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High‑performance hybrid modeling 
chemical reactors using differential 
evolution based fuzzy inference 
system
Meisam Babanezhad1,2, Iman Behroyan3, Ali Taghvaie Nakhjiri4, Azam Marjani5,6*, 
Mashallah Rezakazemi7 & Saeed Shirazian8

Bubbly flow behavior simulation in two‑phase chemical reactors such bubble column type reactors is 
widely employed for chemical industry purposes. The computational fluid dynamics (CFD) approach 
has been employed by engineers and researchers for modeling these types of chemical reactors. In 
spite of the CFD robustness for simulating transport phenomena and chemical reactions in these 
reactors, this approach has been known as expensive for modeling such turbulent complex flows. 
Artificial intelligence (AI) algorithm of the adaptive network‑based fuzzy inference system (ANFIS) 
are largely understood and utilized for the CFD approach optimization. In this hybrid approach, the 
CFD findings are learned by AI algorithms like ANFIS to save computational time and expenses. Once 
the pattern of the CFD results have been captured by the AI model, this hybrid model can be then 
used for process simulation and optimization. As such, there is no need for further simulations of new 
conditions. The objective of this paper is to obviate the need for expensive CFD computations for two‑
phase flows in chemical reactors via coupling CFD data to an AI algorithm, i.e., differential evolution 
based fuzzy inference system (DEFIS). To do so, air velocity as the output and the values of the x, and 
y coordinates, water velocity, and time step as the inputs are inputted the AI model for learning the 
flow pattern. The effects of cross over as the DE parameter and also the number of inputs on the best 
intelligence are investigated. Indeed, DEFIS correlates the air velocity to the nodes coordinates, time, 
and liquid velocity and then after the CFD modeling could be replaced with the simple correlation. For 
the first time, a comparison is made between the ANFIS and the DEFIS performances in terms of the 
prediction capability of the gas (air) velocity. The results released that both ANFIS and DEFIS could 
accurately predict the CFD pattern. The prediction times of both methods were obtained to be equal. 
However, the learning time of the DEFIS was fourfold of ANFIS.

Different types of chemical reactors are being employed in chemical and biochemical engineering industries 
such as plug flow and batch reactors. However, continuous chemical reactors have attracted much attention due 
to better process efficiency. Among the various reactors applicable of process industry, bubble column types are 
mainly used in different disciplines, e.g., water and wastewater treatment, separation/purification, and biop-
harmaceuticals manufacturing. These reactors are continuous type and provide higher mass transfer rates, and 
lower operational and fixed  costs1–4. These efficient reactors have been well understood by experimental and 
theoretical works in which the effect of underlying parameters on the reactor performance have been studied by 
underpinning  work5–12. The results turned out that it is of great importance to well comprehend the turbulent 
behavior of these reactors.
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The basic principles for optimizing and scaling up of the bubble columns is usually built by the experimental 
analysis (e.g., DoE), empirical/semi-empirical correlations, population balance model (PBM), and uni/multi-
dimensional convection–dispersion models. Notwithstanding, the aforementioned approaches remain limited 
in simple cases. Regarding this issue, 3D CFD (computational fluid dynamics) computational techniques are 
of beneficial to be employed for understanding the bubble column reactors and unlock the process complexity. 
Indeed, in this context, CFD contributes to comprehending the complex turbulent flow with two phases within 
the reactor considering the interactions between two phases. This versatile and novel computational method has 
considerably attracted attention in the past decades for simulation of complex fluid systems mainly for design, 
optimization, understanding, and process troubleshooting  purposes5.

CFD models have been used for a multidimensional bubble column taking into account an Eulerian 
 approach13. In another research, Bhusra and co-workers5,6 employed CFD technique for modeling, simulation, 
and understanding air–water interaction in a chemical reactor, in which Eulerian technique was assumed for 
modeling and simulation purposes. A bubble column was modelled in another  study14 with employing VOF 
technique as the CFD method. Chen et al.15 investigated gas hold-up distribution, turbulency behavior of fluids, 
and velocity of liquid. An adiabatic bubbly flow model with two fluids was  implemented16. Circulation of liquid 
phase and combining in the column with internals and without them were  studied17.

