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Abstract

Neural morphology and membrane properties vary greatly between cell types in the nervous

system. The computations and local circuit connectivity that neurons support are thought to

be the key factors constraining the cells’ biophysical properties. Nevertheless, additional

constraints can be expected to further shape neuronal design. Here, we focus on a particu-

larly energy-intense system (as indicated by metabolic markers): principal neurons in the

medial superior olive (MSO) nucleus of the auditory brainstem. Based on a modeling

approach, we show that a trade-off between the level of performance of a functionally rele-

vant computation and energy consumption predicts optimal ranges for cell morphology and

membrane properties. The biophysical parameters appear most strongly constrained by

functional needs, while energy use is minimized as long as function can be maintained. The

key factors that determine model performance and energy consumption are 1) the satura-

tion of the synaptic conductance input and 2) the temporal resolution of the postsynaptic sig-

nals as they reach the soma, which is largely determined by active membrane properties.

MSO cells seem to operate close to pareto optimality, i.e., the trade-off boundary between

performance and energy consumption that is formed by the set of optimal models. Good

performance for drastically lower costs could in theory be achieved by small neurons without

dendrites, as seen in the avian auditory system, pointing to additional constraints for mam-

malian MSO cells, including their circuit connectivity.

Author summary

Cellular design varies widely across neurons. Evolution is thought to have adapted the bio-

physical properties of each cell type to better support their specific function. The most

influential among these neuronal parameters include ion channels and morphology. At

the same time, we know that the brain is disproportionately expensive: it consumes ~20%

of resting oxygen but only contributes ~2% to body mass. While both function and energy

seem important constraints in neuronal design, it is unclear how neural systems simulta-

neously account for both factors and how potential tradeoffs between the two were
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decided in evolution. To explore this relation, we focus on a cell type with well-character-

ized function: MSO neurons of the mammalian auditory brainstem, which detect pre-

cisely coincident signals to encode sound source direction. Measurements of metabolic

markers indicated that these cells are particularly expensive. Hence, they are exceptionally

interesting candidates to better understand potential compromises between function and

energetic demand. We use models of conductance-based neurons constrained by experi-

mentally observed characteristics with parameters varied within a physiologically realistic

range. Our study shows that neuronal design of MSO cells does not compromise on func-

tion, but favors energetically less costly cell properties where possible without interfering

with function.

Introduction

Morphology and membrane properties of neuron types in the brain show a large diversity.

The systematic differences between cell types are assumed to be matched to the computations

carried out by neurons and to support local network connectivity [1–3]. On the other hand,

other constraints may shape neuronal design further. One such factor that has been discussed

extensively over the past decades is energy efficiency [4,5]. The brain accounts for a dispropor-

tionately large part (~20%) of the energy budget [6], with metabolic energy being spent mostly

on electrical signaling: synaptic input, action potentials and resting potentials [4,7,8]. These

signaling costs arise primarily from the consumption of ATP by the sodium-potassium pump

that maintains the sodium and potassium concentration gradients across the membrane [4].

Minimization of energy consumption has indeed been suggested as a constraint for cellular

biophysics, e.g., for the properties of sodium and potassium currents underlying spike genera-

tion [9–13], cell morphology [14,15] but also for neural coding schemes [16–18]. It is, however,

still not clear to what extent energy consumption competes with neural function in defining

cell morphology and membrane properties.

In this study we focus on a specific system that is known to have a high energetic demand:

the medial superior olivary (MSO) nucleus of the mammalian brainstem [19,20]. We aim to

understand the influence of energy consumption on the design of MSO principal neurons. To

this end, we quantify the impact of crucial cellular parameters on the well-defined functional

computation performed by these cells as well as their energy consumption. We can rely on the

facts that 1) the function of the highly specialized MSO principal cells is well characterized and

relies on the computation of the temporal coincidence between two inputs and 2) the cells’

metabolic demand is known to be particularly high. MSO principal cells play an important

role in auditory perception, as they encode the direction of sound in the horizontal plane [21–

23]. MSO cells accomplish this by exploiting the time difference for a sound wave to reach

both ears: the interaural time difference ITD (Fig 1A). Sound waves are transduced into elec-

trical signals in the cochleae of each ear and through several intermediate synapses reach the

principal cells of the MSO nuclei in the brainstem. The excitatory inputs relaying the signals

from the ipsilateral and contralateral ear each impinge on one of the two main dendrites of the

bipolar MSO cells. The excitatory synaptic inputs can convey the ITD information to the MSO

cells because they are phase-locked to the sound wave stimuli to each ear. The timing differ-

ence between the ipsi- and contralateral inputs is then used to encode source location through

the fundamental neuronal computation of coincidence detection [1,24]. As a consequence,

MSO cell activity varies strongly as a function of ITD, with different MSO cells having different

ITDs for which they respond most strongly. MSO cells show sensitivity to ITDs in the range of
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tens of μs, meaning that at the behavioral level humans for example can discriminate changes

of just 1–2 degrees in the angular location of a sound source [23]. To achieve this, MSO cells

have specialized membrane properties, including a very fast membrane time constant (<1 ms)

and a low-threshold potassium current, IKLT, both contributing to a very short input integra-

tion window [25]. Furthermore, MSO cell function is supported by the segregation of the ipsi-

lateral and contralateral inputs to the two main dendrites [26]. The brain structures involved

in auditory function, from the cochlear nucleus to the auditory cortex, are particularly expen-

sive in terms of glucose utilization [19]. For MSO cells specifically, their computational func-

tion is associated with significant energy consumption because of the leaky membrane that

underlies the fast membrane time constant and the very high input rates (hundreds of spikes/

s) these cells have to process. Hence, MSO cells provide a valuable opportunity to investigate

the constraints that both function and energy consumption create for neural properties.

