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One Step Ahead: The Perceived Kinematics of Others’ Actions Are Biased
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Toward Expected Goals
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Action observation is often conceptualized in a bottom-up manner, where sensory information activates
conceptual (or motor) representations. In contrast, here we show that expectations about an actor’s goal
have a top-down predictive effect on action perception, biasing it toward these goals. In 3 experiments,
participants observed hands reach for or withdraw from objects and judged whether a probe stimulus
corresponded to the hand’s final position. Before action onset, participants generated action expectations
on the basis of either object types (safe or painful, Experiments 1 and 2) or abstract color cues
(Experiment 3). Participants more readily mistook probes displaced in a predicted position (relative to
unpredicted positions) for the hand’s final position, and this predictive bias was larger when the
movement and expectation were aligned. These effects were evident for low-level movement and
high-level goal expectancies. Expectations bias action observation toward the predicted goals. These
results challenge current bottom-up views and support recent predictive models of action observation.
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Action observation lies at the heart of social interaction. It
allows people to infer others’ internal states, predict what they
are going to do next, and coordinate joint actions (Hamilton &
Grafton, 2007; Sebanz & Knoblich, 2009). Such abilities are

This article was published Online First November 23, 2015.

Matthew Hudson, Toby Nicholson, William A. Simpson, Rob Ellis, and
Patric Bach, Department of Psychology, University of Plymouth.

Patric Bach and Matthew Hudson conceived the experiment idea, to-
gether with Toby Nicholson and Rob Ellis. Toby Nicholson and Matthew
Hudson created the stimuli and experiments. Data was collected by Mat-
thew Hudson. Statistical analysis was contributed by William A. Simpson.
Matthew Hudson and Patric Bach wrote the manuscript together with the
other authors. Thanks are extended to Maria-Loredana Filip for help with
data collection and Kimberley Schenke and Nick Lange for helpful dis-
cussions. The work was supported by Economic and Social Research
Council Grant ES/J019178/1.

This article has been published under the terms of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/3.0/),
which permits unrestricted use, distribution, and reproduction in any me-
dium, provided the original author and source are credited. Copyright for
this article is retained by the author(s). Author(s) grant(s) the American
Psychological Association the exclusive right to publish the article and
identify itself as the original publisher.

Correspondence concerning this article should be addressed to Matthew
Hudson, School of Psychology, Faculty of Health and Human Sciences,
Portland Square Room A107, Plymouth University, Drake Circus, Plym-
outh, Devon PL4 8AA, United Kingdom. E-mail: matthew.hudson@
plymouth.ac.uk

typically explained in a bottom-up manner, where observed
actions are matched to an action in the observers’ motor rep-
ertoire (Rizzolatti, & Sinigaglia, 2010). Recent findings, how-
ever, have challenged these views, revealing striking top-down
effects on action observation, affecting the action’s neural
encoding (de la Rosa, Streuber, Giese, Bulthoff, & Curio,
2014), one’s gaze response (Joyce, Schenke, Bayliss, & Bach,
2015; Teufel, Fletcher, & Davis, 2010), and the tendency to
imitate (Bach, Bayliss & Tipper, 2011; Longo & Bertenthal,
2009).