Thermal/hydrodynamic behavior of gas/liquid flow inside the bubble column rectors have been investigated 
experimentally by Kalaga and co-workers7–9 where they studied hydrodynamics in the bubble column via the 
methods of experimental particle tracking. In spite of the robustness of these methods for understanding the 
flow pattern in bubble column reactors, the aforementioned techniques are disable for finding the relations 
that exist among such characteristics. In this context, Artificial Intelligence (AI) science can be employed and 
tailored for the bubble column reactors for better understanding and developing these chemical reactors. Fuzzy 
inference system (FIS) which is an intelligence engine can be employed in this context for process simulation 
and  optimization18–20. Linking FIS and adaptive network (AN) was employed and reported in a few  studies21,22, 
but no investigations exist for considering the other AI algorithms.

In order to address the mentioned research gap in the field of chemical reactors, in the present paper, a bub-
ble column reactor considering air–water as fluids is simulated and the results of the CFD computations are 
learned by an appropriate AI method called DEFIS. The main idea of using DEFIS is that to develop a correlation 
between the velocities of air and water in each time and position (e.g., x y z) inside the column. For the first time, 
a comparison is made between the ANFIS and the DEFIS performances in terms of the prediction of air speed.

Methodology
Reactor shape and structure. The shape and design of the reactor for the computational task in this work 
is a reactor in cylindrical shape (diameter = 290 mm, length = 2 m). The reactor is equipped with a nozzle hav-
ing the diameter of 23 cm. The air is injected into the reactor, initially filled with water as liquid phase with the 
temperature and velocity of 22 ºC and 5 mm/s, respectively.

CFD method. For the CFD simulations in this work, two-fluid Euler-Euler approach was employed with 
appropriate CFD code. The main equations can be expressed  as23,24:

• Continuity equation:

• Momentum equation:

The energy conservation equation was employed to estimate the heat transfer between air and water inside 
the reactor, and k − ε turbulence model was used for the  turbulency5,25.

The differential evolution (DE) algorithm. To discover x for optimizing f (x) ; x = [× 1, × 2, × 3, …, xD] 
is the common problem in an optimization algorithm. D represents the function dimensionality. The variables’ 
domains are denoted by their upper and lower bounds: xj,upp, xj,low; j ∈ {1, . . . ,D}. NP D-dimensional vectors 
are included in the original DE algorithm  population26–28:

G represents the generation. Crossover and mutation operations are used by DE for producing a trial vector:

Mutation operation. A mutant vector is created by mutation for every population vector as:
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(3)xi,G = {xi , 1,G, xi , 2,G, . . . , xi ,D,G}, i = 1,2, . . . ,NP,

(4)ui,G = {ui , 1,G, ui , 2,G, . . . , ui ,D,G}, i = 1,2, . . . ,NP,

(5)xi,G ⇒ vi,G = {vi , 1,G, vi , 2,G, . . . , vi ,D,G}, i = 1,2, . . . ,NP,
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One of the mutation approaches can be used to create the mutant vector. The most convenient approaches 
 include29:

– ‘rand/1’:

– ‘best/1’:

– ‘current to best/1’:

– ‘best/2’:

– ‘rand/2’:

In Eqs. (6–10) the indices r1 , r2 , r3 , r4 , r5 stand for the various and random mutually integers created in the 
range of [1,NP] that are different also from index i. A mutation scale factor is represented by F in the range of 
[0, 2] (< 1). xbest,G represents the best vectors within generation G.

Crossover procedure. The crossover process can be expressed using Eq. (11):

The crossover parameters or factors are within the [0, 1] denoting the probability of generating the trial vector 
parameters from a mutant  vector26–28.