In order to quantify and compare the sensitivity of MSO cells to ITDs and the associated

metabolic cost, we here develop a minimal biophysical model of a principal MSO neuron that

quantitatively matches previously reported experimental properties [25,27]. We then use this

model to systematically explore how morphology and membrane parameters affect both the

performance and the energy consumption associated with ongoing processing of synaptic

input. We identify parameter ranges that combine good performance with low energy use and

Fig 1. Processing of ITDs by MSO cells and fitting the membrane properties of a simplified MSO model to experimental data. (A) MSO cells use the time

difference for sound to reach both ears (interaural time difference, ITD) to encode the location of a sound source in the horizontal plane. Top: Sound waves arrive

at both cochlea and, via several intermediate stages, reach the principal neurons of the MSO nuclei in the brainstem. Bottom left: Fibers arriving from the

ipsilateral (blue) and contralateral (green) ear are segregated on the two main dendrites of the principal MSO cells. Bottom right: MSO cell firing activity strongly

depends on ITD because of precise coincidence detection of the ipsilateral and contralateral signals. (B) Schematic of minimal model of principal MSO cell. In

experiments by Mathews et al. [25] an EPSC current waveform was injected in one dendrite at a distance of 0–100 μm from the soma (“dist soma”) and the

voltage attenuation (i.e., the ratio of dendritic amplitude to somatic amplitude) was determined (circles). The experiment was simulated numerically with the

default minimal model (solid curve; see Methods). (C) The width of the propagated EPSP at soma at halfmaximal amplitude as determined by experiments [25]

(circles) and from numerical simulations of the default minimal model (solid curve). (D) Somatic input resistance determined in experiments [25] and from

numerical simulations of the default model under control conditions (left) and with KLT blocked (right). (E) Densities for the leak conductance and KLT peak

conductance were varied from 0.2 to 10 mS/cm2 and from 1 to 40 mS/cm2, respectively, and the sum squared error for EPSP attenuation, somatic EPSP halfwidth

and input resistance was computed. The parameter combination with the lowest fitting error (open circle) was used for the default model. Panels B and C were

adapted with permission from Fig 2 in ref. [25].

https://doi.org/10.1371/journal.pcbi.1006612.g001
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compare these with the experimentally-derived properties of MSO neurons. Overall, our

results point towards a strong influence of functional performance on neuronal properties,

that is combined with an energy-saving design, if achievable without compromises to

function.

Results

Biophysical model of a principal MSO cell

To investigate how both the computational function and energy consumption of MSO cells

constrain cell morphology and membrane properties, we systematically tested how the cell

parameters affect performance and energy use. To this end, we developed a simplified biophys-

ical model of a principal MSO cell based on anatomical and experimental data.

The bipolar morphology of principal MSO cells was captured by a soma compartment with

two identical dendritic cables which, in agreement with anatomical data [27] were of constant

diameter. Thus, three parameters describe the cell morphology: the surface area of the soma

and the length and diameter of the dendritic cables. The membrane properties of MSO princi-

pal cells have been experimentally characterized by a very high membrane conductance and

the presence of the low-threshold activated potassium current, IKLT (see, e.g, ref. [25]). Both

features were included in the biophysical model. For simplicity, we considered the KLT-cur-

rent to have a uniform density throughout soma and dendrites. It was the only voltage-depen-

dent current included in the model, the other membrane conductances that make up the high

resting conductance of MSO cells (e.g., the slow h-type conductance, see ref. [28]) were incor-

porated into the passive leak conductance, which also had a constant density throughout the

cell.

To define a parameter set for our model MSO neuron, we used published anatomical data

[27] to set the morphology parameters and intracellular recording data [25] to fit the mem-

brane parameters. Basing our morphology parameters on the data from older animals in [27],

the single compartment soma had a surface area of 1256 μm2 (equaling the surface area of, e.g.,

a cylinder of length 25 μm and diameter 16 μm) and the two dendritic branches had a length

of 150 μm and a diameter of 2.5 μm. The intracellular recordings involved the injection of

excitatory postsynaptic current (EPSC) waveforms into the dendrite and recording the voltage

responses both locally and at the soma. Thereby the excitatory postsynaptic potential (EPSP)

attenuation from dendrite to soma (Fig 1B) and the EPSP halfwidth (i.e., the width at half-

maximal amplitude; Fig 1C) were determined. Moreover the experiments showed the input

resistance under control conditions and with the KLT-conductance blocked by DTX (Fig 1D).

We varied the leak and KLT-conductance densities over a wide range and simulated the exper-

iments to find parameter combinations that fit the data (Fig 1E) and took the best fit as our

default parameter set. This resulted in a leak density of 0.86 mS/cm2 and a KLT peak conduc-

tance density of 13.6 mS/cm2.

Quantifying performance and energy consumption

Having constructed a minimal biophysical model of the MSO cell, we then used it to quantify

how its performance, i.e., its ability to encode ITD, relates to the energy it consumes perform-

ing this task. We considered one of the simplest auditory stimuli: a pure tone. The anatomical

and electrophysiological data used to define the default model represent population averages

that were obtained from principal MSO cells with different preferred sound frequencies (note

that these frequencies are typically not known in in vitro experiments). To account for this

fact, we considered a pure tone frequency in the middle of the frequency range that MSO cells,

e.g., in gerbils but also humans, respond to (500 Hz). Six separate axonal fibers conveyed the
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auditory signal to the ipsilateral ear to the ipsilateral dendrite, and, similarly six axonal fibers

conveyed the contralateral signal to the contralateral dendrite. The fibers were uniformly dis-

tributed across the distal two thirds of each dendrite [29] (Fig 2A, top schematic). The excit-

atory conductance inputs were phase-locked to the sound wave with a small amount of jitter.

Further input noise resulted from the individual fibers occasionally skipping cycles (Fig 2A,

“Synaptic conductances”, see Methods). In the example simulation in Fig 2A, the model neu-

ron is encoding the ITD for a sound wave that first arrives at the ipsilateral ear before reaching

the contralateral ear 0.5 ms later.