Such effects have prompted the proposal that action obser-
vation, like perception in general, is inherently predictive and
happens relative to top-down expectations (Bach, Nicholson &
Hudson, 2014; Csibra, 2007; Kilner, 2011). In these views,
originally developed to provide neuronally plausible computa-
tional models for motor control and low-level vision, the brain
constantly makes predictions about forthcoming events on the
basis of prior knowledge about the world and other people
(Clark, 2013; Friston & Kiebel, 2009; Schiitz-Bosbach & Prinz,
2007). These predictions are not abstract but are seamlessly
integrated—in a process akin to visuomotor imagery (Vogt, Di
Rienzo, Collet, Collins, & Guillot, 2013)—with sensory input
and have direct perceptual consequences. Stimulation that
matches the predictions is processed fluently and becomes
biased toward the predictions. Prediction errors, however, high-
light the unexpected event and allow one’s predictions—or the
internal models from which they were derived—to be reevalu-
ated (Clark, 2013; Friston & Kiebel, 2009).
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One example of such predictions concerns motion perception.
People perceive moving objects not where they currently are
but displaced slightly into the future. For example, observers
typically (mis-)perceive probe stimuli further along the pre-
dicted trajectory as identical with a moving object’s last seen
position, while equal displacements in the opposite direction are
readily detected (i.e., representational momentum; Freyd &
Finke, 1984; for a review see Hubbard, 2005). These forward
displacements reveal the expected pattern of predicted stimu-
lation being integrated with perception, while mismatching
events are enhanced. Moreover, in line with prediction models,
they integrate both bottom-up sensory information (e.g., motion
speed) and top-down expectations (e.g., naive physics) and
emerge from low-level motion sensitive regions in the brain
(Senior, Ward & David, 2002).

Can the perception of others’ actions be accounted for in such
models? We test a core tenet of such a view, namely that the
perception of even low-level features of others’ actions would
similarly not only reflect bottom-up sensory input but would be
biased by top-down expectations about others’ forthcoming
actions (cf. Bach et al.,, 2014; Kilner, 2011). Such findings
would be a marked departure from prior work, where kinematic
information activates associated action goals, instead revealing
the reverse influence of goals directly affecting action percep-
tion.

We adapted the classical representational momentum paradigm,
originally devised to study nonsocial motion prediction processes,
to test this notion. Participants watched actors either reaching
toward or withdrawing from objects that were safe (e.g., wine
glass) or painful to touch (e.g., cactus). To ensure that participants
would form an expectation about the forthcoming actions, partic-
ipants instructed the actor about the appropriate action with the
object. When the object was safe, participants instructed a reach
(e.g., saying “Take it”), and when it was painful, a withdrawal
(e.g., “Leave it”). Because such imperative language cues elicit
visuomotor imagery (Glenberg & Kaschak, 2002) and are used to
guide others’ behavior (Wolpert, Doya, & Kawato, 2003), they
should create strong action expectations. As soon as participants
made these statements, the hand either reached for the object or
withdrew from it, conforming to or violating the expectation.
Midway during the movement the hand disappeared. Participants
judged whether a probe stimulus in the just-seen final position,
slightly further along the trajectory (predicted position), or slightly
behind (unpredicted position) was either the same or different from
the hand’s final position.

Biological motion elicits predictive displacements that are sim-
ilar to those for nonbiological motion (Hudson, Burnett, & Jel-
lema, 2012; Hudson & Jellema, 2011; Hudson, Liu, & Jellema,
2009; Thornton & Hayes, 2004; Wilson, Lancaster, & Emmorey,
2010), and the characteristic kinematics enable observers to men-
tally simulate even complex action trajectories when they become
occluded from view (Cross, Stadler, Parkinson, Schutz-Bosbach,
& Prinz, 2013; Parkinson, Springer, & Prinz, 2012; Stadler et al.,
2011). Here, we test a key assumption of hierarchical feedback
models of social perception: that high-level expectations about
others’ forthcoming actions directly feed into these predictions and
selectively bias the perception of these actions toward these goals.
Expectations to reach (saying “Take it”) should then increase
perceptual shifts toward the object, whereas expectations to with-

draw (“Leave it”) should lead to shifts away from the object.
Across three experiments, we varied whether these expectancies
referred to action kinematics (Experiment 1), action goals (Exper-
iment 2), or participants’ verbal statements based not on object
type (painful/safe) but on object color (randomly allocated), which
allowed us to investigate their “pure” influence, independent of
object painfulness (Experiment 3).

