

Manganese Oxide as a Promoter for Copper Catalysts in CO₂ and CO Hydrogenation

Remco Dalebout⁺,^[a] Laura Barberis⁺,^[a] Nienke L. Visser,^[a] Jessi E. S. van der Hoeven,^[a] Ad M. J. van der Eerden,^[a] Joseph A. Stewart,^[b] Florian Meirer,^[C] Krijn P. de Jong,^[a] and Petra E. de Jongh^{*[a]}

In this work, we discuss the role of manganese oxide as a promoter in Cu catalysts supported on graphitic carbon during hydrogenation of CO₂ and CO. MnO_x is a selectivity modifier in an H₂/CO₂ feed and is a highly effective activity promoter in an H₂/CO feed. Interestingly, the presence of MnO_x suppresses the methanol formation from CO₂ (TOF of $0.7 \cdot 10^{-3} s^{-1}$ at 533 K and 40 bar) and enhances the low-temperature reverse water-gas shift reaction (TOF of $5.7 \cdot 10^{-3} s^{-1}$) with a selectivity to CO of

Introduction

Promoters are found in many supported catalysts.^[1,2] They are generally present in low concentrations and, while usually being catalytically inactive for a specific reaction, they substantially boost catalyst activity, selectivity, and/or stability.^[3] For instance, in methanol production from CO₂-enriched syngas (H₂/CO) the addition of a ZnO_x promoter to the Cu/Al₂O₃ system leads to an activity enhancement of an order of magnitude.^[4-6] This activity increase has made the Cu/ZnO/Al₂O₃ catalyst the established industrial catalyst for the synthesis of methanol from syngas since the 1960s.^[7] Another interesting feature of

[a]	R. Dalebout, ⁺ L. Barberis, ⁺ N. L. Visser, Dr. J. E. S. van der Hoeven, A. M. J. van der Eerden, Prof. K. P. de Jong, Prof. P. E. de Jongh Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG, Utrecht (The Netherlands) E-mail: P.E.deJonah@uu.nl
[b]	Dr. J. A. Stewart TotalEnergies OneTech Belgium Zone industrielle C B-7181 Seneffe (Belgium)
[c]	F. Meirer Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG, Utrecht (The Netherlands)
[⁺]	Authors contributed equally to this work. Supporting information for this article is available on the WWW under https://doi.org/10.1002/cctc.202200451
Special ollection	This publication is part of a Special Collection on "55. Jahrestreffen Deut- scher Katalytiker". Please check the ChemCatChem homepage for more ar- ticles in the collection

© 2022 The Authors. ChemCatChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. $87\%_c$. Using time-resolved XAS at high temperatures and pressures, we find significant absorption of CO₂ to the MnO, which is reversed if CO₂ is removed from the feed. This work reveals fundamental differences in the promoting effect of MnO_x and ZnO_x and contributes to a better understanding of the role of reducible oxide promoters in Cu-based hydrogenation catalysts.

this reaction is that it has been shown that it is the CO₂ in the feed that is converted into methanol,^[6,8-10] and hence this system can form an important starting point for Cu-catalyzed pure CO₂ hydrogenation.

Elucidating the change in catalyst properties induced by various feed compositions is of significant importance. The rising CO₂ concentration in the atmosphere has pushed the interest in research to convert CO₂ in large industrial processes such as methanol synthesis from syngas. Yet, catalysts for use in a feed purely based on CO₂ and H₂ face challenges. For example, without CO in the feed Cu/ZnO/Al_2O_3 catalysts face faster thermal growth of the Cu particles and a significantly lower methanol selectivity.^[11] The Cu particle growth is accelerated by the extra water formed during CO₂ hydrogenation to either methanol [Eq. (1)] or CO (the reverse watergas shift (RWGS) reaction, [Eq. (2)]). CO₂ hydrogenation to methanol is an exothermic reaction but entropically very unfavorable, hence high pressures are needed to reach reasonable equilibrium conversion (e.g. 26.2% methanol at 40 bar and 473 K with an H_2/CO_2 ratio of 3). On the other hand, the RWGS reaction is endothermic and entropically slightly favorable. It is hence expected that control over the experimental conditions such as pressure, temperature, and gas composition is key to selectively obtain the desired product. Additionally, promoters can play a key role in product selectivity.

	Δ _r H⊖ (kJ mol⁻¹)	∆ _r S⊖ (J mol ⁻¹ K ⁻¹)	∆ _r G⊖ (kJ mol⁻¹)	
$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$	-49.3	-177	+3.48	(1)
$CO_2 + H_2 \rightleftharpoons CO + H_2O$	+41.1	+42.0	+28.6	(2)

Reducible metal oxides are particularly effective promoters in gas-phase hydrogenation reactions. Their rich chemistry is based on the changes in the oxidation state of the metal, facile and reversible creation of oxygen vacancies, and metal-metal interactions of the oxide.^[12-16] Starting from a high oxidation state, reduction to a lower metal oxidation state forms an

ChemCatChem 2022, 14, e202200451 (1 of 13)

.

oxygen vacancy. In turn, this results in an excess of electrons, which is redistributed to the cation empty energy level causing a change in the oxidation state of the cation M^{n+} to $M^{(n-1)+}$. For this reason, metals that contain half-filled d and f orbitals, and hence have a variety of stable oxidation states, typically are redox active.^[17,18] The presence of electropositive sites (vacancies) can have important effects during catalysis, particularly influencing the adsorption properties of reactants and intermediate species, *e.g.* favoring CO₂ adsorption and activation due to its electrophilic character.^[19-21] Improvements in catalytic performance in methanol synthesis resulting from the use of reducible oxides as promoters in Cu-based catalysts have been reported for many reducible oxides, with ZnO_x being the most recurrent, but the nature of the metal–metal oxide interaction has been far from fully understood.^[13,22-25]

MnO_x is an interesting oxide as Mn has a rich variety of metal oxidation states (+2, +3, +4, +5, +6, +7), low cost, and high abundancy. Despite this, only limited literature is available regarding the use of MnO_x as a promoter in hydrogenation reactions, specifically for Cu-catalyzed CO₂ and/or CO hydrogenation. MnO_x has been reported to boost the total activity, either attributed to changing the size and dispersion of the Cu nanoparticles,^[20,23,26-28] to electronic promotion due to a specific $Cu-MnO_x$ synergy,^[27–29] or to its influence on the concentration of basic surface sites that increase the CO₂ dissociation activity. $^{\scriptscriptstyle [28,30]}$ As an example of electronic promotion, for NO reduction by CO the formation of oxygen vacancies in $(CuMn)_{3}O_{4}$, specifically $Cu^{(y-1)+}$ - \Box - $Mn^{(x-1)+}$, is reported to be the main active site for N₂ production as proven by in situ spectroscopy and DFT calculations.^[21] MnO_x is also reported to increase the methanol selectivity during high-pressure hydrogenation of a CO2-rich syngas feed, which is proposed to be due to the presence of surface Cu⁺ species^[26,31] or stabilization of specific reaction intermediates.^[20] There are also hints that MnO_x might increase the thermal stability of Cu nanoparticles,^[28] but its effect appears to be less pronounced than for a ZnO_x promoter^[32,33] and mechanistic details remain unclear. There are still many open questions as other reports suggest the absence of any electronic promotion of Cu nanoparticles by MnOx^[34] or that not the selectivity to methanol but to CO increased upon MnO_x addition.^[32]

The complexity of supported catalysts, *e.g.* partial mixing the oxidic promoter and oxidic support, has partly been responsible for the limited understanding of the role of reducible oxides in catalysis.^[35,36] Recently, we reported that a silica support for ZnO_x-promoted Cu nanoparticles plays a significant role in reducing the efficacy of the ZnO_x promoter due to the formation of a large fraction of inactive Zn spectator species bound to the silica.^[37] The use of an inert support such as graphitic carbon allows reducing this complexity and enables a more targeted investigation of structure, properties, and catalytic functioning of reducible oxide-promoted catalysts.

Another reason why the promotion of Cu nanoparticles by reducible oxides is far from fully understood is the dynamic nature of the catalysts under working (high-pressure) conditions^[38] and hence the need for *operando* studies. *In situ* X-ray absorption spectroscopy (XAS) is a powerful technique

with the ability to elucidate the nature of metal–Oxide species under reaction conditions.^[39-44] In this work, *operando* XAS is employed as a tool to study the dynamic changes in Cu and Mn interaction by following the oxidation state, electronic structure, and local bonding environment during *in situ* reduction and high temperature and pressure CO₂ and/or CO hydrogenation to methanol. We combine this with results on the impact of MnO_x on the activity, selectivity, and stability of the Cucatalyzed hydrogenation of CO and CO₂, and highlight the fundamental difference in the promoting effect between MnO_x and ZnO_x.