The phase-locked conductance inputs on the dendrites lead to cumulative EPSPs at the

soma. For large enough EPSPs the model should generate action potentials. Action potentials

in MSO cells are unusually small [30], they are generated in the axon and do not actively back-

propagate into the soma and dendrites. We attached an axonal compartment to the soma in an

essentially feedforward manner, with a voltage that is strongly coupled to the somatic voltage,

but has no influence on the somatic potential. The axonal compartment has a fixed voltage

threshold to produce spikes. Hence, when the input fibers are activated synchronously (in this

example when ITD = 0, i.e., when the sound source is straight ahead), the EPSPs will summate

Fig 2. Quantifying MSO cell model performance and energy consumption. (A) Voltage and membrane currents of

minimal MSO model in response to 500 Hz pure tone sound wave. Synaptic conductances to the left, ipsilateral (blue)

and right, contralateral (green) dendrite are phase-locked to the sound wave, which creates an ITD of 0.5 ms. Somatic

(black curve) and axonal (orange) voltages and the total cell membrane currents fluctuate at 500 Hz in response to the

synaptic input. Total sodium membrane currents (i.e., summed across entire cell) resulting from leak (dark blue) and

synaptic input (light blue) as well as the total potassium currents resulting from IKLT (purple), leak (red) and synaptic

input (orange) are shown. Model uses default parameters as defined in the Methods. (B) Firing rate of default cell

model in response to a 5 s soundwave for a range of ITDs. Maximal firing rate at ITD = 0 ms (r0) and firing rate at

ITD = 0.5 ms (r0.5) are marked. (C) Firing rate at ITD = 0 ms (r0, solid black curve) and ITD = 0.5 ms (r0.5, dashed

curve) are shown when the synaptic peak conductance varies from 3 to 300 nS. Difference between the two curves

(gray area in top panel, gray curve r0 − r0.5 in bottom panel) gives the rate modulation (“Rate mod.”) for the default

model as a function of synapse strength. Maximal rate modulation is marked by open circles. (D) Time-averaged total

cell membrane currents (summed over entire cell, see bottom panel in A), averaged for a 5 s pure tone sound wave

stimulus with ITD = 0 ms.

https://doi.org/10.1371/journal.pcbi.1006612.g002
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perfectly and lead to the maximal firing rate (Fig 2B). As the ITD increases, i.e., as the sound

source moves towards the ipsi- or contralateral side, the EPSPs will summate less strongly and

lead to fewer spikes.

The sensitivity to ITD can be quantified from an ITD-tuning curve in various ways. In

order to allow for a systematic exploration of the large parameters space, we quantified the

ITD sensitivity as the firing rate difference between ITD = 0 and ITD = 0.5 ms (i.e., r0 − r0.5),

which yielded ~320 spikes/s for the default model. Importantly, the performance (“Rate modu-

lation”) depended entirely on the input strength (Fig 2C). When inputs are too weak, there

will be no output, and when the input is too strong, even the out-of-phase inputs (i.e.,

ITD = 0.5 ms) will saturate the output rate (i.e., 500 spikes/s), leading to zero ITD sensitivity.

We therefore needed to ensure that input strength was matched to the cell model. Hence, we

determined for each model how it performed as a function of input strength and used the

input strength (EPSG peak) that gave it the best performance. For the default model, the EPSG

peak per input fiber was ~20 nS, comparable to experimentally obtained estimates [29]. With

this EPSG amplitude, four synchronously activated fibers (i.e., two fibers uniformly distributed

along each of the two dendrites) were required to generate a spike.

The energy consumption associated with the input processing is largely determined by the

costs of the sodium-potassium pump that maintains the sodium and potassium concentration

gradients across the membrane, i.e., the costs depend on the sodium and potassium currents

during input processing and can hence be determined, to a good approximation, through an

“ion-counting” approach (see Methods and ref. [4]). During a simulation, the ionic currents

were tracked. The synaptic and leak currents were both considered to consist of a mixture of

sodium and potassium currents (see Methods). For the synaptic current, the ratio of sodium to

potassium conductance was 2:1, resulting in a synaptic reversal potential of 0 mV. The passive

leak current was considered to represent all subthreshold membrane currents other than the

synaptic currents and the IKLT and had such a ratio of sodium to potassium conductances that

the resting potential of the cell was at −60 mV. The total cumulative contributions of sodium

and potassium currents across the cell surface from synaptic currents, leak currents and IKLT

were computed (Fig 2A, bottom panel). Since the pump itself was not explicitly modeled, the

total cell sodium and potassium currents (including IKLT) were exactly balanced at rest (Fig

2D). The energy consumption rate could be computed from the (absolute value of the) mean

total cell sodium current, by converting the current into ATP usage rates through the 3:1 ratio

of sodium ion extrusion versus ATP consumption. For the default model, we find a mean total

sodium current of ~3 nA, which equals 6.2�109 ATPs per second (see Methods) for the ongoing

costs associated with input integration for an ongoing 500 Hz pure tone stimulus.

Saturation of synaptic input currents limits performance and is crucial for

energy consumption

We next set out to investigate how the individual intrinsic cell parameters affected perfor-

mance (i.e., ITD sensitivity) and energy consumption.

We first focus in detail on a morphological parameter: the length of both dendrites. We sys-

tematically varied the length of the dendrites from 5 μm up to 400 μm (Fig 3). There was a

clear parameter region leading to improved computational performance (quantified by ITD

sensitivity, see also ref. [26]). In this region, energy use was low, though not at its theoretical

minimum. Specifically, performance of the cell increased with dendritic length up to a maxi-

mum around ~320 spikes/s when dendrites were ~150–190 μm long (Fig 3A, black curve). For

increasingly longer dendrites, the performance dropped steeply again (see below). In contrast,

energy costs increased monotonically with dendrite length (blue curve). The default model
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parameters representing the experimental data (vertical gray line at 150 μm) were in a range

where performance was very good and energy use relatively low.

The dependence of performance and energy costs on dendrite length could be largely

explained by two factors: 1) the width of the propagated EPSP at the soma and 2) the amplitude

of the synaptic inputs locally in the dendrites (Fig 3B). We quantified both factors by activating

all synapses once synchronously with an input strength that depolarized the soma by exactly

10 mV (Fig 3C). First, we turned to functional performance, i.e., ITD sensitivity. We deter-

mined the halfwidth of the propagated cumulative EPSP at the soma. This quantity is key to

the performance, because the narrower the cumulative EPSP is, the higher the ITD sensitivity

(i.e., the rate modulation) can be (Fig 3B, black curve). For the same synchronous stimulus we

also determined the amplitude of the response locally in the dendrites. The excitatory

Fig 3. Length of MSO cell dendrites impose a trade-off between performance and energy consumption. (A)

Performance (i.e., maximal rate modulation, see Fig 2C; black curve) and energy costs (blue curve) as a function of

dendrite length. Stimulus is a 5 s pure tone stimulus of 500 Hz. Default dendrite length is indicated by vertical gray bar.

