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What is the role of the intestinal vasculature during homeostasis?

The gastrointestinal tract is home to a complex ecosystem of host–microbial interactions that

not only serve to extract dietary nutrients and remove waste but also to promote the develop-

ment of the immune system. These metabolic and host defense signals must be distributed sys-

temically to ensure proper organ function and immunosurveillance, a process largely achieved

by the intestinal vascular system.

Since the vasculature is tasked with circulating blood from a central pump (the heart) to

every tissue, it must be intricately branched. Leaving the left ventricle of the heart, the abdomi-

nal aorta divides into multiple branches, three of which supply the gastrointestinal system with

oxygenated blood. The celiac trunk supplies blood to the stomach, and the superior and infe-

rior mesenteric arteries supply the small intestine, the proximal colon and distal colon, respec-

tively. These arteries further divide into arterioles extending to the tip of each individual villus.

In the villus centre, the arteriole branches into capillaries that allow oxygenated blood to flow

into the gut while simultaneously absorbing CO2 and nutrients [1]. Following this exchange,

blood flows into venules that lead to the hepatic portal venous system, which drains into the

inferior vena cava before returning to the heart [1].

Regulation of blood flow in the intestine is a highly dynamic and precise process. During

feeding, partially digested food (chyme) is generated in the stomach and flows to the small

intestine. As chyme passes through the small intestine, blood flow increases to that segment

of the gut [2]. Once nutrient absorption has occurred, the blood flow in that area returns to

baseline [2]. Interestingly, this change in blood flow is influenced by the nutrient composition

of the chyme and not simply gut distension [3]. Simultaneously, digested food products are

detected by chemosensory enteroendocrine cells and absorptive enterocytes [4], specialized

subsets of intestinal epithelial cells (IECs) that transport nutrients across the epithelial mono-

layer into the lamina propria where they are ferried to the fenestrated blood endothelium for

systemic distribution [5]. These nutritive functions are complemented by the transport of

microbial-derived products that locally condition circulating leukocytes or act in distal tissues

such as the bone marrow, the site of adult hematopoiesis [6].

How does the vasculature change upon intestinal infection or

injury?

The gastrointestinal tract is well characterized for its physical barrier composed of a single epi-

thelial cell layer separating the luminal microbes in contact with their apical surface from the

immune cells found within the gut parenchyma (Fig 1). As such, a high degree of mucosal

immune regulation is needed to maintain homeostasis of the gut. To this end, IECs detect
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pathogenic motifs via pattern recognition receptors and, in turn, produce anti-microbial fac-

tors and mucous that limit microbial invasion. IECs also promote immune regulation by facili-

tating the development of T regulatory cells and tolerogenic dendritic cells and macrophages

via production of thymic stromal lymphopoietin, retinoic acid, and transforming growth fac-

tor-β (TGF) [7].

Just as IECs must carefully regulate what enters the host tissue, the intestinal vasculature

must also be highly selective in what enters the circulation. The Rescigno group recently pro-

vided evidence of a gut-vascular barrier (GVB) with phenotypic and functional similarities to

the blood–brain barrier of the central nervous system [9] (Fig 1). Upon injection of fluores-

cently labeled dextran into the intestinal lumen, they observed leakage into the circulation dur-

ing infection with Salmonella enterica serovar Typhimurium that was not detectable under

steady state conditions. This change of barrier permeability was due to S. enterica-induced

down-regulation of endothelial Wnt signalling [9]. Decreased Wnt signalling was associated

with an increase in plasmalemma vesicle-associated protein (PLVAP), a molecular component

of fenestrated endothelium required for vascular integrity [5]. This study sets the stage for fur-

ther investigations into the relatively unknown molecular and microbial regulation of the GVB

and its impact on intestinal and systemic health.

Fig 1. The multi-tasking nature of the intestinal vasculature. At steady state, the intestinal epithelial barrier and the GVB control systemic microbial

dissemination and the recruitment of circulatory cells to maintain a tolerogenic environment. During the tissue-invasive stages of diverse parasitic

helminth species, a presumed loss of epithelial and endothelial barrier integrity results in a rapid and robust accumulation of inflammatory cells and tissue

damage [8]. In this context, both helminth- and host-derived factors contribute to establishing a state of vascular tolerance to limit tissue damage and

promote repair. GVB, gut-vascular barrier.