Results

Structural Properties of the Catalysts

A main challenge in studying the influence of a promoter is to vary the promoter content while keeping all other variables constant, such as the size of the metal nanoparticles.^[45,46] Figure 1 (frames A-H) shows electron micrographs of selected CuMnO_x/C catalysts with the corresponding particle size distributions. The full overview of representative electron micrographs and particle size distributions of each catalyst is given in Figure S1, and the surface-averaged particle sizes are summarized in Table 1. All Cu(Mn)O_x/C catalysts had a Cu loading of ca. 8.5 wt%, but their Mn/(Cu+Mn) molar content ranged from 0 to 33 at%, as indicated in the sample name. For example, the CuMn-11/C catalyst contained 11 at% MnO_x. In all cases a good spatial distribution of the CuO_x nanoparticles (black dots) over the sheet-like carbon support (light grey) was obtained. The average particles sizes were between 5 and 7 nm, irrespective of the MnO_x loading (Table 1). The Cu/C catalyst had slightly larger particles (10 nm) as it is challenging to synthesize small CuO_x particles supported on carbon without any additives.^[47] MnO_x is thus also a structural promoter in Cu/C catalysts by enhancing or stabilizing a smaller Cu particle size. An MnO_x/C catalyst with 7.2 wt% Mn was prepared as a reference. The catalyst synthesis^[46] was reproducible as shown by three batches of the CuMn-20/C catalyst, which had surface-average particle sizes of 5.5 ± 1.9 nm, 5.7 ± 1.6 nm, and 5.1 ± 1.7 nm, respectively (Figure S2).

The presence of crystalline phases was detected by X-ray powder diffraction (XRD), both after catalyst synthesis in the reduced state and after passivation. The diffractograms of

Table 1. Surface-averaged CuMnOx particle diameters (in nm) of CuMnOx/C catalysts in the fresh and used state determined by TEM. The particleswere passivated prior to the measurement. Details are given in Table S1.							
catalyst	fresh	used					
Cu/C Cu/Mn-5/C Cu/Mn-11/C Cu/Mn-20/C Cu/Mn-33/C MnO _x /C	9.9 ± 3.3 5.8 ± 1.6 6.9 ± 2.3 5.5 ± 1.9 5.4 ± 1.3 4.8 ± 1.4	$11.6 \pm 4.4^{[a]} \\ 6.3 \pm 1.8 \\ 6.5 \pm 2.0 \\ 6.7 \pm 2.4 \\ 6.6 \pm 2.1 \\ 9.3 \pm 4.0$					
[a] After 160 h of catalysis.							

Figure 1. (A,C,E,G) TEM images and (B,D,F,H) corresponding particle size distributions of the MnO_x/C, CuMn-33/C, CuMn-11/C, and CuMn-5/C catalysts, respectively. (I) XRD patterns of selected CuMnO_x/C catalysts in the reduced state; vertically offset for clarity.

selected reduced catalysts are shown in Figure 1 (frame I), while the patterns of the passivated catalysts are shown in Figure S3. After catalyst preparation, during which temperatures up to 673 K were used, the crystallinity of the carbon support was preserved, as demonstrated by the (002) diffraction line of graphite at 30.9°. The peaks at 50.9° and 59.5° for the CuMn-5/C and CuMn-11/C catalysts correspond to metallic Cu crystallites with an average size of only 3-4 nm, whereas for the CuMn-33/ C catalyst the peaks are attributed to Cu⁰ crystallites with a size of ca. 7-8 nm. Additional details on the crystallite sizes are given in Table S2. Specifically focusing on MnOx, no crystalline Mn phases were detected in any of the catalysts. The amorphous background of the diffractograms increased when more MnO_x was present in the catalyst, which suggests that the MnOx promoter was highly dispersed and/or amorphous. Energydispersive X-ray spectroscopy (EDX) maps shown in Figure 2 confirmed the presence of highly dispersed MnO_x over the graphitic support in coexistence with distinct MnO_x nanoparticles near the CuO_x nanoparticles. High-resolution scanningtransmission electron micrographs on a single Cu particle (Figure 2, frame C) showed a crystalline Cu structure surrounded by amorphous Mn particles, in agreement with XRD analysis.

Interaction between Cu and MnO_x

We investigated the interaction of MnO_x with Cu in our carbonsupported samples by *ex situ* reduction by H₂ as well as *in situ*, time-resolved X-ray absorption spectroscopy (XAS). Figure 3 (frame A) shows the *ex situ* reduction profiles of selected catalysts (the complete overview is given in Figure S4). Note that probably all carbon surface groups were already reduced before this measurement,^[47-49] as the catalysts were H₂-treated at 673 K during catalyst synthesis. The Cu-free MnO_x species were (partially) reduced around 587 K, as indicated by the arrow. The reduction profiles changed significantly with the addition of Cu: a double peak around 433 K was observed, corresponding to the reduction of CuO via Cu^+ to Cu^{0} (50,51) while the high-temperature reduction of MnOx became much less pronounced. Furthermore, the offsets of the reduction peaks around 433 K were slightly higher for the CuMn-33/C (407 K) than for the CuMn-11/C catalyst (396 K). The increase in the reduction temperature at higher MnO_x loadings is a general trend observed across all CuMnO_x/C catalysts (Table S3). Hence, from the ex situ reduction profiles it appears that Cu influences the reduction of MnO_x, indicating close contact between Cu and MnO_x, but in situ XAS is needed to study in more detail what happens.

Figure 3 (frames B–F) shows the evolution of the oxidation states of the Cu and Mn species during *in situ* H₂ treatment. The oxidation states were obtained by fitting linear combinations (LCF analysis) of the macrocrystalline references to the time-resolved XAS measurements depicted in Figures S10–S11. In all Cu-based catalysts (frames C–D) the CuO clearly was reduced in a two-step process to Cu⁰ *via* the formation of Cu⁺, which is a typical two-step conversion also reported in literature^[50,52] and which explains the double peak observed around 433 K in frames A. Furthermore, the Cu species in the CuMn-11/C catalyst had an oxidation state slightly below +2 (+1.90, frame C), while the CuMn-33/C catalyst contained fully oxidized CuO (frame D). The CuO reduction was not significantly affected by the presence of MnO_x.

Focusing on the Mn species, in the absence of Cu the MnO_x was slowly reduced from Mn_2O_3 to mainly MnO upon holding

Figure 2. HAADF-STEM-EDX analysis for the passivated CuMn-33/C catalyst in the fresh and used state. (A,D) Scanning-transmission electron microscopy (STEM) images using a high-angle, annular, dark field (HAADF) detector. (B,E) Energy-dispersive X-ray spectroscopy (EDX) maps showing the elemental distributions for Cu (green) and Mn (red). (C) High-resolution zoom (grey square) of a highly crystalline Cu nanoparticle in close contact with amorphous Mn. (G) Line scan of the EDX map taken over the length of the indicated region (F).

Figure 3. (A) Reduction profiles of selected CuMnO_x/C catalysts, which are vertically offset for clarity and normalized by the support amount (50 mg catalyst). The arrow indicates the (partial) reduction of MnO_x species. Conditions: dried at 393 K in Ar, TPR with 5 vol% H₂/Ar, ramp 2.5 Kmin⁻¹, 0.5 Lmin⁻¹g⁻¹. (B–F) Results from linear combination fitting (LCF) of the Cu and Mn oxidation states of the CuMn-11/C, CuMn-33/C, and MnO_x/C catalysts, derived from time-resolved XAS measurements and using the references displayed in Figures S10-S11. Conditions: 20 vol% H₂/He, ramp 2.5 Kmin⁻¹, *ca.* 2.5–3.3 Lmin⁻¹g⁻¹. ON = oxidation number.

catalysts (frames E–F) was reduced at a much lower temperature around 405 K and exactly at the same temperature as CuO. The combined reduction proceeded at a slightly lower temperature in the CuMn-11/C catalyst (400 K) than in the CuMn-33/C catalyst (410 K), in line with the *ex situ* reduction by H₂ (frame A). Hence, with *in situ* XAS we showed that (virtually) all MnO_x was influenced by the close vicinity of Cu and that Cu induced the reduction of Mn₂O₃ at a very low temperature as soon as metallic Cu was formed.