(B) Somatic EPSP halfwidth (black curve) and dendritic saturation (red curve), defined as the peak dendritic voltage

normalized by its absolute maximum amplitude (i.e., Erev−Vrest = 60 mV). (C) Simulation setup to obtain EPSP

halfwidth and dendritic saturation. Voltage is measured in dendrite (red) and soma (black). All synaptic inputs are

activated simultaneously with a strength that gives a 10 mV EPSP at the soma (dotted line). Amplitude of the local

dendritic response (dash-dotted line) and halfwidth of the somatic EPSP (dashed line) are measured. (D) Somatic

EPSP traces are shown for three levels of dendritic saturation (top) and the somatic EPSP halfwidth is shown for the

full range of dendritic saturation (bottom). Simulations use the default model; different levels of saturation are

achieved by varying synaptic strength, leaving all model parameters constant. (E) Probability distributions of somatic

voltage during 5 s simulations with ITD = 0 ms and ITD = 0.5 ms for the default model with a dendritic length of

185 μm (top) or 360 μm (bottom).

https://doi.org/10.1371/journal.pcbi.1006612.g003
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conductance inputs have a reversal potential of Erev = 0 mV, hence the voltage amplitude will

saturate for large inputs, with an absolute maximum amplitude of Erev−Vrest = 60 mV. Fig 3B

shows the dendritic amplitude normalized by the maximum of 60 mV (red curve). The longer

the dendrites were, the stronger the dendritic inputs needed to be to reach the 10 mV depolari-

zation at the soma, i.e., the voltage attenuation from dendrites to soma increased with dendrite

length (see Methods) and as a consequence the dendritic saturation increased. Moderate

increases in dendritic amplitude helped the performance because more IKLT was activated,

which narrowed (“sharpened”; see ref. [25]) the EPSPs (Fig 3D, blue versus orange traces).

Further increases in dendritic amplitude, however, were detrimental to performance, because

the width of the EPSP (yellow trace) increased as it approached saturation. Moreover, satura-

tion led to a decrease of the voltage fluctuations at the soma, hence decreasing the discrimina-

bility between ITD = 0 and ITD = 0.5 ms inputs (Fig 3E). Finally, strongly saturated dendritic

responses imposed an absolute limit on the input current magnitude and therefore on model

parameters, e.g., on the dendrite length: inputs far away from the soma can never generate

spikes by themselves, no matter how large the synaptic conductances are, thus leading to zero

ITD sensitivity. Taken together, the observed dependence of performance on dendritic length

was largely explained by dendritic saturation and changes in somatic EPSP halfwidth.

Next we considered the energy costs. These rise steeply with dendritic length (Fig 3A, blue

curve) for two reasons: 1) The dendritic saturation that accompanies longer dendrites natu-

rally correlates with energy consumption; larger synaptic currents boost the synaptic input

costs. 2) The total membrane surface area increases with longer dendrites and so do hence the

total membrane currents.

Several cellular properties underlie trade-offs between performance and

energy consumption

We performed a similar analysis for five additional intrinsic cell parameters (Fig 4; see S1

Text). First, varying two more morphological parameters, the dendrite diameter (Fig 4A) and

the soma surface area (Fig 4B), showed that, as for dendrite length (see Fig 3A), the experimen-

tally realistic default parameters (gray bars) were very close to maximal performance while

energy consumption was relatively low. Note that the non-monotonic behavior of the energy

consumption with dendritic diameter is explained by the counteracting effects of synaptic

costs decreasing as the cell becomes electrically more compact with diameter, whereas the

increase in cell size increases the costs resulting from the intrinsic membrane currents.

Next, varying cell membrane parameters gave similar results. For the cell’s leak conduc-

tance density (Fig 4C, solid curves), the default fitted value was again in a good range where

performance was close to maximal and energy cost was low. Importantly, removing the KLT-

current from the model (Fig 4C, dashed curves) showed that the model with KLT greatly out-

performed the passive model: it performed almost twice as well compared to the best perfor-

mance of the passive model, while consuming less than half the energy. The contribution of

the KLT-current was also revealed when increasing the KLT density (Fig 4D) from very low to

high densities. The default, experimentally constrained KLT density (see Fig 1) was situated at

a level where performance was very good, while the cost increases that result from KLT were

still small. Finally, varying the activation time constant of the KLT-current (Fig 4E) showed

that its default value was in a very good range with good performance and small associated

costs. A more detailed biophysical discussion of these five morphological and electrophysio-

logical parameters is given in S1 Text.

Taken together, the cell parameters brought about trade-offs between performance and

energy use, i.e., better performance was often associated with higher costs. These trade-offs are
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most clearly depicted by plotting costs versus the reciprocal of the performance (Fig 4F). The

most energy-efficient models are located in the bottom left of this space, where energy costs

are low and the reciprocal of the performance is low. Note that a value of 2 ms/spike is the best

any model can do, as the model is then able to distinguish the in-phase and out-of-phase

inputs for every cycle of the 500 Hz stimulus (hence, a 2 ms cycle); larger values correspond to

poorer performance. The intersection of all six curves denotes the default model (open star). It

appeared that the experimentally constrained default model was, locally in the 6-dimensional

parameter space, operating at so-called pareto optimality (thick gray curve) [31], which means

that no change in any single parameter could improve performance and at the same time

maintain (or lower) the costs. Importantly, along the pareto optimal boundary, performance

could be increased through an increase of the KLT density or a decrease of the KLT activation

time constant, both manipulations increasing the costs. Conversely, energy consumption was

decreased by reducing cell size (dendritic length or soma area) or decreasing the leak conduc-

tance, with a consequent decrease in performance.