Method

Participants

Participants (Experiment 1: N = 46, Experiment 2: N = 42,
Experiment 3: N = 36) were right-handed, had normal or
corrected-to-normal vision, and were native English speakers.
They gave written informed consent and received course credit or
£6 (US$9.25) for their participation. Of these, only those who
could distinguish visually between the experimentally manipulated
probes in a training session (see the Procedure section) progressed
to the main experiment (Experiment 1: N = 40, 26 females, mean
age = 23.3 years, SD = 8.9; Experiment 2: N = 32, 22 females,
mean age = 23.3 years, SD = 6.9; Experiment 3: N = 36, 28
females, mean age = 21.6 years, SD = 6.0 years). Participants
were further screened on the basis of catch trial performance
during the experiment (see the Exclusion Criteria section). This
two-stage exclusion process was selected a priori and, because this
was the first demonstration of the effect and random response
strategies are high in difficult feedback-less visual tasks such as
ours (DeRight & Jorgensen, 2015), deliberately conservative. Data
collection stopped if the experimenter was confident that, after
exclusion, a minimum sample size off 22 would be surpassed in
each experiment (on the basis of a power analysis of a previous
study of the effect of an actor’s eye gaze on representational
momentum; Hudson et al., 2009).

Apparatus and Stimuli

Videos of an arm reaching for one of four safe-to-grasp objects
(see the left half of Figure 1a) were filmed at 30 fps with a Canon
Legria HFS200 and were digitally manipulated using MovieDek
and Corel Paintshop Pro X6. Background details were replaced
with a uniform black background. A second set of stimuli was
created by digitally replacing the object with a painful object of
similar size and shape (see the right half of Figure 1a), resulting in
four additional action sequences matched for reach trajectory. In
Experiment 3, stimuli were modified by placing a green or red
overlay of 30% opacity over the objects, giving them an either red
or green tint.

The first 26 frames of each video depicting the reaching
portion of the action were used for the action sequences and
probe stimuli. Each action sequence consisted of 3, 4, or 5
frames. The first frame was randomly selected between Frames
13 and 17. The action proceeded in two frame jumps by adding
or subtracting 2 to the frame number for reaches (e.g., 13-15-
17) and withdrawals (e.g., 13—-11-9), respectively. The duration
of each frame was 80 ms, presenting the action in near-real
time. Stimuli occupied an area of .07° X .12°, given a viewing
distance of 60 cm.
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Figure 1. Experimental stimuli. The safe objects (Panel a, left column) and the paired dangerous objects (Panel
a, right column), and the knife oriented safely or dangerously with respect to the hand (Panel a, bottom). The
trial sequence of a reach toward (Panel b, top) or withdrawal from (Panel b, bottom) an object (action stimulus),
followed by a blank screen and then the probe stimulus. In these examples, the probe position is the same as the
final action stimulus frame. The probe stimulus levels are depicted in Panel c. In each image, the center hand
is the same as the one in the final action stimulus frame in Panel b (top), and the different probe stimuli are
superimposed on either side of it. For reaches toward the object, the probe nearest the object was the predicted probe
and the probe farthest from the object was the unpredicted probe. For reaches away from the object, the probe farthest
from the object was the predicted probe and the probe nearest the object was the unpredicted probe. The difference
between the same and different probes decreases across the images from left to right (4 frames, 3 frames, 2
frames, 1 frame). For illustrative purposes, the background is depicted in gray instead of black. See the online

article for the color version of this figure.

The experiment was performed using Presentation (16.3;
2012) software on a Viglen DQ67SW computer and Philips
Brilliance 221P3LPY monitor (resolution: 1920 X 1080, re-
fresh rate: 60 Hz). Participants wore Logitech PC120 head-
phones and microphones.

Procedure

Each trial began with the first frame of the movie as a static image,
showing the hand in a neutral position and an object. Participants said
“Forward” for safe objects and “Backward” for painful objects in
Experiment 1, “Take it” and “Leave it” in Experiment 2, and “For-
ward” for green objects and “Backward” for red objects in Experi-
ment 3. The action sequence started 1,000 ms after word onset
(detected via Presentation’s sound threshold logic). The probe fol-
lowed the action sequence after a blank of 260 ms (see Figure 1b),
showing the hand either in the same position as in the final frame of
the action sequence (same probe), further along the trajectory (pre-
dicted probe), or in a position just prior to the final frame (unpredicted
probe). Participants pressed the space bar if they thought the probe
hand’s position was different from the hand’s final position and did
nothing if they thought it was identical.