The MnO_x species consisted of (amorphous) Mn₂O₃ in the initial state, whereas upon heating in an H₂ atmosphere the Mn oxidation number (ON) decreased to between +2 and +3. The Mn₂O₃ species were reduced to a somewhat lesser extent in the CuMn-11/C catalyst (+2.24, frame F), while a higher extent of reduction took place in the CuMn-33/C catalyst (+2.03, frame E). The same Mn ON was obtained for the Cu-free MnO_x/C catalyst (+2.05) after a prolonged exposure at 543 K (frame B). The Cu and Mn oxidation states were confirmed by a more in-depth study using multivariate analysis in which no prior information on the component spectra was imposed and which yielded eigenspectra that corresponded well to the macrocrystalline Cu and Mn references with only a minor variation in the white line intensities (Figures S12-S13). Hence, we demonstrated for the first time that closely interacting Cu catalyzed the Mn₂O₃ reduction at much lower temperatures and determined the real Mn oxidation state in reduced CuMnO_x/C catalysts using time-resolved, in situ XAS.

for 2 h at 543 K (frame B), in agreement with the ex situ $\rm H_2$ profiling (frame A). On the contrary, $\rm Mn_2O_3$ in the CuMnO_x/C

Impact of MnO_x on the Catalyst Activity and Selectivity

The catalytic performance of the Cu catalysts in CO₂ and CO hydrogenation was influenced by the presence of MnO_x. Figure 4 shows a typical measurement in an H₂/CO₂ feed (frame A) and consecutively in an H₂/CO feed (frame B) at 40 bar pressure and different reaction temperatures (for a complete overview see Figure S5, frame A). All catalysts lost activity during the first 22 h on stream at 533 K (frame A) after which the conversion was relatively stable, especially at lower temperatures (473-513 K). The initial change in activity is ascribed to rearrangement of the Cu and promoter species.[53-56] When returning to the same reaction conditions after 92 h of catalysis only a slight additional loss of activity was observed, e.g. from 16.1% to 15.5% for the CuMn-11/C catalyst (indicated by the arrows in frame A). This means that, although carbon supports are known to have a relatively weak interaction with metal nanoparticles,^[36] these catalysts are remarkably stable. In all cases we worked at conversion levels well below the thermodynamic equilibrium (e.g. 22.1% at 533 K in the H₂/CO₂ feed, Figures S5–S6) to study the intrinsic catalytic properties of these materials. The non- promoted Cu/C catalyst showed a considerable particle growth to at least ca. 12 nm, which was also observed in similar hydrogenation reactions,^[37] while the Cu particle size was stable in CuMnOx/C catalysts (e.g. from 5.8 ± 1.6 to 6.3 ± 1.8 nm for the CuMn-5/C catalyst) (see also Table 1 and Figure S1). In other words, it is the MnO_x promoter that induces the unexpectedly high stability in these carbonsupported catalysts by suppressing the Cu particle growth.

Figure 5 (frame A) shows the CO₂ conversion of selected catalysts as a function of temperature, based on the same Cu mass (3.2 mg) for each catalyst. The Cu/C reference catalyst showed a CO₂ conversion up to 12.2% at 533 K, while the MnO_x/C reference sample did not show any significant CO₂ conversion. Combining MnO_x species and Cu nanoparticles only slightly increased the CO₂ conversion for intermediate MnO_x contents compared to the non-promoted Cu/C catalyst. The CuMn-11/C catalyst had a conversion of 15.2% at 533 K and considering the fresh average CuO_x particle size (Table 1) it has an estimated turnover frequency (TOF) of $6.4 \pm 2.2 \cdot 10^{-3} \text{ s}^{-1}$,

Figure 4. (A) CO₂ and (B) CO conversion as a function of time for selected CuMnO_x/C catalysts, measured in a single test. The numbers in the top banners represent the reaction temperatures in K. Conditions: 40 bar(g), 690 mLmin⁻¹g_{cu}⁻¹, *ca.* 1,800 h⁻¹, 3.2 mg Cu, H₂/CO₂/He = 67.5/22.5/10 vol% or H₂/CO/He = 60/30/10 vol%.

Figure 5. (A) CO₂ conversion as a function of temperature for selected CuMnO_x/C catalysts determined from the activity after *ca*. 15 h at each temperature, neglecting the initiation period at 533 K. The data are fitted by an exponential curve. (B) Arrhenius plots based on the total amount of converted CO₂ using linear fits without restrictions. (C) Apparent activation energy as a function of the Mn content, determined for the total CO₂ conversion, MeOH formation, and CO formation. (D) Pre-exponential factor as a function of the Mn content based on the total CO₂ conversion using a fixed activation energy of 88.1 ± 1.4 kJ mol⁻¹. The error bars represent the error in the determination of the pre-exponential factor, while the shaded area indicates the width induced by the error in the fixed activation energy. Conditions: 40 bar(g), 690 mL min⁻¹ g_{Cu}⁻¹, *ca*. 1,800 h⁻¹, 3.2 mg Cu, H₂/CO₂/ He = 67.5/22.5/10 vol%.

which is in the same order of magnitude as for the Cu/C catalyst $(7.5 \pm 2.5 \cdot 10^{-3} \text{ s}^{-1})$ (Figure S8). At all measured temperatures, an MnOx content of 5-11 at% was sufficient to optimize the total activity, while at higher MnOx loadings the conversion decreased. Frame B shows the Arrhenius plots of the selected catalysts (assuming zero-order kinetics, which is reasonable at the low conversion levels), which are translated in frame C to the apparent activation energy E_a as a function of the Mn content. The E_a to convert CO_2 appears to be independent of the Mn content and has an average value of $88.1 \pm 1.4 \text{ kJ mol}^{-1}$, suggesting that in each of these catalysts the active site for CO₂ conversion is the same. For each promoted catalyst, the E_a for CO formation (95.7 \pm 1.9 kJ mol⁻¹) is higher than the E_a for methanol formation (59.0 \pm 1.2 kJ mol⁻¹). Frame D presents the apparent pre-exponential factor A as a function of the Mn loading using the average E_a for CO₂ conversion as a fixed value. The CuMn-5/C and CuMn-11/C catalysts have a slightly larger A, describing a higher probability of catalytic turnover and/or a higher density of active sites, and is in agreement with the higher total activity of these catalysts. However, the impact of MnO_x on the Cu activity in CO_2 conversion is minor.

The performance of the $CuMnO_x/C$ catalysts was also evaluated for the hydrogenation of CO, consecutive to the CO_2 hydrogenation experiment. Figure 6 (frame A) shows the CO

Figure 6. (A) CO conversion as a function of temperature for selected CuMnO_x/C catalysts determined from the activity after *ca*. 15 h at each temperature, neglecting the initiation period at 533 K. The data are fitted by an increasing exponential curve. (B) Turnover frequency as a function of the Mn content determined at 533 K using surface-averaged particle size of the used catalysts. (C) Arrhenius plots using linear fits without restrictions. (D) Apparent activation energy as a function of the Mn content, determined for the total CO conversion and MeOH formation. Conditions: 40 bar(g), 690 mL min⁻¹ g_{cu}⁻¹, *ca*. 1,800 h⁻¹, 3.2 mg Cu, H₂/CO/He = 60/30/10 vol%.

conversion as a function of the reaction temperature for selected catalysts. Please note the smaller scale on the ordinate compared to Figure 5 (frame A). The MnO_x/C and Cu/C catalysts showed a very limited activity, but the CO conversion was greatly enhanced by the addition of MnOx to supported Cu nanoparticles. In our series, the MnO_x content of 11 at% showed the highest total activity at each tested reaction temperature. As an example, at 533 K the CO conversion increased from 0.8% for the Cu/C catalyst to 6.6% for the CuMn-11/C catalyst. When taking the surface-averaged Cu(Mn)O_x particle size of the used catalysts into account (Table 1), the MnO_x promotion led to a total TOF enhancement of an order of magnitude as shown in frame B. This promotional effect is even more pronounced when focusing on the methanol formation (0.12 \pm 0.05 to 3.3 \pm $1.0 \cdot 10^{-3}$ s⁻¹). In fact, upon promotion at least the same amount of by-products was formed in the CO/H₂ feed as for bare Cu catalysts, but additionally a large amount of methanol was formed, pointing to a high methanol selectivity for the newly formed Cu-promoter interface active sites. Using Arrhenius plots of the CuMnO_x/C catalysts in the H_2 /CO feed (frame C), the apparent activation energy E_a for the total CO conversion (frame D) was determined. The large activity increase upon MnO_x promotion is explained by a *ca*. 1.7 times decrease in the $E_{\rm a}$ from 99±16 to 57.3±1.3 kJ mol⁻¹. Our results clearly show that MnOx acts as a very efficient activity promoter for supported Cu nanoparticles in CO hydrogenation, while having little effect in an H_2/CO_2 feed.

CO₂ hydrogenation over supported Cu nanoparticles can lead to the formation of either CO or methanol.[57,58] For example, at 533 K and 40 bar in our H_2/CO_2 feed the thermodynamically expected selectivity to CO is 55.2%_C at an equilibrium CO₂ conversion of 22.1% (Figure S6). Figure 7 (frame A) shows the selectivity to CO in CO₂ hydrogenation at 533 K as a function of the MnO_x content (filled symbols), while Figure S9 shows the selectivity to MeOH in an H₂/CO feed. For comparison, the same experiments were performed with a CuZnO_x/C catalyst series with similar metal loadings^[37] and are included in the frame (hollow symbols). In an H₂/CO₂ feed, the major product was CO (>72%c) for all catalysts, which was formed by the reverse water-gas shift (RWGS) reaction in concentrations much higher than the equilibrium concentration (dashed line in frame A). Remarkably, MnO_x promotion maintained the high CO selectivity of $86\%_{c}$, while ZnO_x addition led to a lower CO selectivity $(73\%_c)$.