Fuzzy inference system (FIS). The artificial intelligence approach known as FIS which is an efficienct 
calculating framework was used here for linking with the CFD framework. In the FIS structure, a fuzzy reason-
ing was employed on the basis of if–then  rules30. Herein the x, and y coordinates, water velocity  (Vw), and time 
are considered to attain air velocity in the reactor as the model’s output in the predictions using AI. The AI rule 
for the  ith level is found  as30:

where wi denotes the signal exiting the node in layer 2. Also, K, L, M, N denote the signals incoming from MFs. 
Details of FIS are reported  elsewhere23,31.

Results and discussion
Figure 1 describes the DEFIS setup and validation as a flowchart for the prediction of the air speed inside the 
co-current reactor based on the x, and y coordinates, water velocity  (Vw), and time. Once the inputs (x, and y 
coordinates, water velocity, and time) and the output (air velocity) have been determined, the fuzzy C-means 
clustering (FCM) is employed for generating inertia FIS. Then the FCM and the FIS variables must be defined 
accordingly. In terms of the differential evolution (DE) parameters, the number of population and crossover 
probability is determined. In order to achieve the best intelligence, a sensitivity analysis was carried out for dif-
ferent input numbers and crossover. The accuracy of the DEFIS in the prediction of the air velocity is checked 
with the CFD data, and the coefficient of determination  (R2) is recorded in the computations. Once the highest 
value of  R2 has been obtained, the sensitivity analysis must be stopped. Further validation is done by repeating 
the same process using the ANFIS. The results of DFIS are compared with those of ANFIS. Finally, a correlation 
is developed for calculation of the air velocity inside the co-current bubble column reactor as a function of the 
x, and y coordinates, water velocity  (Vw), and time. The AI algorithms could cooperate with the CFD for finding 
such relationships. So, the AI algorithm of the DEFIS has been used in combination with the CFD modeling. 
Two-phase flow of air–water inside a co-current bubble column reactor is simulated using Eulerian CFD model 
at different time steps (e.g. 10, 20, 30, 40, 50 s). The air velocity is the output variable of the DEFIS. The x, and y 
coordinates, water velocity  (Vw), and time are the input data learned by the DEFIS.

In this study, 75% of the CFD data are used in training AI algorithm. But the whole data are used in the 
testing approach. Figures 2, 3 and 4 illustrate the changes of the regression number  (R2) by adjusting the input 
number and the cross-over (CO) parameter, respectively. As can be seen, the highest  R2 is obtained for the case 
when 4 inputs are considered in the model. However, it is not always the case, increasing the input numbers, 
the  R2 increases. Sometimes, especially when there are not logical relations between the selected inputs and the 
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Figure 1.  Flowchart of differential evolution based fuzzy inference system (DEFIS).

Figure 2.  Learning processes of DEFIS method with two inputs and changes in crossover (CO).
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output, adding more inputs the regression number falls down, and this might impair the calculations. Regarding 
CO, the highest  R2 (i.e. 0.99977) is for 0.2. Hence, the best intelligence condition is seen for the input numbers 
of 4 and CO equal to 0.2.

Figure 5 depicts the FIS structure being used in this paper for the process simulations. The type of cluster is 
semi-fuzzy clustering, and 4 clusters are used for each input. The number of rules and output memberships are 
also set to 4. Gaussian is the type of membership function that is shown schematically in the rectangular boxes 
on the right-hand side.

The Gaussian function is illustrated in Table 1. According to the function, c and σ are the inputs membership 
functions parameters calculated by the DEFIS learning process in each cluster. Table 2 shows the values of c and 
σ of each cluster at the best intelligence condition.

Gaussian function changes versus the changes of inputs are shown in Fig. 6. According to this figure, the 
value of Gaussian function (µ) for each input and cluster can be determined. As mentioned before, consequent 
parameters for predicting air velocity is also obtained after reaching the best intelligence.