Training procedure. Participants first completed four train-
ing blocks (36 trials each), in which no verbal response was
required, to familiarize themselves with the task and allow us to

assess their ability to distinguish the probes. In the first block,
the probe differed from the final position by four frames (=4,
sufficiently obvious for the task to be learned with ease) and
decreased by one frame in each block (£3, =2, *=1; see Figure
Ic), such that task difficulty progressively increased.

Participants’ overall accuracy (average of correct responses
across all probe types) and sensitivity (proportion of same
response for same probes compared with same response for
different probes) were used to assess performance. Below-
chance performance on either measure (accuracy, 50%; sensi-
tivity, 0%) was considered inadequate. If the participant passed
the *£1 block, the experimental probe was set at *1 frame
(Experiment 1: n = 28; Experiment 2: n = 25; Experiment 3:
n = 26). If the participant did not pass the =1 block but passed
the =2 block, the experimental probe was *2 frames (Exper-
iment 1: n = 12; Experiment 2: n = 7; Experiment 3: n = 10).
Failure to pass either block meant they did not proceed to the
experimental session (Experiment 1: n = 6; Experiment 2: n =
10; Experiment 3: n = 0).

Experimental procedure. Each experiment presented four
iterations of Object (painful, safe) X Action (reach, with-
drawal) X Movie Length (3, 4, 5 frames) X Probe (predicted,
same, unpredicted), producing 144 trials. In Experiment 3,
object color was randomly selected on each trial. The distribu-
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tion of red and green objects across the levels of action direc-
tion, object type, and probe did not differ significantly from
chance, x?(11) = 3.73, p = .98. Frames were positioned on the
horizontal midline, but varied along the x-axis across trials.
Twenty-four catch trials in which the probes were *4 frames
from the final position were randomly interspersed. These trials
with obvious displacements identified participants who disen-
gaged with the task and responded randomly. Three breaks were
provided at 56-trial intervals.

Analysis

Representational momentum was measured as the difference
between the frequency of detected unpredicted probes relative to
predicted probes. Positive numbers therefore reflect increased like-
lihoods of accepting predicted displaced hands as “same” com-
pared to unpredicted displacements (the representational momen-
tum effect). This measure corresponds to the original approach
(Freyd, & Finke, 1984) and allows straightforward measurement
of perceived forward displacements without further assumptions.
Responding to only probes perceived as different links responses
to the “prediction error” elicited by the probes and eliminates
confounding influences such as spatial compatibility effects elic-
ited by multiple response keys.

Exclusion Criteria

The same exclusion criteria were applied in all experiments.
Responses faster than 200 ms or slower than 3,000 ms were
excluded (Experiment 1: 0.3%, Experiment 2: 1.4%, Experiment
3: 1.1%). Participants were excluded if catch trial performance was
below 1 SD of the group mean accuracy or did not reveal at least
a minimal improvement (>10% more detections) over the exper-
imental trials (Experiment 1: n = 9; Experiment 2: n = 8; Exper-
iment 3: n = 5).

Results

Data were collected as three separate experiments, but for brev-
ity and methodological similarity, we present them as a single
analysis with experiment as a between-subjects variable but with
separate analyses for each experiment to demonstrate the robust-
ness of the effects.

We first established the presence of representational momentum
by entering the proportion of “different” responses into an analysis
of variance ANOVA with the within-subject variable probe (pre-
dicted, same, unpredicted) and the between-subjects variable ex-
periment. There was a main effect of probe, F(2, 166) = 156.3,
p < .001, mj = .653, with more “different” responses for unpre-

dicted displacements than predicted displacements, #85) = 9.96,
p < .001, d = 1.5, 95% confidence interval (CI) [23, 33], con-
firming the classic representational momentum effect. Fewer dis-
placements were (erroneously) reported for same probes than for
predicted probes, #(85) = 5.14, p = .004,d = 0.51,95% CI [6, 14],
and unpredicted probes, #(85) = 18.6, p < .001, d = 2.23,95% CI
[34, 42]. There was no effect of experiment (p = .134) and no
interaction (p = .395). The effect of probe was present in each
experiment, F(2, 60) > 39.0, p < .001, né > .596 for all (see
Figure 2, left column).