Chemistry Europe

European Chemical Societies Publishing

Figure 7 (frame B) shows the selectivity to CO in an H_2/CO_2 feed at 533 K as a function of temperature and comparing Mn and Zn promotion at similar promoter content. For both catalysts more CO is produced at increasing temperatures, as expected for the endothermic RWGS reaction (Eq. (2)). Interestingly, at all tested temperatures the CuMn-11/C catalyst was much more selective to CO than the CuZn-15/C catalyst, especially at low temperatures (*e.g.* 3 times more selective, at 470 K). This makes the CuMn-11/C catalyst an effective low-temperature RWGS catalyst. In the next section we further explore this remarkable difference between MnO_x and ZnO_x promotion of Cu-based catalysts in hydrogenation reactions.

Reaction conditions such as temperature, pressure, and gas flow per catalyst volume are key to tune the catalyst performance, specifically for CO_2 hydrogenation.^[59] Figure 8 shows for the CuMn-11/C catalyst and at 20 bar pressure, the effect of the gas flow expressed as gas hourly space velocity (GHSV) on the Cu mass-normalized CO formation rate (frame A) and the CO selectivity (frame B). The CO formation rate increased from 8.7

Figure 7. Selectivity to CO during CO₂ hydrogenation, as a function of (A) MnO_x or ZnO_x loading at 533 K (M=Mn or Zn metal) and (B) reaction temperature (CO₂ conversion = 1.1–15.1% and 4.8–20.2% for CuMn-11/C and CuZn-15/C catalysts, respectively). The selectivity was determined after 15 h at each reaction condition. The dashed lines refer to the expected carbon-based CO selectivity at thermodynamic equilibrium, *e. g.* at 533 K the equilibrium composition is H₂/CO/CO₂/H₂O/H₂/He = 61.1/2.9/18.4/5.2/2.3/ 10 vol%. Conditions: 40 bar(g), 690 mL min⁻¹g_{Cu}⁻¹, *ca.* 1,800 h⁻¹, 3.2 mg Cu, H₂/CO₂/He = 67.5/22.5/10 vol%.

Figure 8. (A) CO formation rate and (B) CO selectivity as a function of gas hourly space velocity (GHSV) for the CuMn-11/C catalyst. The CO₂ conversion was between 7.8–17.4%. The only other product was methanol with traces of CH₄ (< 0.3%_c). Conditions: 533 K, 20 bar(g), 1.1–6.4 mg Cu, H₂/CO₂/ He = 67.5/22.5/10 vol%. Under these conditions the thermodynamic equilibrium concentration consists of 82.3%_c CO. The data are fitted by an exponential curve.

to 24.4 μ mol g_{cu}⁻¹s⁻¹ for a higher gas flow per catalyst volume by a factor of 6. Also the CO selectivity slightly increased from 95%_c to 98%_c upon increasing the GHSV. These observations show that the methanol formation is suppressed at higher flow rates by promoting the desorption of adsorbed CO from the catalyst surface. Hence, supported CuMnO_x is an effective RWGS catalyst at low temperature and high GHSV.

Comparison between MnO_x and ZnO_x Promotion

An interesting question is whether the MnO_x promoter acts in a similar manner as the well-established ZnO_x promoter for methanol synthesis. Figure 9 presents the catalytic performance of selected promoted Cu-based catalysts at 20 bar for the hydrogenation of either CO₂, CO, or a combination to methanol, mimicking the conditions during the *operando* XAS experiments. For a complete overview see Figure S5 (frame B). The activity of the CuMn-11/C catalyst is directly compared to a CuZnO_x/C reference catalyst with a Zn/(Cu + Zn) molar fraction of 0.15 and similar Cu particle size.^[37] All catalysts stabilized

Figure 9. (A) Total activity in terms of converted CO₂ and/or CO and (B) methanol formation rate as a function of time on stream for the Cu/C and Cu/Cn-11/C catalysts as well as for a reference Cu/Zn-15/C catalyst. Conditions: 533 K, 20 bar, 1.0 Lmin⁻¹g_{cu}⁻¹, *ca.* 2700 h⁻¹, 2.1 mg Cu, feeds: H₂/CO₂/He = 67.5/22.5/10 vol%, H₂/CO₂/CO/He = 60/3/27/10 vol%, and H₂/CO/He = 60/30/10 vol%.

within the first 22 h in a pure H_2/CO_2 feed (frame A), during which redistribution of the catalyst components is likely to occur.^[53-56] Only a slight additional loss of activity was observed when returning to the same reaction conditions after 74 h of catalysis. The further decrease in activity of the catalysts, expressed as decrease % in CO_2 conversion, was limited to 13% for the CuZn-15/C and 16% for the CuMn-11/C catalysts.

The ZnO_x promoter behaved as expected from literature in the various feed compositions:^[10,16,60] frame A shows a higher activity for the CuZn-based catalyst in H₂/CO₂ than in H₂/CO, mainly due to an increased RWGS reaction activity leading to *ca.* 87%_C CO, while frame B shows that the highest methanol formation was observed when a small amount of CO₂ was added to the syngas feed.

The behavior of the MnO_x promoter is quite different: the 3 vol% CO₂ in H₂/CO gave a low total activity (frame A) and methanol formation rate (frame B) for the CuMn-11/C catalyst. Another striking difference is that in the absence of CO₂ in the feed, MnO_x promotion is much more effective than ZnO_x promotion. Specifically, the total activity and the selectivity to methanol (80 vs 68%_C), and hence the methanol formation (5.8 vs 1.3 µmol g_{Cu}⁻¹ s⁻¹), were *ca.* 4.5 times higher for MnO_x promotion than for the ZnO_x-promoted catalyst. A third major difference is that in an H₂/CO₂ feed the MnO_x promotion suppressed methanol formation and led to a high CO selectivity (96%_C). These observations were irrespective of the promoter concentration (Figure S5, frame B). These results suggest that the interaction of CO₂ with the MnO_x promoter.

MnO_x Speciation Studied with Operando Spectroscopy

The oxidation state and local surroundings of Cu and Mn species and the evolution of the MnO_x structure were studied by XAS experiments under working conditions (also termed operando) of 20 bar and 533 K at the ROCK beamline of SOLEIL, simultaneously at the Cu and Mn K-edges. Figure 10 shows a selection of normalized X-ray absorption spectra and corresponding first derivatives in the X-ray absorption near-edge structure (XANES) energy region. The spectra of several MnO_x references are shown in frames A-B. Spectra for the CuMn-33/C and CuMn-11/C catalysts in an ${\rm H_2}$ atmosphere and during subsequent CO and CO₂ hydrogenation are given in frames C–F. An overview of all XAS spectra at the Cu and Mn K-edges is shown in Figures S14–S15. The speciation of the reduced Cu in the CuMnO_x/C catalysts (Figure 3) did not change during catalysis, not even in the more oxidizing gas feed of H₂/CO₂, in line with literature on CuZnO_x catalysts.^[41,61] The result was confirmed by a more in-depth multivariate analysis (Figure S17).

Focusing on the promoter, the MnO_x in the CuMn-33/C catalyst (frame C) consisted of almost exclusively Mn(II)–O with an Mn ON of +2.03 after the *in situ* H₂ treatment. During 3.5 h of high-pressure CO₂ hydrogenation the white line of MnO at 6554.7 eV shifted to a lower energy by 2.2 eV (as indicated by the arrow) and after catalysis resembled the MnCO₃ reference. This reference is typical for Mn(II) strongly coordinated to a

Figure 10. (A) Reference (Mn₂O₃, MnO, and MnCO₃) XANES spectra and (B) corresponding first derivatives on the Mn K-edge at 298 K. (C–F) Operando XANES spectra and corresponding first derivatives on the Mn K-edge of the (C–D) CuMn-33/C and (E–F) CuMn-11/C catalysts. Depicted (1) in an H₂ atmosphere at 453 K after a treatment in 20 vol% H₂/He up to 543 K in 1 bar for *ca*. 25 min, (2) during subsequent H₂/CO and H₂/CO₂ conversion at 20 bar and 298 K. Gas compositions: H₂/CO/He = 60/30/10 vol% and H₂/CO₂/He = 67.5/22.5/10 vol%. The arrows indicate the formation of Mn(II) coordinated to a carbonated species upon H₂/CO₂ conversion.

carbonate species, or in other words via an oxygen bond to CO₂ (i.e. Mn(II)-O-CO₂). This spectral shift was already observed during pressurization to 20 bar in H_2/CO_2 at 453 K in *ca.* 2 h (Figure S16), conditions that are well below typical methanol synthesis reaction temperatures and pressures.^[7,62] To verify the formation of an Mn(II)-O-CO2-like compound we cooled the CuMn-33/C catalyst to room temperature in H₂/CO₂ (denoted as "after cat.") to obtain a higher resolution spectrum, still resembling that of the MnCO₃ reference. Please note that after catalysis no crystalline MnCO₃ was observed in the XRD patterns of the CuMnO_x/C catalysts (Figure S3, frame B). The average Mn ON did not further change during catalysis (ca. +2.04 at room temperature in a 20 bar H₂/CO₂ feed, see also Table S4), in line with a conversion of Mn(II)-O to Mn(II)-O-CO2. The two isosbestic points at 6548 and 6558 eV provide a strong indication that Mn(II)-O binds CO2 to form only one other species.^[63] Also in the first derivative plot of the normalized absorption (frame D) the resemblance of the catalyst spectra in an H₂/CO₂ feed and the MnCO₃ reference is clear (as indicated by the arrows). Hence, operando XAS in an H₂/CO₂ feed strongly suggests the formation of Mn(II) strongly bound to a carbonate species because of the CO₂ interaction with Mn(II)–O.