Fig 4. Trade-offs between performance and energy costs when cell morphology and membrane parameters are

varied. (A)-(E). Performance (black curves) and energy costs (blue curves) as a function of dendrite diameter (A),

soma surface area (B), leak density (C), KLT density (D) and KLT activation time constant (E). Default model

parameters are indicated by vertical gray bars. Stimulus is a 5 s pure tone stimulus of 500 Hz. (F) Data from panels A-E

and Fig 3A plotted in the energy costs versus performance space. Performance is plotted as its reciprocal value, such

that the lower, left corner gives the optimal model with high performance and low energy consumption. Default model

is depicted by open star, and the pareto boundary that combines all optimal models as a thick gray curve.

https://doi.org/10.1371/journal.pcbi.1006612.g004
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All above results were obtained by varying a single parameter at a time, while keeping the

others fixed. The pareto optimal boundary, however, could possibly be shifted towards lower

costs (i.e., downwards) or towards better performance (i.e., leftwards) by combined changes in

parameters. We therefore next turned to selected, physiologically relevant trajectories in

parameter space.

Variation of KLT and leak conductance densities while keeping a stable resting poten-

tial. First, we considered the KLT and leak conductance densities together, as KLT was key

to improve performance. KLT density cannot be modulated entirely independently from the

leak conductance if a neuron needs to maintain a resting potential that is not very far from the

firing threshold (at about −50 mV). We hence explored a range of combinations of KLT and

leak densities that could maintain a stable resting potential at −60 mV through adjustments of

the leak reversal potential (Fig 5A; see Methods). Larger leak and KLT densities allowed for

increased performance, shifting the trade-off curve leftwards, but also led to higher costs, shift-

ing the curve upwards. The optimal combinations of KLT and leak densities formed a pareto

optimal boundary (dashed curve) [31], highlighting the central trade-off between performance

and energy consumption. The fitted model (open star) was located very close to this boundary.

The trade-off curves reached a maximum performance of ~440 spikes/s in the depicted

energy-performance space.

Variation of dendrite length and diameter while keeping a constant cell surface area.

Next, we focused on cell size, since decreasing cell size seemed efficient in reducing the energy

consumption. In theory, arbitrarily low costs can be obtained when considering a point neu-

ron model with vanishing membrane surface area. Simulations with such a point neuron

model yielded a performance of ~360 spikes/s when leak and KLT conductance densities were

both optimized to give the maximal performance (Fig 5A, arrow below performance axis).

This performance compared well to the ~440 spikes/s performance of a neuron with default

dendrite morphology that had both leak and KLT conductance densities optimized for perfor-

mance (Fig 5A). Hence, the point neuron would be the most cost-efficient MSO cell, showing

decent performance for very low costs. In reality, however, there are various constraints driv-

ing neuronal design towards a certain minimal size, for example, to create surface area for syn-

apses to connect to. We varied dendrite length and diameter together such that the total cell

surface area remained constant (Fig 5B, black curve). This produced a trade-off curve and

showed that the default, fitted model gave close to maximal performance with relatively low

costs (open circle). This trade-off curve was indeed shifted up or down as the total surface area

was varied, not allowing for improvements in performance, but for similar performance with

reduced costs.

Discussion

In this study we investigated how both computational function and energy consumption con-

strain cell morphology and membrane properties of principal MSO cells. We developed a min-

imal model of a principal MSO cell and systematically tested how the cell parameters affected

performance and energy use. Interestingly, we found that most morphological and membrane

parameters showed an optimal range for performance and that the experimentally constrained

model, i.e., the model that uses parameters adopted by gerbil MSO cells [25,27], operated

within or very close to this range. In contrast, energy use typically varied monotonically with

the model parameters. If a wider range of good values for performance was available, the

parameters from the experimentally constrained model tended towards lower energy usage.

Hence, our findings suggest MSO cell properties are firstly constrained by function and sec-

ondarily, if not compromising function, by a reduction of energetic cost.
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The key mechanisms that determined model performance and energy consumption were

1) the saturation of the synaptic conductance input and 2) the temporal resolution of the post-

synaptic signals as they reach the soma, which was largely shaped by the voltage-dependent

membrane properties determined by the low-threshold activated potassium current IKLT. The

briefer the voltage response, the better. Increased input amplitude in dendrites recruited more

KLT-current, yielding narrower, sharper responses [25]. However, when inputs became even

larger, saturation of the synaptic currents led to broader postsynaptic responses and decreased

voltage fluctuations at the soma, both factors decreasing the performance and steeply

Fig 5. Membrane channel densities allow an improved performance and cell size allows for energy reduction. (A)

Energy cost is plotted against reciprocal performance for the default model for parameter combinations where leak

density is varied from 0.2 to 10 mS/cm2 and KLT density from 0.2 to 40 mS/cm2. Dashed curve indicates best models

(i.e., best performance for a given energy consumption level) that maintain a resting potential at −60 mV (see

Methods). Five curves depict models with a fixed leak density (0.35, 0.8, 1.4, 2.5, 4.3 mS/cm2) and range of KLT

densities. Default model is depicted by open star. Arrow on abscissa indicates performance of a point neuron model

with leak-KLT combination that gives it the best performance. Simulations consist of responses to 5 s long pure tones

of 500 Hz. (B) Energy cost is plotted against reciprocal performance for combinations of dendrite diameter and

dendrite length that give a constant dendrite surface area. Surface area is equal to the control (black curve; see

Methods), twice the control (blue curve) or half the control (red curve). Models with short, thick dendrites are at the

bottom right, and models with long, thin dendrites are at the top of the energy costs-performance space. Default model

is depicted by open star. Simulations consist of responses to 5 s long pure tones of 500 Hz.

https://doi.org/10.1371/journal.pcbi.1006612.g005
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increasing the costs. Hence, the entire parameter regime that required large amplitude den-

dritic inputs (≳ 40 mV) was undesirable from both a functional and an energetic perspective.