https://doi.org/10.1371/journal.ppat.1007045.g001
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In response to pathogen invasion or loss of barrier integrity, both IECs and tissue-resident

leukocytes secrete a host of factors such as cytokines, reactive oxygen species, and lipid media-

tors that increase endothelial cell expression of chemokine receptors and integrins that pro-

mote immune cell extravasation into the lamina propria. Inflammatory mediators also

increase the vascular permeability that further facilitates both inter- and trans-cellular diapede-

sis [10]. Within the tissue, immune cells encounter effector-enhancing cytokines and patho-

gen-derived products that amplify the inflammatory response and neutralize (via antibody

production) or kill (via phagocytosis or cell lysis) invading pathogens. In the case of infection

by nonreplicating, multicellular organisms such as parasitic helminths, the focus of the

immune response must be to limit tissue damage and tolerate host invasion (Fig 1). Although

endothelial cells reciprocally produce oxidants that can either enhance or counteract cell stress

associated with inflammation, how the intestinal vasculature responds to distinct forms of

infection and injury and shapes the resulting immune response is largely unknown.

Does helminth infection influence the host intestinal vasculature?

The term “helminth” is a nontaxonomical word used to classify macroscopic parasitic worms

that have a life stage outside of their primary host. Intestinal helminth infections are neglected

tropical diseases that infect more than 1 billion people that primarily reside in the developing

world [11]. The majority of helminths are soil-transmitted parasites including hookworms

(e.g., Necator americanus), roundworms (e.g., Ascaris lumbricoides), and whipworms (e.g., Tri-
churis trichiuria) [11].

The relationship between the intestinal vasculature and helminth infection was initially

observed in 1880 by Edoardo Perroncito, who noted severe malnutrition and anemia among

workers during a severe outbreak of parasite infection [12]. Although one of the most frequent

morbidities of helminth infection is intestinal bleeding [13], it is important to note that each

type of helminth has unique routes of migration through its host. Thus, the tissue damage and

requirements for host defense are unique to each parasite. Nevertheless, most intestinal-dwell-

ing helminths must break the epithelial barrier and enter host tissue for either maturation

and/or feeding purposes. As such, capillaries and arterioles within the intestinal tissue are

mechanically ruptured, leading to blood loss (Fig 1). Indeed, the severity of blood loss posi-

tively correlates with parasite burden [14]. In addition, intestinal helminths release proteases,

hyaluronidase, and anticlotting factors that break down the extracellular matrix of the gut and

further compromise vascular integrity [15, 16].

Blood loss due to helminth infection frequently results in iron-deficient anemia. During

infection with A. duodenale and N. americanus, the blood loss per day is approximately 0.2 mL

and 0.15 mL, respectively [17]. In a systematic review of 14 randomized controlled trials com-

paring the effects of antihelminthic drugs on haemoglobin levels, Gulani and colleagues found

moderate increases in the group receiving treatment, suggesting a basis for the decreased prev-

alence of anemia in South Asia and Africa [18]. These data support the concept that helminth

infections have a negative impact on the intestinal vasculature.

Does the immune system impact vascular tolerance to helminth

infection?

Helminth-induced vascular damage can have severe consequences on nutritional status and

growth but rarely results in irreversible damage and mortality [11]. This observation suggests

that, despite the chronic nature of helminth infection, the host has evolved mechanisms to

limit the vascular damage incurred. The phenomenon whereby the host protects itself from

excessive tissue damage or immunopathology without directly affecting pathogen burden is
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known as disease tolerance. The precise mechanisms that allow the host to tolerate vascular

damage during helminth infection are poorly understood. However, hints from other studies

suggest that the immune system makes an important contribution to vascular physiology and

tolerance. For example, innate immune cells such as macrophages and natural killer cells have

been shown to play a key role in the maintenance of vascular integrity during intracerebral

hemorrhage and pregnancy, respectively [19, 20]. Whether these or other leukocyte subsets

regulate the integrity of the GVB during intestinal injury or infection remains an open area of

investigation.

Concluding remarks

The intestinal vasculature is crucial for nutrient absorption, as a barrier against microbes, and

for the recruitment and conditioning of immune cells. The recent discovery of the GVB pres-

ents an exciting opportunity to understand how the unique structure of the gut endothelium

responds to diverse insults and the cellular networks that promote vascular tolerance and

repair. It is intriguing to consider how both host and pathogen modulate the intestinal vascula-

ture to their own benefit while continuing to tolerate one another. However, the cellular and

molecular changes that characterize vascular damage and repair during microbial and macro-

bial challenge remain largely unknown. Further studies into the mechanisms of intestinal vas-

culature control could open new avenues for therapeutic interventions that limit the morbidity

associated with intestinal helminth infection and other settings of vascular damage, such as

inflammatory bowel disease.
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