The influence of the gas composition on the MnO_x speciation is studied in more detail for the CuMn-11/C catalyst (frames E–F). After the *in situ* reduction, we started with a mixed

 MnO_x phase with an average Mn ON of +2.24 (see also Figure 3), which is in-between the MnO (Mn(II)) and Mn₂O₃ (Mn(III)) references. The spectral features of the CuMn-11/C did not change during more than 2.5 h of H₂/CO conversion. Even subsequent enrichment of the syngas feed with $3 \text{ vol} \% \text{ CO}_2$, which had a large influence on the promoter in the case of ZnO_x-promoted methanol synthesis,^[6,8–10] did not influence the shape of the spectra (Figure S15). Yet, with the switch to an $H_2/$ CO₂ feed, an Mn(II)–O–CO₂ complex was formed (frames E–F). These observations are supported by multivariate analysis on the Mn K-edge of the CuMn-11/C catalyst during subsequent changes in feed gas composition (Figure S18). In particular, the Mn speciation remained constant until the introduction of the H₂/CO₂ feed, after which a fingerprint of an Mn(II) carbonatelike compound was observed and became dominant after ca. 3 h. The formation of an Mn(II)–O–CO₂ complex during catalysis (Figure 9) indicates a strong CO₂ adsorption on the Mn promoter while locally few adsorbed H atoms are present, which may explain the lower total activity and methanol selectivity of the CuMnO_x/C catalysts when CO₂ is present in the feed. Therefore, during working conditions CO2 has a strong impact on the local surroundings of the Mn species in CuMnO_x/ C catalysts, thereby influencing the MnO_x promotion.

To differentiate between Mn(II)–O strongly binding CO₂ and crystalline MnCO3 formation, it is important to consider the local coordination of the Mn atoms in the MnO_x promoter during high-pressure CO₂ and CO hydrogenation by carefully inspecting the extended X-ray absorption fine structure (EXAFS) energy region. Figure 11 shows the Fourier-transformed EXAFS region of macrocrystalline Mn references in standard conditions (frame A) and the CuMn-33/C (frame B) and CuMn-11/C (frame C) catalysts in the reduced state, during working conditions in an H₂/CO₂ feed, and after catalysis. The coordination numbers (CNs) and bond lengths from the EXAFS data analysis are summarized in Tables S5–S9. After the in situ reduction two significant signals were observed in both catalysts: the first-shell Mn–O bond at R = 1.55 Å and next an Mn–Mn bond at R = 2.65 Å, both resembling the MnO reference. In the CuMn-11/C catalyst the signal corresponding to the Mn-Mn bond is less intense than for the CuMn-33/C catalyst and significantly lower than for the Mn–Mn bond of the Mn₂O₃ reference. This result indicates a short-range ordering of the MnO_x promoter in the CuMn-11/C catalyst, in line with the theoretical partial coverage of MnO_x over the Cu⁰ surface in this catalyst (73%).

The local environment of the MnO_x promoter did not change upon high-pressure conversion of H₂/CO. Also enriching the syngas feed with 3 vol% CO₂ for 4 h did not change the state of the MnO_x promoter, but that might be due to the slow CO₂ introduction at 20 bar. Only when CO₂ was hydrogenated, the spectra for both catalysts (Figure 11) significantly changed: the signal at R = 2.65 Å corresponding to the second-shell Mn– Mn bond of MnO_x decreased, and therefore resembled the Mn(II) carbonate reference. Interestingly, for the CuMn-33/C catalyst a fraction of the MnO phase remained present after catalysis, whereas for the CuMn-11/C catalyst the second-shell Mn–Mn bond peak completely vanished. The decrease in this

ChemCatChem 2022, 14, e202200451 (8 of 13)

Figure 11. Fourier-transformed EXAFS spectra at the Mn K-edge of (A) macrocrystalline references (Mn_2O_3 , MnO, and $MnCO_3$) at 298 K, (B) CuMn-33/C and (C) CuMn-11/C catalysts. The spectra of the catalysts are depicted (1) in an H₂ atmosphere at 453 K after *in situ* reduction (for exact conditions, see Figure 10) and (2) during high-pressure H₂/CO and subsequent H₂/CO₂ conversion at 533 K (for exact conditions, see Figure 10).

scattering path intensity is unlikely to be related to redispersion of the MnO_x phase over the carbon support,^[46] as EDX maps of the CuMn-15/C catalyst confirm the presence of MnO_x phases in close proximity with the Cu nanoparticles (Figure 2, frame E). Hence, the decrease in the Mn-Mn scattering path intensity upon introducing an H_2/CO_2 feed can be attributed to the formation of an Mn(II)–O–CO₂-like compound and/or amorphization of the MnOx phase, which is supported by the XRD analysis of the used CuMnOx/C catalysts in which no crystalline MnO_x phases were observed (Figure S3, frame B). Using operando XAS at simultaneously the Cu and Mn K-edges we unequivocally showed that the MnOx promoter is predominantly in the MnO phase after in situ reduction and highpressure CO hydrogenation, whereas during CO₂ hydrogenation the promoter speciation changes drastically and an Mn(II)–O–CO₂-like compound is formed.

Discussion

We observed a strong change in the MnO_x speciation in an H_2/CO_2 feed with *operando* XAS, while such effects were absent for ZnO_x in oxide-supported CuZnO_x catalysts.^[64–66] We investigated

ChemCatChem 2022, 14, e202200451 (9 of 13)

the thermodynamic properties of the formation of MnCO₃ (as a representation for the Mn(II)–O–CO₂ complex) and ZnCO₃ in high-temperature CO₂ hydrogenation^[67] to understand the different behavior of the MnO_x and ZnO_x promoters. Equations (3) and (4) show the thermodynamic parameters for the reactions of MnO and ZnO with CO₂ at 533 K and 1 bar (for more details see Table S9). Interestingly, under these conditions the formation of MnCO₃ is favored (negative Δ_rG), whereas ZnO cannot spontaneously react with CO₂ to form ZnCO₃ (positive Δ_rG). Even though the negative entropy (Δ_rS) shows that the Gibbs free energy becomes more negative at higher pressure (*e.g.* 20 bar), CO₂ significantly binds stronger to MnO than to ZnO.

	Δr <i>H</i> 533K (kJ mol ⁻¹)	$\Delta_r S_{533K} \text{ (J mol^{-1} K^{-1})}$	$\Delta_r G_{533K}$ (kJ mol ⁻¹)	
$MnO_{(s)} + CO_{2(g)} \rightleftarrows MnCO_{3(s)}$	-101	-164	-13.6	(3)
ZnO (s) + CO _{2 (g)} ≓ ZnCO _{3 (s)}	-68.7	-169	+21.6	(4)

The binding of CO₂ to MnO can represent various structures (Figure 12). For example, it can indicate strongly adsorbed CO₂ on the manganese and oxygen atoms of Mn(II)–O (structure A) or the closely related formation of crystalline MnCO₃ (structure B). For the first structure it implies that the Mn-(II)–O–CO₂-type complex only forms at the surface of the MnO_x promoter and hence lacks long-range crystallinity, while for the second structure the diffusion of CO₂ into the MnO is required. During catalysis we observed that the methanol productivity is influenced in a reversible manner by changing between CO2rich gas and pure syngas feeds (Figure 9) and after catalysis no crystalline MnCO3 was observed in the XRD patterns of the CuMnO_x/C catalysts (Figure S3, frame B), making the second structure unlikely. Also the low Mn CN of 3.9 ± 0.3 for the firstshell Mn–O bond in an H₂/CO₂ feed is in line with structure A, while it makes the formation of crystalline MnCO₃ (having a corresponding Mn-O CN of 6) highly unlikely. Alternatively, the Mn(II)-O-CO₂-like structure might be envisioned as an adsorbed, oxygen-bound formate (HCOO*) species, which is a reaction intermediate typically found in Cu-catalyzed CO₂ hydrogenation,^[68] on an Mn⁰ surface formed following an H atom spillover from the Cu⁰ surface (structure C). According to the binary phase diagram up to 26 at% Mn⁰ can dissolve into Cu^o nanoparticles at 533 K, forming a CuMn solid solution in coexistence with Cu₅Mn and Cu₃Mn phases.^[69] Yet, no metallic Mn was observed in the XANES (Figure 10) or EXAFS analysis (Figure 11), which would be needed to support the Mn⁰-HCOO structure, thereby making the formation of formates on the MnO_x promoter surface also highly unlikely. Hence, the spectral

Figure 12. Theoretically possible structures for the Mn(II)–O–CO₂-type complex of which only structure A is supported by our data.

change upon H_2/CO_2 exposure is most probably related to the formation of strongly bound CO_2 to Mn(II)—O (structure A). More information about the exact nature of the complex could be obtained from DFT calculations on the stability of Mn(II)—O—CO₂-type complexes.

