistical significance was set at p < 0.05.

Data analysis was performed, and graphics were created using

GraphPad Prism 5 (GraphPad Software, San Diego, CA, USA).
Results

HIF-2a expression in HCC and
their paracancerous tissues after
insufficient RFA

First, we tested whether HIF-2a is involved in the recurrence

of patients with HCC after RFA. Immunohistochemistry

revealed that the expression of HIF-2a was higher in

cancerous than paracancerous tissues and was mainly

concentrated to the cytoplasm (Figure 1). The levels of Notch1

and VEGF were elevated similarly (Figure 1). These data indicate

that HIF-2a, Notch1, and VEGF may be involved in HC

recurrence after insufficient RFA.
Insufficient RFA promoted the invasion
and proliferation of HCCs

Then, we established an insufficient RFA Cell Model

according to the previous study (17). We performed MTT and

Transwell assays to investigate the effect of insufficient RFA on

HCC proliferation and invasion. After being subjected to a sub-

lethal heat shock, NC-H cells displayed a fusiform shape and

proliferated rapidly (Figures 2A, B). The Transwell assay showed

insufficient RFA treatment enhanced NC-H invasion ability

(Figures 2A, C). In addition, the mRNA expression of HIF-2a,
FIGURE 1

Expression of HIF-2a, Notch1, and VEGF in HC and their paracancerous tissues of patients after insufficient RFA as revealed by
immunohistochemistry. Brown color indicates positive staining. Magnification 400×.
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VEGF, and Notch1 was markedly increased after insufficient

RFA treatment (Figures 2D–F).
Inhibition of HIF-2a by PT2385
suppressed the invasion and
migration of HCCs

To assess the role of HIF-2a in elevating the invasion and

migration ability of HCCs after insufficient RFA, we performed

Transwell and wound healing assays. We found that the increased

migration ability of NC-H was suppressed by PT2385, a selective

antagonist of HIF-2a over HIF-1a (Figures 3A, B). Similarly,

PT2385 also inhibited the enhanced invasive ability of NC-H, as

indicated by the Transwell assay (Figures 3C, D).
Inhibition of HIF-2a by PT2385
suppressed the VEGF and Notch1
signaling pathway

Finally, we tried to explore a potential pathway by which

HIF-2a inhibition suppressed the invasion and migration of
Frontiers in Oncology 05
HCCs. As expected, PT2385 inhibited the expression of HIF-2a
at both the mRNA and protein levels (Figures 4A, D, E).

Interestingly, inhibition of HIF-2a by PT2385 also notably

suppressed the expression of VEGF and Notch1, as detected

by RT-qPCR and western blotting (Figures 4B–E).
Discussion

HCC is one of the most common malignant tumors, and its

fatality rate ranks second among all malignant tumors

worldwide (24), claiming 380,000 lives each year and

accounting for half the cancer-related deaths in China (25–27).

Hepatectomy, liver transplantation, and local ablative therapy

are available treatments, but there is still a high incidence of

postoperative recurrence (28). RFA has various advantages and

is an important clinical treatment for liver cancer. It works by

generating heat and high temperature to induce tumor tissue

coagulation, necrosis, and inactivation. In general, 46°C for

60 min can lead to irreversible cell damage, and the higher the

temperature, the shorter the ablation time. However, when the

local temperature exceeds 105°C, tumor tissue vaporization will

occur, increasing the total resistance of radiofrequency energy,
B

C

D E F

A

FIGURE 2

HIF-2a, Notch1, and VEGF were involved in the increased invasion and proliferation of HCC induced by insufficient RFA. (A) Representative
photos of HCC after insufficient RFA were detected by a phase contrast microscope and crystal violet staining. Magnification 400×.
(B) Detection of cell proliferation by MTT. (C) Quantitation analysis of Transwell assay. (D–F) Detection of the mRNA expression of HIF-2a,
Notch1, and VEGF. **P < 0.01, ***P < 0.001.
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resulting in RFA insufficiency. Therefore, the appropriate