The experimentally constrained MSO model operated very close to the set of all models

that were optimal with respect to performance and energy use, the so-called pareto optimal

boundary (see Fig 4F, models on thick gray curve). This boundary highlights the tradeoff that

exists between performance and energy consumption. It depends on the system, including the

environment, whether performance or energy use is the more important constraint. Towards

better performance, we found that in particular the subthreshold KLT-current, which is pres-

ent in various cell types in the auditory brainstem [32,33], played a key role, improving the per-

formance well beyond the capabilities of a passive neuron (see also refs. [34,35]). The current

has the potential to further improve the performance, but at a substantial energy cost. In the

direction of lower costs: cells having short dendrites and small soma surface area are energeti-

cally cheaper [36], while they did not lose much on performance. Hence, this indicates further

constraints are at play for a neuron to have a certain minimal size, e.g., to create surface area

for synapses to connect to [2,3].

MSO cells are exceptionally suited to study function and energy

consumption

MSO cells are particularly well suited to analyze computational and energetic constraints on

neural properties, since principal MSO cells are one of the very few cell types in the brain for

which the computational function is well characterized. Together with the principal cells from

the lateral superior olivary nucleus, the MSO cells are the first in the nervous system to com-

bine input from both ears, allowing for the comparison of arrival times of sound waves at the

two ears [21,22]. Furthermore, the highest rates of glucose utilization in the brain are in the

structures involved in auditory functions [19]. Firing rates are very high in the early part of the

auditory system since activity is triggered directly by sound waves at frequencies of hundreds

of hertz, and moreover, spontaneous activity of the auditory nerve (up to ~100 spikes/s) leads

to considerable activity even in the absence of sound stimuli [37]. Hence, the high activity lev-

els contribute to high energy costs of the early auditory system. Importantly, the membrane

properties enabling such tight tracking of synaptic input are very costly (see below). The

increased use of energy of MSO cells because of their computational function was recently sup-

ported by Trattner and colleagues [20]. Through immunohistochemistry they quantified meta-

bolic markers for energy consumption and production, indeed showing that MSO cell energy

use goes hand in hand with the maturation and refinement of the cellular properties after hear-

ing onset (see also ref. [38]).

Costs of action potentials

In the present study we focused on the costs resulting from synaptic input processing and did

not consider the costs associated with the output spikes. Our arguments for this are, first, that

the spike output costs are considerably lower than the input processing costs (see below). Fur-

thermore, the firing rates in the early auditory system are directly related to the sound wave

frequencies, hence, optimizing cell properties by reducing costs from output activity would

require alternative coding schemes using lower output rates, which is outside the scope of the

present study. MSO cells show some properties that are beneficial for reducing the costs result-

ing from output spikes. In the soma of MSO cells, the action potentials are particularly small

[22,29,39] since they are generated in the axon and do not actively propagate back into soma

and dendrites, and because the soma imposes a large current sink for the axon [40]. Not only

is there no apparent use for such backpropagation—synaptic inputs to MSO cells are not
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known to show any plasticity, which could rely on such backpropagated signals—but it could

potentially even interfere with the extremely precise coincidence detection. This electrical seg-

regation of soma and dendrites from the axon reduces the energy costs related to the action

potential output. A further important factor for the output costs is the myelination of axons.

The axons from principal MSO cells are indeed myelinated, which first of all speeds up the

action potential propagation, but it also has consequences for the costs because the spiking

currents are concentrated in the nodes of Ranvier, which are separated from each other by

internodes that have a very low capacitance [40,41]. Harris and Attwell [41] computed in detail

the costs of action potentials traveling along myelinated fibers from the rat optic nerve. They

calculated the costs to be 3.2 × 106 ATPs per spike traveling along a single myelinated fiber of

5.5 mm length. The myelinated axon from a principal MSO neuron projecting to the inferior

colliculus would have a similar length in a small rodent (not considering any branching of the

axon). Further relevant MSO axon parameters, such as diameter, number of myelin wrap-

pings, internode length, and the overlap of the sodium and potassium currents that underlie

the action potential, can vary from a rat optic fiber [40,42], but when we consider the optic

fiber as a reference, this would mean that an MSO cell spends 3.2 × 108 to 9.6 × 108 ATPs per

second on output spikes (assuming output rates of 100 to 300 spikes/s). Our models show that

the costs from synaptic and intrinsic membrane currents during input processing were of sim-

ilar magnitude (see Fig 2D) and summed up to a consumption rate of 6.2 × 109 ATPs per sec-

ond per neuron. Hence, the axonal output signaling costs for MSO cells were an order of

magnitude lower than the input processing costs.

Note that Harris and Attwell [41] also showed that the myelination of axons is not necessar-

ily energetically advantageous, because of further involved costs that are not directly resulting

from the electrical signaling. These additional costs are associated with the myelination process

itself and the maintenance of the resting potential of the oligodendrocytes. In the end, the net

effect on the total costs of a myelinated axon depends on the axonal firing rates. Because of the

typically high firing rates of auditory brainstem cells, myelination is very likely to accomplish

significant savings on energy consumption for these neurons.

Comparison with other cell types

To enable the extremely precise coincidence detection, the MSO cells require very large intrin-

sic membrane currents. Our default model (Fig 2) showed that during input processing the

synaptic costs were of similar magnitude as the intrinsic membrane currents, totaling to a con-

sumption rate of 6.2 × 109 ATPs per second per neuron. How do these costs compare to other

neurons? Attwell and Laughlin [4] estimated the energy consumption for a cortical pyramidal

neuron to be 0.34 × 109 ATP/s for the resting membrane currents and 1.1 × 109 ATP/s for

postsynaptic currents, assuming the synaptic inputs are activated at 4 events/s. Hence, the total

input processing costs (1.44 × 109 ATP/s) are only ~23% of that of an MSO neuron, and partic-

ularly noticeable are the much lower costs (~10%) of pyramidal neuron subthreshold mem-

brane currents compared to MSO cells. Note though, that a detailed analysis of the costs of

input processing in a morphologically reconstructed pyramidal neuron is likely to show higher

energy costs, particularly if also the costs of active dendritic processes are considered (see, for

example, ref. [43]). Similar estimates of energy consumption have been made for cerebellar

neurons [7,8]. Total input processing costs arising from synaptic and intrinsic membrane cur-

rents varied from ~0.12 × 109 ATP/s for the small granule cells up to ~3.7 × 109 ATP/s for the

larger Purkinje and Golgi cells. Hence, MSO cells are likely among the most energetically

expensive neurons in the brain when focusing on the input processing costs. And this is

unlikely to change when considering in addition the costs of the output action potentials, since
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MSO cells fire at very high rates compared to most neurons in the mammalian nervous system.