It must be noted that MnC₂ (amongst the Mn carbides) is a stable compound under the studied reaction conditions (Table S10), while Zn carbides are highly unstable. This suggests that MnC₂ might be (partially) formed during catalyst synthesis by the strong interaction between the graphite support and MnO in the presence of H₂ with concomitant H₂O formation. However, Figure 3 does not show any signal that can be attributed to MnC₂. Furthermore, the formation of MnC₂ from CO₂ under working conditions would require the scission of the C–O bond in the CO molecule, which is not expected to take place on Cu nanoparticles,^[5,10,11] an MnO surface, or a Cu–MnO_x interface.

The first step in CO₂ hydrogenation is the adsorption of CO₂ on a catalyst surface (also termed CO2*), which can either dissociate into O* and CO* directly or via a hydrogenated, carbon-bound carboxyl (HOCO*). The binding strength of the adsorbed CO on a Cu/oxide interface is a key factor for the product selectivity in CO₂ hydrogenation.^[59] A weak CO* binding to the interface facilitates the desorption of CO* from the surface, while stronger bound CO* is likely to further hydrogenate to a carbon-bound formyl species (HCO*), one of the possible intermediates leading to the formation of methanol.^[70] Figure 7 shows that the CO selectivity is not influenced upon MnO_x promotion of the supported Cu nanoparticles, while for the CuZnO_x/C catalysts the CO selectivity decreased from 86 to $73\%_{\rm C}$ in favor of methanol. This can be explained by the weak interaction of CO* with Mn(II)-O or the Cu/MnO interface, while CO* has probably a stronger interaction with ZnO_x. Another important factor for the product selectivity is the surface coverage of adsorbed H atoms and CO₂, which both are needed to form either CO or methanol. To complete one turnover from CO₂ to CO requires only one H₂ molecule (*i.e.* two H* atoms) while three H₂ molecules are needed to produce one methanol molecule. The observed Mn(II)-O-CO₂ structure in the CuMnO_x/C catalysts by operando XAS (Figure 10) indicates a high CO₂* coverage on the MnO promoter, and hence a locally low H₂-to-CO₂ ratio. In this way, the relatively low H* surface concentration may suppress the hydrogenation of formyl species (HCO*), or the related oxygen-bound formate species (HCOO*),^[68] to methanol and can explain the decrease in the methanol formation when CO_2 is added to the H_2/CO feed (Figure 9).

Figure 13 schematically depicts the proposed MnO_x speciation in $CuMnO_x/C$ in an H₂ or H₂/CO feed (frame A) and in a high-pressure H₂/CO₂ feed (frame B). After *in situ* reduction by H₂ the average Mn ON of the MnO_x promoter is between +2.0 and +2.3 (Figure 3, frames E-F), and there is close contact between the Cu and Mn as evidenced by the reduction profile (Figure 3, frame A) and the EDX maps (Figure 2). These particles are in close proximity to Cu⁰ nanoparticles as the reduction of Mn₂O₃ to MnO at intermediate temperatures is facilitated, as shown by *ex situ* H₂ profiling (Figure 3, frame A). The line scan

Figure 13. Schematic representation of the proposed MnO_x speciation in the $CuMnO_x/C$ catalysts, depicted (**A**) after *in situ* reduction (and high-pressure CO hydrogenation) and (**B**) during CO_2 hydrogenation. Note that a limited amount of Cu_xMn alloys might be formed at each case.

in the EDX maps of the used catalyst (Figure 2, frames F-G) indicates that the Mn does not considerably cover the Cu surface or form an CuMn alloy but rather form separate MnO_x particles on the catalyst surface in close proximity to Cu. Upon CO₂ hydrogenation and subsequently after catalysis a significant amount of MnO is left in the CuMn-33/C catalyst but is almost completely absent in the CuMn-11/C catalyst (Figure 11, frames B–C). Mn(II)–O–CO₂ compounds probably only form at the MnO surface, as the diffusion of the required CO₂ into the MnO is limited.^[71] This suggests for the CuMn-33/C catalyst converting H₂/CO₂, the formation of a layered Cu⁰–MnO–Mn-(II)–O–CO₂ structure (from core to surface) and for the CuMn-11/C catalyst a complete transformation of the MnO_x to an Mn(II)–O–CO₂ compound.

Conclusions

Cu particles on graphitic carbon were prepared to study the MnO_x promotion in the hydrogenation of either CO_2 or CO. In an H_2/CO feed a modest amount of MnO_{xr} in close interaction with Cu, was already sufficient to enhance the activity of Cu/C thereby producing mainly methanol, and was much more effective than a CuZnO_x/SiO₂ catalyst with a similar promoter content. In CO₂ hydrogenation MnO_x promotion also increased the total activity with a selectivity to CO up to $87\%_{C}$ while retaining this high selectivity irrespective of the Mn content, even at lower temperatures (473 K), making CuMnOx/C a lowtemperature reverse water-gas shift catalyst. From X-ray absorption spectroscopy studies at high temperature and pressure we can explain this by the reversible formation of an Mn(II)–O–CO₂ complex, which has not been observed for the ZnO_x promoter. This surface-specific Mn speciation may indicate a high coverage of adsorbed CO₂ on MnO_x, while the local H atom coverage is relatively low; essential to suppress subsequent hydrogenation to methanol and lead to the desorption of adsorbed CO. This gives a direct insight into the nature of MnO_x promotion in Cu-based syngas conversion and allows a more rational use of reducible oxides in catalyst design.

ChemCatChem 2022, 14, e202200451 (10 of 13)

Experimental

Chemicals

Copper nitrate $(Cu(NO_3)_2 \cdot 3H_2O, Acros Organics, 99\%)$, manganese nitrate $(Mn(NO_3)_2 \cdot 4H_2O, Acros Organics)$, high surface area graphite (XG Sciences, xGnP_{*} graphene nanoplatelets, grade C-500 HP, Brunauer-Emmett-Teller (BET) surface area of 490 m²g⁻¹, total pore volume of 0.84 mLg^{-1}), and nitric acid $(HNO_3, Merck, 65\%)$ were used as received. As a reference we used a series of CuZnO_x nanoparticles supported on graphitic carbon with varying Zn/Cu molar ratios but similar Cu particles sizes, as previously reported.^[37] Silicon carbide (SiC, Alfa Aesar, $\geq 98.8\%$, 46 grit) was pressed and sieved in a 212–425 µm fraction, calcined at 1073 K for 10 h, subsequently washed with 65% HNO₃, rinsed with water until pH 7 was reached, and finally dried at 393 K overnight before use.

Catalyst Synthesis

A series of CuMnO_x/C catalysts, with similar Cu weight loadings (8.4 wt%) but varying Mn/Cu molar ratios, were prepared via incipient wetness impregnation, according to a previously reported method.^[46] Typically, ca. 2 g of high surface area graphite was dried at 443 K under dynamic vacuum for 1.5 h. After cooling to room temperature the fine carbon powder was (co-)impregnated to incipient wetness, which means that the added liquid corresponds to 95% of the total pore volume (0.84 mLg⁻¹) as measured by N₂ physisorption at a p/p_0 value of 0.995, under static vacuum with a 0.1 M HNO₃ aqueous solution of ca. 1.8 M copper nitrate and up to 0.9 M manganese nitrate. The impregnated support was equilibrated at room temperature under static vacuum for 2 h prior to drying under dynamic vacuum for 24 h. The dried material was transferred to an Arfilled glovebox and subsequently divided over two plug-flow reactors (1 g each) without exposure to air. The dried precursor was decomposed at 503 K (ramp 0.5 Kmin⁻¹) in an N_2 flow of 100 mLmin⁻¹g⁻¹ for 1 h. After cooling to 303 K the material was exposed to 10 vol% O₂/N₂ for 3 h and subsequently to pure N₂ for 30 min. Finally, the sample was reduced at 443 K (ramp $2\ Kmin^{-1})$ in a 100 mL min^{-1}g^{-1} flow of 10 vol % H_2/N_2 for 2 h, directly followed at 673 K (ramp 2 Kmin⁻¹) for 1 h. A part of the reduced catalyst was stored in an Ar-filled glovebox, whereas the remainder was slowly passivated in air at room temperature. The obtained CuMnO_x/C catalysts are named CuMn-X/C, in which X represents the molar Mn/(Cu+Mn) fraction in percentages. An MnO_x/C catalyst (7.2 wt% Mn) was prepared in a similar manner.