To test whether prior expectancies affect representational mo-
mentum, we entered the size of the representational momentum
effect (unpredicted probe detections minus predicted probe detec-
tions) into an ANOVA with the within-subject variables expec-
tancy (reach, withdrawal) and action (reach, withdrawal) and the
between-subjects variable experiment. This analysis revealed only
the predicted Expectancy X Action interaction, F(1, 83) = 14.98,
p < .001, my = .153, 95% CI [7, 20], observed power = .95, and
no other effects (all Fs < 1.17, p > .291). As predicted, repre-
sentational momentum was greater when expectancy and action
matched than when they mismatched, for both reaches, #85) =
244,p = .017,d = 0.17,95% CI [1, 9], and withdrawals, #(85) =
3.08, p = .003, d = 0.28, 95% CI [3, 14]. This interaction was
evident for all experimental groups when analyzed separately (see
Figure 2, right column), Experiment 1: F(1, 30) = 4.89, p = .035,
nﬁ = .140, 95% CI [2, 26], observed power = .89; Experiment 2:
F(1, 23) = 4.67, p = .041, m; = .175, 95% CI [1, 26], observed
power = .90; Experiment 3: F(1, 30) = 431, p = .047, 3 = .126,
95% CI [1, 22], observed power = .73.

Further experiments (see the online supplemental materials)
replicated the effects with other instruction statements (e.g.,
“Stop”/“Go”), F = 12.37, p = 001, but not when participants
merely identified object painfulness (saying ‘“Painful” or “Safe”),
named the objects (e.g., “Glass” vs. “Cactus”), or made equivalent
nonverbal manual actions (pushing a joystick forward/backward
instead of saying “Forward”/“Backward”) that similarly matched
or contradicted the actors’ movement but which crucially would
not be expected to dictate the goal of the actors’ behavior.

Discussion

When judging the disappearance point of a moving hand, par-
ticipants more readily (mis-)identified probes further along the
trajectory as the hands’ final position than probes in an unpredicted
position. This is in line with the idea that expectations about
forthcoming motion are integrated, in a Bayesian manner, with
actual perception, such that stimuli were perceived further along
the trajectory than they actually were (Roach, McGraw & John-

Figure 2 (opposite).

The representational momentum effect and the effect of prior expectation. Each row of graphs represents a different verbal response

made prior to action onset. Participants said “Forward” if the object was safe and “Backward” if the object was dangerous (Panel A). Participants said “Take
it” if the object was safe and “Leave it” if the object was dangerous (Panel B). The color of the object was randomly assigned as red or green, independent
of object type, and participants said “Forward” if the object was green and “Backward” if the object was red (Panel C). The left column in each panel depicts
the proportion of responses in which participants judged the position of the probe stimulus to be different from the final position of the action stimulus,
for the three different types of probe. The right column depicts the interaction between prior expectation and action direction on the size of the
representational momentum effect (unpredicted probe detections compared with predicted probe detections). Error bars represent 95% confidence intervals.
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ston, 2011). Our study now reveals that, for the perception of
others’ actions, this predictive bias is driven by prior expectations
about the forthcoming action. Instructing the actor to reach for the
object (“Forward,” “Take it”) lead to a stronger perceptual dis-
placement toward the object, whereas instructing a goal to with-
draw (“Backward,” “Leave it”) increased displacements away
from it. These effects were observed not only when the expecta-
tions concerned movement kinematics (Experiment 1) but also
when those kinematics were implied by an action goal that re-
quired those movements to achieve it (Experiment 2), even when
the instructions were not meaningfully related to object type (Ex-
periment 3).