temperature for RFA is 50 to 100°C. Ablation is mainly

suitable for single tumors with a diameter of less than 5cm or

two to three tumors which a maximum diameter of less than

3 cm. Uni- or multipolar needles are clinically used depending
Frontiers in Oncology 06
on liver tumor size and location. The former is used for tumors

with a diameter of less than 3 cm and the latter for tumors with a

diameter of 3 to 5 cm. The ablation scope is generally extended

to more than 1 cm of the tumor diameter to ensure tumor tissue

destruction. For tumors with a diameter of up to 3 cm, one to
B C

D

A

FIGURE 3

Inhibition of HIF-2a by PT2385 suppressed the invasion and migration of HCCs after insufficient RFA. (A) Representative photos of HCC after
insufficient RFA were detected by wound healing assay. Magnification 200×. (B) Quantitation analysis of wound healing assay.
(C, D) Representative photos and quantitation analysis of Transwell assay. Magnification 400×. *P < 0.05; **P < 0.01. ***P < 0.001.
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two rounds of superimposed treatment for 5 mins is suggested,

while 10 min of six treatments is recommended for tumor

diameters between 3 and 4 cm. For tumors with a diameter

above 4 cm, multiple overlapping treatments should be

performed for 10 to 15 min (29).

However, due to the heterogeneity in tumor characteristics,

ablation rates vary between 10.3–38.7% (30). Multi-point

combined thermal field ablation can be used when the tumor

diameter is 3 to 5 cm. Gasification occurs during the tissue

carbonization and necrosis process, interfering with

observation. When blind areas are left and there is no

overlap between each ablation area, insufficient tumor

ablation occurs. When the tumor is adjacent to large blood

vessels, blood flux will draw part of the heat induced by RFA.

Due to the reduced treatment temperature, the cancer cells

near large blood vessels are preserved, resulting in insufficient

RFA (31, 32). When the tumor is located on the surface of the

liver or adjacent to Gleason’s pedicle, ablation may cause

damage to the gastrointestinal tract, diaphragm, kidney, or

biliary tract. Therefore, the scope of ablation is limited to avoid

or reduce damage to special organs and vessels, resulting in

residual tumor cells (33, 34). In addition, patients subjected to

insufficient RFA often present local tumor recurrence and

metastasis in the short term and even experience rapid

deterioration in health (35–38). The potential harm that this

technology can cause is the biggest obstacle to its successful

application (9). Cell invasion and metastasis after insufficient

RFA have recently gained attention (39–41), but the

mechanism remains unclear.
Frontiers in Oncology 07
Notch signaling is a conserved and important pathway

involved in proliferation, differentiation, and self-renewal in

most cell types (42, 43). It includes Notch ligands (DLL1,

DLL3 DLL4, Jagged1, and Jagged2), Notch receptors (Notch1,

-2, -3, and -4), and downstream target genes (Hes and Hey) (44).

Our group and others have found that activation of the Notch1

pathway contributes to cancer cell proliferation, invasion, and

migration (11, 45–47) and drug resistance in tumors (48).

Notch1 mRNA and protein expression were elevated in HCC,

and targeting Notch1/Hes1 using dihydromyricetin suppressed

HCC proliferation and induced HCC apoptosis (11). Moreover,

the level of Notch1 was increased in the liver tumor tissue of

patients after insufficient RFA and in in vitro cell models,

indicating that Notch1 signaling may be associated with the

recurrence of HCC after insufficient RFA.