When considering energy density of the tissue, as suggested by Sterling and Laughlin [44],

consumption per volume is also high, because MSO cells are small: assuming a volume of

3600 μm3 for our minimal model with simplified morphology yields an energy density of

1.7 × 106 ATPs per μm3 per second.

Our findings show that for MSO cells the ratio of functional performance and metabolic

cost need not always be at its maximum value, contrasting findings in other systems like the

retino-thalamic synapses in the visual pathway [45]. Being close to the pareto boundary, how-

ever, does not generally exclude a maximization of the efficiency ratio between functional per-

formance and cost; it is well possible, that a system that operates at the maximal efficiency

ratio can also be located close to the pareto boundary. Differences in energy efficiency between

cell types may, on the other hand, reflect differences in the functional mechanisms and con-

straints of information transfer as well as the availability of the associated metabolic energy in

the system.

Finally, also note that the specialized properties of MSO cells to process high frequency

input lead to a high level of energy consumption even in the absence of sound stimuli, in part

because of the considerable spontaneous activity levels of the excitatory inputs to MSO cells

(~55 spikes/s) [46]. We computed the energy consumption in the absence of relevant sound

stimuli to be ~50% of the costs during sound processing.

Further contributions to energy costs

We focused in this study on the energy costs of the processing of synaptic input. These costs

consist of a synaptic contribution and a membrane current contribution (i.e., leak and KLT

current). In our calculations we have not included the energy costs of neurotransmitter recy-

cling and vesicle release, which might contribute on the order of 10–20% of total input pro-

cessing costs [4,8].

A further factor contributing to input processing costs is inhibition. Principal MSO neu-

rons receive glycinergic inhibitory input at the soma [47]. However, the role of inhibition,

including its timing and temporal acuity in MSO cells is currently debated [48–50]. The inhibi-

tory input might be involved with shifting the ITD tuning curve [48] or with stabilizing the

coincidence detection during ongoing high-frequency input trains [49]. Since the temporally

precise coincidence detection performed by MSO cells is possible without inhibition, we there-

fore did not include inhibition in the current study. The additional costs resulting from inhibi-

tory currents can be expected to scale with the level of excitatory input and with the somatic

input conductance, when assuming that the strength of the somatic inhibition keeps pace with

the somatic input conductance. Hence, the inhibition costs can be expected to covary with the

leak and KLT densities and soma size, and to a lesser extent with dendritic diameter and

length.

Importantly, the input processing costs will also depend on the stimulus itself. Because the

anatomical and physiological data that we used to constrain our biophysical model were taken

from MSO cells with unknown preferred frequencies, we considered a pure tone stimulus with

a typical mid-range frequency of 500 Hz. Note that experimental work has not shown a sys-

tematic variation of the fast integrative properties [51] along the putative tonotopic axis within

the MSO, neither is there evidence of a gradient in morphological properties of the principal

cells as has been found in the analogue of the MSO in chicken: the nucleus laminaris [52]. The

density of the slow inward rectifying cationic h-type current [28], however, has been shown to

be increased for high-frequency neurons in the gerbil MSO. The higher h-current density was

hypothesized to counteract temporal summation of inhibitory input in the high-frequency
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neurons [53]. Increasing sound input frequencies would naturally increase the input integra-

tion costs per second. It will be interesting to explore how natural stimuli affect the ongoing

costs by MSO neurons, which could be readily explored using available models of the auditory

periphery [51,54].

Taken together, our analysis reveals that principal MSO neurons are operating in a func-

tionally very desirable range of their intrinsic parameters, where ITD sensitivity is near-opti-

mal. While energy consumption is known to be very high in these cells, we find that this is not

an indication of wasteful processing, but on the contrary, energy consumption is reduced

wherever possible without sacrifices to functionality. Our study suggests MSO cells as a prime

example for an evolutionarily optimized neuronal design that assigns an important role to

energy efficiency, but prioritizes function.

Methods

Biophysical model of a principal MSO neuron

A default minimal model of a principal MSO neuron was constructed with biophysical param-

eters based on experimental data obtained from Mongolian gerbils (Meriones unguiculatus)
[25,27,29]. The model consisted of a soma compartment and two cylindrical dendritic

branches as has been used previously to model MSO cells and cells from the avian analogue of

the MSO: the nucleus laminaris [25,26,55]. The default morphology parameters adopted values

from anatomical data [27]: the single compartment soma had a surface area of 1256 μm2 (e.g..,

this equals the surface area of a cylinder of length 25 μm and diameter 16 μm) and the two den-

dritic branches had length 150 μm and constant diameter 2.5 μm, agreeing with the almost

uniform dendrite diameter observed in gerbil MSO dendrites [27]. Note that this morphology

is almost identical to the morphology of the model used in [25], except that the dendritic diam-

eter is decreased, in accordance with [27].

The dendritic cables were discretized into compartments of length 0.02 times the passive

space constant. The voltage of each compartment i, including the soma, evolved according to

Cm
dVi

dt
¼ � gLðVi � ELÞ � �gKLTw

4

i z1ðVi � EKÞ þ IsynðtÞ þ Ic;iðtÞ

where the membrane parameters were uniform throughout soma and dendrites with specific

membrane capacitance Cm = 1 μF/cm2 and the default densities of the leak conductance and

the voltage-dependent low-threshold potassium-current (IKLT) were gL = 0.86 mS/cm2 and

�gKLT = 13.6 mS/cm2, respectively. Synaptic current Isyn(t) was applied to specific compartments

(see below). The axial coupling currents Ic,i that a compartment receives from its neighboring

compartments were determined by the voltage differences with the neighboring compart-

ments, the axial resistivity Ra = 200O cm, and the geometry (see, e.g., ref. [56]). The potassium

reversal potential was EK = −106 mV and the leak reversal potential was set to EL = −47.4 mV

such that the model had a resting potential of −60 mV. The previously published model of the

KLT-current [25] includes a fast activation gate w (with an activation time constant at rest of

about 1 ms) and a slow inactivation gate z which we fixed to its value at the resting potential.