Figure 7 illustrates the fuzzy reasoning procedure of prediction of air velocity inside the BCR. The operations 
of fuzzy reasoning are based on comparisons of the input parameters with the MFs on the premise part and 
obtaining the values of membership for each linguistic  label32. Table 3 shows these values for every cluster. So, 
using Eq. (13), the formula is obtained to correlate the air velocity to x, y, time, and  Vw.

As a summary, once the best intelligence of the DEFIS is achieved, all parameters of the Gaussian member-
ship function and the consequent parameters could be found. Replacing the parameters in Eq. (13), the air 
velocity could be calculated as a function of x, y, time, and  Vw. In this way, the air velocity is calculated in the 

Figure 3.  Learning processes of DEFIS method with three inputs and changes in crossover (CO).

Figure 4.  Learning processes of DEFIS method with four inputs and crossover (CO) = 0.2.
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domain using the formula without additional CFD modeling. This means that there is no need to discretize and 
solve the complicated governing equations (mass, momentum, etc.) by the CFD tool anymore. As a result, the 
computational efforts are facilitated by the artificial intelligence of the DEFIS. In other words, the DEFIS helps 
the users to save the computational time and costs by the elimination of the CFD modeling for prediction of the 
air velocity in new conditions (the new time and/or the new water velocity).

To further assess the model developed in this work, comparisons between the CFD computations in terms 
of air speed and the DEFIS predictions have been determined and illustrated in Fig. 8. The air has been injected 
into the bottom side of the reactor vessel along the axial direction. This figure illustrates the axial air velocity 
in a cross-section plane of the cylindrical column placing in height of 10 cm from the bottom. The blue points 
represent the air velocities of the nodes predicted by the CFD, while the red ones show those predicted by the 
DEFIS. The results reveal that both methods predict the same air speeds with minimum deviations.

For more validations and comparisons, the CFD computations data are learned by the other AI method of 
ANFIS once again. According to Table 4, the similar setup parameters have been chosen for both ANFIS and 

(13)Vg =
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∑4
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)

Figure 5.  DEFIS structure in the high level of intelligence.

Table 1.  Mathematical formula of Gaussian function used in this work.

Membership function Formula

Gaussian
e
−(x−c)2

2σ2

Table 2.  The parameters of input membership functions in the highest intelligence of DEFIS method.

Number of cluster Type of MFs σ c

First input

’in1cluster1’ ’gaussmf ’ − 5.2257E−02 4.2513E−04

’in1cluster2’ ’gaussmf ’ 5.8232E−01 3.2302E−04

’in1cluster3’ ’gaussmf ’ − 1.2828E+01 − 1.7492E−03

’in1cluster4’ ’gaussmf ’ − 1.2653E−01 5.2875E−02

Second input

’in2cluster1’ ’gaussmf ’ 5.0518E−02 − 1.1089E−03

’in2cluster2’ ’gaussmf ’ 1.4579E−01 − 6.1457E−04

’in2cluster3’ ’gaussmf ’ 2.6418E−01 5.6296E−04

’in2cluster4’ ’gaussmf ’ 2.5247E−01 − 8.6988E−04

Third input

’in3cluster1’ ’gaussmf ’ 2.8153E−01 7.7039E−02

’in3cluster2’ ’gaussmf ’ 7.3711E+00 1.1823E−02

’in3cluster3’ ’gaussmf ’ 2.2778E−01 1.6959E−02

’in3cluster4’ ’gaussmf ’ 3.7091E−01 − 2.8461E−01

Forth input

’in4cluster1’ ’gaussmf ’ 6.6080E+00 3.9870E+01

’in4cluster2’ ’gaussmf ’ 1.3802E+00 3.1087E+02

’in4cluster3’ ’gaussmf ’ 5.4194E+00 1.1682E+01

’in4cluster4’ ’gaussmf ’ − 9.1207E+00 2.8001E+01
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Figure 6.  Inputs membership in the high level of intelligence.