Catalyst Characterization

Structural Characterization. Catalysts were imaged by transmission electron microscopy (TEM) using a Thermo Fisher Scientific Talos L120 C apparatus, operating at 120 kV. The samples were prepared by loading finely ground, dry sample (<25 μ m) onto holey carbon film-coated Cu grids (Agar, 300 mesh). At least 540 individual particles at various locations within the sample were measured to determine the number-averaged CuO_x particle sizes (d_N). Also surface-averaged sizes (d_S) were calculated using

 $d_{\rm S} \pm s_{\rm S} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}d_i^2} \pm \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(d_i - d_{\rm S})^2}$, in which s_srepresents the

width of the lognormal particle size distribution, d_i the diameter of the *i*-th particle, and *N* the total number of measured particles. Only the relevant part of the lognormal distribution (>1% of maximum) was considered for the calculation of the average particle sizes. High-resolution, energy-dispersive X-ray spectroscopy (EDX) data

were acquired using a Spectra 300 transmission electron microscope (Thermo Fischer Scientific) operated at 300 kV. The EDX maps were typically recorded at a magnification of 1.3 Mx and were 512 × 512 pixels in size (6.5 pixels/nm) using a dwell time of 10 μ s per pixel. Each map is an average of *ca.* 550 frames acquired over a total measurement time of 30 min.

Powder X-ray diffractograms of the catalysts were recorded in the reduced state and after air exposure on a Bruker AXS D8 Advance diffractometer at room temperature with a variable divergence slit. Samples were exposed to Co K α radiation ($\lambda =$ 1.790 Å) at 30 kV and 45 mA. The Scherrer equation was used to calculate the CuO_x crystallite sizes from the peak widths, thereby taking the instrumental line broadening of the X-ray diffraction (XRD) apparatus (*ca.* 0.1°) into account. All diffractograms were normalized between 0 and 1, *i.e.* between the lowest intensity at 20° and the maximum peak intensity due to the (002) reflection of graphite at 30.9°.

Temperature-programmed reduction (TPR) by H₂ was performed on a Micromeritics AutoChem II 2920 apparatus. Prior to the reduction the samples (50 mg each, <75 μ m granulites) were dried at 393 K under an Ar flow of 50 mL min⁻¹ for 30 min and cooled to room temperature. Reduction profiles were recorded with a thermal conductivity detector when the samples were exposed to a 5 vol% H₂/Ar flow of 25 mL min⁻¹ up to 973 K with a ramp of 2.5 Kmin⁻¹. H₂O was captured with a dry ice/ isopropanol cold trap.

XAS Analysis. Operando, quick X-ray absorption spectroscopy measurements on quasi-simultaneously the Cu (8979 eV) and Mn K-edge (6540 eV) were performed at the SOLEIL synchrotron (ROCK beamline).^[72] Typically, 2-4 mg CuMn-11/C, CuMn-33/C, or MnO_x/C catalyst (25–75 μ m sieve fraction) was loaded in a quartz capillary (internal diameter 1.2 mm, 20–50 μ m thick), which was tightly glued into a frame connected to gas feed lines. A hot gas blower (FMD Oxford) controlled heating of the capillary. After the capillary was leak-checked at 20 bar, XAS data was obtained in He at room temperature. The catalyst was exposed to a 10 mLmin^{>M->1} flow of 20 vol% H₂/He and heated to 543 K (ramp 2.5 Kmin⁻¹) at ambient pressure with a hold time of 20–30 min (or 130 min for the MnO_x/C catalyst).

After the H₂ treatment the capillary containing the CuMn-11/C catalyst was cooled to 453 K prior to introducing a syngas feed (H₂/CO/He = 60/30/10 vol%) at 10 mLmin⁻¹. Within *ca*. 100 min the capillary was pressurized to 20 bar after which the temperature was increased to 533 K (ramp 2.5 Kmin⁻¹) and held for 160 min. The feed was switched to H₂/CO/CO₂/He = 60/27/3/ 10 vol%, recording spectra for at least 200 min, and similarly to H₂/CO₂/He = 67.5/22.5/10 vol%. The CuMn-33/C catalyst was only measured under the H₂/CO₂ atmosphere. Finally, spectra were recorded for both catalysts after cooling to room temperature under 20 bar of H₂/CO₂.

During all treatments XAS spectra were obtained in the rocking mode, switching from the Cu K-edge (8.70–9.86 keV, 50 scans, 35 s) to the Mn K-edge (6.40–7.10 keV, 60 scans, 40 s) using 10 s to switch between each edge. The setup was configured in the transmission mode using as Si(111) quick-XAS monochromator. The product gas compositions were recorded with a mass spectrometer (Cirrus, MKS) at ambient pressure. When flowing CO gas, a carbonyl trap was used upstream of the capillary reactor. MnO (Sigma Aldrich, 99%), MnCO₃ (abcr, 99.985%), Mn₂O₃ (Sigma Aldrich, 99%), Cu₂O (Sigma Aldrich, \geq 99.99%), all mixed with boron nitride (Sigma Aldrich, 98%), as well as Cu (6 μ m) and Mn (4 μ m) foils were used as references with the spectra being recorded at room temperature

ChemCatChem 2022, 14, e202200451 (11 of 13)

under air. The XAS spectra were processed using the Demeter software package,^[73] as described in more detail in the Supplementary Information (section S3).

Catalyst Testing

Catalysts were tested in a 16-reactor setup (Flowrence, Avantium) for at least 80 h, operating at 20–40 bar(g) and 473–533 K using various CO_2 and CO feeds. The catalyst powders were pelletized and sieved into granules with a size of 75 to 150 µm. The stainless steel reactors (internal diameter 2.6 mm) were loaded with similar amounts of catalysts (either *ca.* 26 or 39 mg) and diluted with 400–450 mg inert SiC (sieve fraction of 212– 425 µm), resulting in SiC contents of *ca.* 83 vol% of the total packed bed.^[74] The different sizes of the sieve fractions of the catalysts and the diluent facilitated separation after catalysis and hence post-analysis by EM and XRD.

Two separate catalytic tests were performed to evaluate the influence of various parameters, such as the gas composition, temperature, pressure, and flow rate, on the catalyst performance. Prior to both tests, the catalysts were in situ reduced in a 20 vol% H_{2}/N_{2} flow at 10.9 $mL\,min^{-1}$ and 543 K for 2 h after which the temperature was lowered to 393 K. During the first test (see Figure S5, frame A, for an overview as a function of time) the reduced catalysts were exposed to a 2.2 mLmin⁻¹ flow of H₂/CO₂/ He = 67.5/22.5/10 vol % at 690 mLmin⁻¹g_{cu}⁻¹ and a gas-hourly space velocity (GHSV) of *ca*. 1,800 h^{-1} , after which the reactors were pressurized to 40 bar(g) and heated to 533 K at 5 K min⁻¹. After 22 h the temperature was lowered to 473 K and consecutively increased in steps of 10 K to 533 K, recording data for 15 h at each reaction condition. In the same test, this temperature protocol was directly repeated in a flow of $H_2/CO/He = 60/30/10$ vol% at 40 bar(g). In the second test (see Figure S5, frame B, for an overview as a function of time), freshly reduced catalysts were exposed to varying gas compositions (H₂/CO₂/He, H₂/CO/CO₂/He = 60/27/3/10 vol %, and H₂/CO₂/He) at a pressure of 20 bar, maintaining constant flow rate of 1.0 mLmin⁻¹ g_{cu}^{-1} at *ca.* 2700 h⁻¹ and temperature of 533 K. In the same test, this specific protocol was directly repeated at a pressure of 40 bar. Catalytic tests were performed at 20 bar, to have a direct comparison to the operando XAS experiments for which higher than 20 bar was not possible, and at 40 bar, to be closer to industrially relevant pressures.

A tri-phase carbonyl trap (active carbon, γ -Al₂O₃, ZnO) was located between the CO feed and the reactor to remove metal carbonyls and sulfur species. Products were analyzed by online gas chromatography every 15 min. He, H₂, CO, CO₂ were analyzed and quantified using a thermal conductivity detector, while oxygenates (up to pentanol) and hydrocarbons (ranging from C1 to C11) were analyzed and quantified by two separate flame ionization detectors. After catalysis, the samples were slowly exposed to air at 338 K. Details on the calculations of activity and selectivity are given in the Supplementary Information (section S4).

Author contributions

RD, LB, and PdJ conceived the experiments. RD and LB synthesized the catalysts and measured their performance, NV designed the catalyst synthesis protocol and performed basic electron microscopy, and JvdH performed the high-resolution electron imaging experiments. RD, LB, and PdJ performed the XAS experiments together with XC and GT. LB analyzed the XAS data. FM helped with multivariate analysis. FM and AvdE helped

ChemCatChem 2022, 14, e202200451 (12 of 13)

with the interpretation of XAS data. JS helped in discussing the results. PdJ and KdJ provided guidance in discussing the results and writing the manuscript. All authors contributed to the final manuscript.