Note that the slow inward rectifying cationic h-type current that is present in MSO cells [28]

was not modeled explicitly but was considered part of the leak conductance. With the above

default biophysical properties the dendrites had a passive DC space constant of 191 μm

(excluding IKLT) and 100 μm for a small voltage deviation from the resting potential when

including the voltage-dependent KLT conductance.

In order to fit the membrane conductance densities gL and �gKLT to published electrophysio-

logical data [25] (see Fig 1), we determined the somatic input resistance of the model (under
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control conditions and with IKLT blocked) and the somatic and dendritic voltage response to a

dendritic EPSC input where the current waveform was an alpha function with time constant

0.2 ms. As in Mathews et al. [25], we adjusted the amplitude of the EPSC current to obtain a

somatic voltage response with an amplitude of 10 mV. We then determined 1) the attenuation

of the EPSP amplitude from the dendrite to the soma and 2) the width of the somatic EPSP at

half-maximal amplitude (i.e., the EPSP halfwidth). The mean sum squared error for the mod-

el’s input resistance (control and IKLT blocked, respectively 11.4 MO and 36.2 MO in ref. [25]),

attenuation, and EPSP halfwidth were normalized by the respective means of the 4 variables

and then summed up to obtain the total fit error. We chose the model with the smallest error

as the default model for our simulations yielding the above default values.

Numerical simulations to quantify ITD sensitivity

Six separate excitatory input fibers projected to each dendritic branch [29] with each fiber

making one synaptic contact. The synapses were distributed uniformly over the distal 2/3 of

the dendrites. Synaptic input currents resulted from synaptic conductances gsyn(t) that evolved

according to an alpha function with time constant 0.2 ms and with a synaptic reversal potential

of 0 mV. Peak amplitudes of the synaptic conductances were varied to obtain the maximal

ITD sensitivity (see Fig 2C). Synaptic input mimicked the activity that MSO cells receive in

response to a 500 Hz pure tone sound wave as in ref. [57]: synaptic inputs were phase-locked

to the sound wave and noise was introduced through jitter of input activation times and fail-

ures of synaptic activation. Jitter resulted from using a gaussian distribution of synaptic activa-

tion times around the peak of the sinusoidal stimulus producing a vector strength of 0.988 (see

also [21]). Synaptic failures resulted from forcing each input fiber to have an average firing

rate of 240 spikes/s causing them to randomly skip cycles.

Spiking output was computed by voltage threshold crossings in an axonal compartment

that was strongly coupled to the soma without affecting the somatic voltage. The voltage

threshold was set to −50 mV. Crossing of the voltage threshold was followed by a reset to the

resting potential of −60 mV and an absolute refractory period of 1 ms. The passive axonal

compartment had a membrane time constant of 0.2 ms and the tight tracking of the soma volt-

age was achieved by using a coupling time constant of 0.05 ms.

To compute the response of a model to input with an ITD of either 0 ms or 0.5 ms a simula-

tion of 5000 ms was performed using a time step of 0.01 ms.

Computing energy consumption

We estimated the signaling related energy consumption of each model using the ion counting

approach [4]. For this we needed to compute the total amount of sodium ions entering the cell

during a simulation. Note that because we did not explicitly model the sodium-potassium

pump (which pumps sodium ions and potassium ions in the ratio 3:2, respectively), the num-

ber of potassium ions leaving the cell equals the number of sodium ions entering it during a

simulation (see Fig 2D). In our biophysical models the sodium ions enter the cell through the

leak and the synaptic conductances. We therefore split the leak and synaptic currents into

their separate sodium and potassium components. For the leak current this results in:

ILðtÞ ¼ � gL;NaðtÞðV � ENaÞ � gL;KðtÞðV � EKÞ

where the leak sodium conductance gL,Na and leak potassium conductance gL,K can be com-

puted from gL = gL,Na + gL,K and EL = (gL,Na ENa + gL,K EK)/gL. Note that the balance between

these two conductances varies between the different models, because we adjusted the leak

reversal potential EL such that each model had a resting potential of −60 mV. For the synaptic
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currents we have:

IsynðtÞ ¼ � gsyn;NaðtÞðV � ENaÞ � gsyn;KðtÞðV � EKÞ

where the sodium and potassium conductances are computed using gsyn(t) = gsyn,Na(t) + gsyn,

K(t) and Esyn = (gsyn,Na(t) ENa + gsyn,K(t) EK)/gsyn(t). Because the synaptic reversal potential is 0

mV and we consider the reversal potentials ENa = 53 mV and EK = −106 mV, the ratio of gsyn,

Na(t) to gsyn,K(t) is always 2:1, whereas the absolute values depend on the synaptic peak conduc-

tances used.

Over the duration of a simulation we summed the sodium influx into the entire cell to

compute the total mean sodium current. For the default model (see Fig 2) we found a total

mean sodium current into the cell of ~3 nA. This can be converted into ATP consumption

rates by converting current (coulombs per second) into the number of elementary charges

per second with the factor 6.242�1018 and dividing by three since one ATP is consumed to

extrude three sodium ions from the cell. Thus, a 3 nA sodium current results in the consump-

tion of ⅓�3�10−9�6.242�1018 = 6.2�109 ATPs per second in order to maintain the sodium ion

concentration gradient. Note that alternative methods for computing signaling related energy

consumption rates are available [58,59] and are expected to lead to similar estimates.

The model was programmed in c-code and used the Crank-Nicolson integration scheme.

Results were analyzed using Matlab (The Mathworks, Inc.). The simulation code is publicly

available in the ModelDB database, accession number 245424 (http://modeldb.yale.edu/

245424).

Supporting information

S1 Text. Detailed analysis of the morphology and membrane parameters on the cell perfor-
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