Figure 7.  Fuzzy reasoning procedure of prediction of air velocity inside the reactor by using the trained rules 
and trained membership functions.

Table 3.  DEFIS method consequent parameters for predicting gas velocity in z direction.

Output MFs Output MFs type o p q r s

’out1cluster1’ ’linear’ 2.6131E−04 2.3510E−05 1.0059E+00 − 1.2047E−05 6.3183E−04

’out1cluster2’ ’linear’ − 3.0254E−04 − 6.6650E−04 1.3127E+00 − 7.0574E−05 − 1.5252E−04

’out1cluster3’ ’linear’ 2.1228E−04 2.9970E−04 1.0058E+00 − 1.5727E−05 4.0862E−04

’out1cluster4’ ’linear’ 2.3020E−04 − 4.5140E−04 1.0059E+00 − 3.5953E−05 1.9991E−04
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DEFIS. At this condition, although the prediction time of both methods is equal, the learning time of DEFIS is 
fourfold of ANFIS.

For accuracy in prediction, as shown in Fig. 9, the coefficient of determination  (R2) is close to 1 in both 
methods at the best intelligence. This similar performance in the prediction of the CFD results (the air velocity) 
is also shown in Fig. 10. Totally, 5265 CFD data have been used in this study for the computations. As seen in 
Fig. 10, the CFD results are closely predicted by both ANFIS and DEFIS for the whole of 5265 data.

Conclusion
CFD modeling of an air–water co-current bubble column reactor was considered in the present study. The arti-
ficial intelligence (AI) came to help the CFD model by learning the generated data. After learning and capturing 
the general pattern of the CFD results by the AI algorithms, there is no need for further simulations of new 
conditions by expensive computational tasks. The AI algorithm of the differential evolution based fuzzy infer-
ence system was selected, as the main method for learning the CFD data. For further validation, a comparison 
was made between the DEFIS and the ANFIS performances in the prediction of the air velocity. The Eulerian 
two-phase CFD model was employed to predict air velocity inside the reactor at different time steps. The x, and 
y coordinates, water velocity  (Vw), and time were considered as the input data learned by the DEFIS. The cross 
over as the DE parameter and also the number of inputs were adjusted for the best intelligence. Then the Gauss-
ian membership function parameters (i.e. c and σ) and the consequent parameters were obtained by the DEFIS 
for all 4 clusters to correlate the air velocity based on the x, and y coordinates, water velocity  (Vw), and time. This 
formula eliminates needing further CFD modeling for air speed prediction. The best intelligence condition (i.e. 
 R2 = 0.99977) was seen for the input numbers of 4 and CO equal to 0.2. A comparison between the CFD predic-
tions of the air velocity and the DEFIS predictions revealed that both methods predicted the same air velocities. 
Comparing ANFIS and DEFIS, both methods could accurately predict the CFD results. The prediction times of 
both methods were equal. However, the learning time of the DEFIS was fourfold of the ANFIS.

Figure 8.  DEFIS prediction and its comparison with CFD results.

Table 4.  Learning and prediction times for the similar setup parameters of DEFIS and ANFIS.

Method DEFIS ANFIS

Number of inputs 4 4

Maximum of iteration 800 800

Percentage of data in training processes 75% 75%

Percentage of data in testing processes 100% 100%

Clustering type Fuzzy C-mean Clustering Fuzzy C-mean Clustering

Type of input membership function Gaussmf Gaussmf

FIS type Sugeno Sugeno

Number of cluster for each input as FCM clustering parameter 4 4

Number of rules 4 4

Exponent as FCM clustering parameter 2 2

Minimum improvement as FCM clustering parameter 1.00E−05 1.00E−05

Learning time(s) 172.3169051 43.8744104

Prediction time(s) 0.086412 0.0884874
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