VEGF is also involved in HC recurrence after insufficient

RFA. It is well known that VEGF stimulates endothelial cell

growth and migration and increases vascular permeability and

endothelial cell activity. VEGF expression is increased in various

cancers, including HCC, and is associated with the invasion,

recurrence, metastasis, and prognosis of liver cancer. Although

they show some therapeutic effects, tyrosine kinase inhibitors

targeting the VEGF receptor cause cardiotoxicity, hypertension,

hand-foot syndrome, and other side effects. Recently, VEGF has

been reported to activate the Notch1 pathway by upregulating

DLL4 expression. The blocking of the Notch signaling pathway

through DLL4-and VEGF acts synergistically to reduce the

density and function of tumor vessels and inhibit tumor

growth (49). Similarly, we found that the expression levels of
B C

D E

A

FIGURE 4

Inhibition of HIF-2a by PT2385 suppressed the VEGF and Notch1 signaling pathway in HCC after insufficient RFA. (A–C) Detection of mRNA
expression by RT-qPCR. (D, E) Detection of protein levels by western blotting. *P < 0.05, **P < 0.01, ***P < 0.001.
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VEGF and Notch1 were elevated after insufficient RFA in vivo

and in vitro. Thus, there is an urgent need to identify upstream

molecules that regulate VEGF and Notch1, which may provide a

strategy for personalized therapies.

Hypoxia, the insufficient supply of oxygen to tissues, is an

inherent characteristic of the tumormicroenvironment and exists in

almost all solid tumor sites (50). Tumor hypoxia leads to the

activation of the HIF signaling pathway, and HIF is involved in

mediating many important processes, such as tumor growth,

metastasis, metabolism, and angiogenesis (51). HIF is a

heterodimer complex consisting of a HIF-a subunit degraded by

an oxygen-dependent proteasome and a constitutively expressed

HIF-b subunit (52). Low levels of HIF expression are observed in

normal liver tissues. However, HIF accumulates in large quantities

under hypoxic conditions and becomesmore stable. HIF is involved

in mediating growth, metastasis, metabolism, angiogenesis, drug

resistance, and other essential processes in liver cancer (14, 53).

HIF-1a is mainly associated with acute hypoxia in tumors, whereas

HIF-2a plays a major role in long-term chronic hypoxia (15, 16,

20). In the current study, the increased expression of HIF-2a was

accompanied by elevated VEGF and Notch1 expression after

insufficient RFA in vivo and in vitro, indicating that it acts as a

potential upstream mediator. Similarly, HIF-2a has been shown to

promote angiogenesis via the VEGF/Notch pathway to attenuate

intracerebral hemorrhage injury (54). PT-2385 is inactive against

HIF-1a and is a selective HIF-2a inhibitor with a Ki of less than 50

nM (55). The HIF-2a antagonist PT2385 exhibited a significant

therapeutic effect in the phase I clinical trials of other tumor types

such as human renal clear cell carcinoma and did not cause side

effects such as cardiotoxicity and hypertension (56). In addition,

PT2385 has been authorized for production by Peloton, which is

convenient for experimental research. Thus, our results on HCC

after insufficient RFA are amenable to clinical translation. Targeting

HIF-2a with PT2385 attenuated renal cell carcinoma progression

more effectively than sunitinib, accompanied by better tolerance

and fewer side effects (56, 57). In our study, inhibition of HIF-2a
suppressed the enhanced invasion and migration abilities of HCC

after insufficient RFA. Moreover, the increased expression of VEGF

and Notch1 was downregulated following PT2385 treatment.

Similarly, PT2385 has been reported to suppress VEGF mRNA

expression via HIF-2a inhibition in renal cell carcinoma and

hypoxic HCCs (58). A previous study reported that HIF-2a
repressed Notch signaling, but HIF-1a promoted it (59). In

contrast, other scholars found that HIF-2a overexpression

increased the activation of Notch pathways (60). In our study, the

elevated expression of Notch1 may have directly resulted from

increased VEGF expression, with HIF-2a having an indirect effect.

However, the detailed mechanism of action of the PT2385

regulation of Notch1 expression needs to be explored in

further studies.

In summary, our study revealed that insufficient RFA induced

the activation of the HIF-2a/VEGF/Notch1 signaling axis in HCC,

leading to enhanced proliferation, migration, and invasion of HCCs.
Frontiers in Oncology 08
Furthermore, HIF-2a is a potential upstream regulatorymolecule of

the VEGF and Notch1 pathways, though further research is

required. To our knowledge, this is the first study determining

the potential of PT2385 in treating HCC after insufficient RFA.
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