Further experiments (see the online supplemental material) con-
firmed that the effects could not be explained through implicit or
explicit processing of the objects’ affordances (painful or safe) or
through nonspecific activation of forward and backward codes
(pushing a joystick forward and backward instead of saying “For-
ward” or “Backward”). The perceptual displacements of observed
actions therefore reflect specifically one’s expectations to be able
to set a goal for the other person’s action, rather than more
unspecific influences of conceptual or motor processes. These data
therefore reveal, for the first time, that top-down expectations
about others’ actions directly bias perceptual judgments of the
predicted action toward the anticipated goals. Moreover, because
participants were instructed to report displacements accurately, the
data reveal involuntary influences of action expectations on judg-
ments on action kinematics.

Such effects are hard to account for in conventional models,
which conceptualize action observation as a bottom-up process
that matches, on the basis of kinematic information, observed
actions to action goals (di Pellegrino, Fadiga, Fogassi, Gallese, &
Rizzolatti, 1992; Iacoboni, 2009; Rizzolatti, & Sinigaglia, 2010).
Instead, they support recent predictive models of social perception
(Bach et al., 2014; Csibra, 2007; Kilner, Friston, & Frith, 2007b)
in which any high-level expectation about others’ behavior is
immediately translated into concrete predictions of their forthcom-
ing actions (Vogt et al., 2013; Kilner, Friston, & Frith, 2007a).
These predictions are integrated with incoming sensory informa-
tion, biasing them into the future. In contrast, mismatches elicit
salient prediction errors and reevaluations of prior expectations
(Csibra, 2007; Neal & Kilner, 2010).

Such hierarchical models provide a step change in the under-
standing of social perception. First, they offer a unifying basis for
predictive effects in social perception, such as people’s remarkable
ability for maintaining a dynamic update of complex actions
should they become occluded from view (Parkinson et al., 2012;
Springer, Brandstiddter, & Prinz, 2013) and the ability to coordi-
nate their own actions with others’ future behavior (Wilson &
Knoblich, 2005). Moreover, the models point toward a common
framework under which research on social and nonsocial percep-
tion (Guo et al., 2007; Summerfield et al., 2006), as well as motor
control and computational neuroscience, can be integrated (cf.
Clark, 2013). Note, for example, that in prior nonsocial perception
research, top-down expectations were induced by manipulating
variables such as contextual motion cues or presentation fre-
quency. In contrast, in our studies, the expectations either reflected
action goals (“take it”/“leave it”’) or were spatially meaningful only
from the perspective of the observed actor, not the participant
(“forward”/“backward”). That these manipulations nevertheless

induced perceptual displacements suggests that even core pro-
cesses of social perception such as goal understanding and visu-
ospatial perspective taking can be seamlessly integrated into one’s
models of the other person and drive subsequent perception and
action.

Two aspects need to be addressed by further studies. First, the
instruction task used here required participants to explicitly gen-
erate expectations about forthcoming actions. This differs from
social situations in which others’ behavior is self-determined and
expectations are inferred from social cues. Thus, although our data
reveal that action expectations automatically cascade downward
and affect the perception of subsequent behavior, it is important to
delineate under what circumstances, and from what cues, such
expectations are derived during everyday social interactions (e.g.,
the actor’s own statements; see Hudson, Nicholson, Ellis, & Bach,
in press). A second question concerns the role of visuomotor
imagery. The generation of expected sensory stimulation is a
crucial part of top-down prediction models, and visuomotor imag-
ery or simulation processes have been proposed as a means by
which high-level expectations can be integrated with the current
context (Kilner et al., 2007b, 2007a; Vogt et al., 2013; Wilson &
Knoblich, 2005). Although our data show that action expectations
indeed have such a perceptual component, future studies need to
test further assumptions of prediction models, for example that the
weighting of these sensory expectations relative to the actual
stimulation differs with the reliability of (a) the actor in following
the verbal cues and (b) precision of the bottom-up motion signals.
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