Acknowledgements

We are grateful for the help of Giorgio Totarella and Xavier Carrier during the XAS experiments. We acknowledge SOLEIL for provision of synchrotron radiation facilities, and we would like to thank Camille La Fontaine and Valérie Briois for assistance in using the ROCK beamline (proposal ID 20190640). The work at ROCK was supported by a public grant overseen by the French National Research Agency (ANR) as part of the Inventissements d'Avenir program (reference: ANR10-EQPX45). This project has received funding from the European Research Council (ERC), ERC-2014-CoG, project number 648991. LB gratefully acknowledge the Consortium on Metal Nanocatalysts funded by TotalEnergies OneTech Belgium, TRTF Contract Ref IPA-5443.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: Catalyst · Hydrogenation · *Operando* spectroscopy · Promoter · X-ray absorption spectroscopy

- B. E. Koel, J. Kim, in *Handb. Heterog. Catal.*, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008, pp. 1593–1624.
- [2] D. A. King, D. P. Woodruff, Eds., *Coadsorption, Promoters and Poisons*, Elsevier, **1993**.
- [3] M. D. Argyle, C. H. Bartholomew, *Catalysts* **2015**, *5*, 145–269.
- [4] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlögl, *Science* 2012, 336, 893–897.
- [5] R. van den Berg, G. Prieto, G. Korpershoek, L. I. van der Wal, A. J. van Bunningen, S. Lægsgaard-Jørgensen, P. E. de Jongh, K. P. de Jong, *Nat. Commun.* 2016, *7*, 13057.
- [6] R. Dalebout, N. L. Visser, C. E. L. Pompe, K. P. de Jong, P. E. de Jongh, J. Catal. 2020, 392, 150–158.
- [7] K. C. Waugh, Catal. Today 1992, 15, 51-75.
- [8] J. S. Lee, K. H. Lee, S. Y. Lee, Y. G. Kim, J. Catal. 1993, 144, 414–424.
- [9] M. Sahibzada, I. S. Metcalfe, D. Chadwick, J. Catal. 1998, 174, 111-118.
- [10] K. Klier, V. Chatikavanij, R. G. Herman, G. W. Simmons, J. Catal. 1982, 74, 343–360.
- [11] M. B. Fichtl, D. Schlereth, N. Jacobsen, I. Kasatkin, J. Schumann, M. Behrens, R. Schlögl, O. Hinrichsen, Appl. Catal. A 2015, 502, 262–270.
- [12] M. B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R. Schlögl, M. Muhler, O. Hinrichsen, Angew. Chem. Int. Ed. 2014, 53, 7043–7047; Angew. Chem. 2014, 126, 7163–7167.
- [13] J. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D. Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodriguez, *Science* 2014, 345, 546–550.

- [14] S. Zander, E. L. Kunkes, M. E. Schuster, J. Schumann, G. Weinberg, D. Teschner, N. Jacobsen, R. Schlögl, M. Behrens, *Angew. Chem. Int. Ed.* 2013, *52*, 6536–6540; *Angew. Chem.* 2013, *125*, 6664–6669.
- [15] O. Martin, A. J. Martín, C. Mondelli, S. Mitchell, T. F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, *Angew. Chem. Int. Ed.* 2016, 55, 6261–6265; *Angew. Chem.* 2016, 128, 6369–6373.
- [16] F. Studt, M. Behrens, E. L. Kunkes, N. Thomas, S. Zander, A. Tarasov, J. Schumann, E. Frei, J. B. Varley, F. Abild-Pedersen, J. K. Nørskov, R. Schlögl, *ChemCatChem* 2015, 7, 1105–1111.
- [17] F. M. Pinto, V. Y. Suzuki, R. C. Silva, F. A. La Porta, Front. Mater. 2019, 6, 260.
- [18] A. Ruiz Puigdollers, P. Schlexer, S. Tosoni, G. Pacchioni, ACS Catal. 2017, 7, 6493–6513.
- [19] S. Kattel, B. Yan, Y. Yang, J. G. Chen, P. Liu, J. Am. Chem. Soc. 2016, 138, 12440–12450.
- [20] M. K. Koh, Y. J. Wong, S. P. Chai, A. R. Mohamed, J. Ind. Eng. Chem. 2018, 62, 156–165.
- [21] Y. Qin, S. Fan, X. Li, G. Gan, L. Wang, Z. Yin, X. Guo, M. O. Tadé, S. Liu, ACS Appl. Nano Mater. 2021, 4, 11969–11979.
- [22] G. Wang, D. Mao, X. Guo, J. Yu, Int. J. Hydrogen Energy 2019, 44, 4197– 4207.
- [23] J. Słoczyński, R. Grabowski, A. Kozłowska, P. Olszewski, M. Lachowska, J. Skrzypek, J. Stoch, Appl. Catal. A 2003, 249, 129–138.
- [24] V. D. B. C. Dasireddy, N. S. Štefančič, M. Huš, B. Likozar, Fuel 2018, 233, 103–112.
- [25] S. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjaer, S. Helveg, I. Chorkendorff, J. Sehested, Science 2016, 352, 969–974.
- [26] H. Zhan, F. Li, C. Xin, N. Zhao, F. Xiao, W. Wei, Y. Sun, Catal. Lett. 2015, 145, 1177–1185.
- [27] H. Chen, J. Lin, K. Tan, J. Li, Appl. Surf. Sci. 1998, 126, 323-331.
- [28] J. González-Arias, M. Gonzálex-Cataño, M. Elena Sánchez, J. Cara-Jiménez, H. Arellano-García, *Renewable Energy* 2022, 182, 443–451.
- [29] M. Acet, H. Zähres, W. Stamm, E. F. Wassermann, W. Pepperhoff, Phys. B Phys. Condens. Matter 1989, 161, 67–71.
- [30] Y. Lang, C. Du, Y. Tang, Y. Chen, Y. Zhao, R. Chen, X. Liu, B. Shan, Int. J. Hydrogen Energy 2020, 45, 8629–8639.
- [31] J.-L. Li, T. Takeguchi, T. Inui, Appl. Catal. A 1996, 139, 97–106.
- [32] M. Kilo, J. J. Weigel, A. Wokaun, R. A. Koeppel, A. Stoeckli, A. Baiker, J. Mol. Catal. A 1997, 126, 169–184.
- [33] J. S. Hayward, P. J. Smith, S. A. Kondrat, M. Bowker, G. J. Hutchings, *ChemCatChem* 2017, 9, 1655–1662.
- [34] H. Blanco, S. H. Lima, V. de Oliveira Rodrigues, L. A. Palacio, A. da Costa Faro Jr., Appl. Catal. A 2019, 579, 65–74.
- [35] W. R. A. M. Robinson, J. C. Mol, Appl. Catal. 1991, 76, 117-129.
- [36] R. Chatterjee, S. Kuld, R. van den Berg, A. Chen, W. Shen, J. M. Christensen, A. D. Jensen, J. Sehested, *Top. Catal.* 2019, 62, 649–659.
- [37] R. Dalebout, L. Barberis, G. Totarella, S. J. Turner, C. La Fontaine, F. M. F. de Groot, X. Carrier, A. M. J. van der Eerden, F. Meirer, P. E. de Jongh, ACS Catal. 2022, 12, 6628–6639.
- [38] X. Shi, X. Lin, R. Luo, S. Wu, L. Li, Z.-J. Zhao, J. Gong, JACS Au 2021, 1, 2100–2120.
- [39] G. R. Johnson, S. Werner, A. T. Bell, ACS Catal. 2015, 5, 5888–5903.
- [40] M. Zabilskiy, V. L. Sushkevich, M. A. Newton, J. A. van Bokhoven, ACS
- Catal. 2020, 10, 14240–14244.
 [41] M. Zabilskiy, V. L. Sushkevich, D. Palagin, M. A. Newton, F. Krumeich, J. A. van Bokhoven, *Nat. Commun.* 2020, *11*, 2409.
- [42] G. T. Whiting, F. Meirer, B. M. Weckhuysen, in XAFS Tech. Catal. Nanomater. Surfaces (Eds.: Y. Isawa, K. Asakura, M. Tada), Springer International Publishing, Switzerland, 2017, pp. 167–191.
- [43] F. Bonino, E. Groppo, C. Prestipino, G. Agostini, A. Piovano, D. Gianolio, L. Mino, E. Gallo, C. Lamberi, in *Synchrotron Radiat. Basics, Methods Appl.* (Eds.: S. Mobilio, F. Boscherini, C. Meneghini), Springer-Verlag, Berlin-Heidelberg, Germany, **2015**, pp. 717–736.
- [44] S. Bordiga, E. Groppo, G. Agostini, J. A. van Bokhoven, C. Lamberti, *Chem. Rev.* 2013, 113, 1736–1850.

- [45] G. Totarella, R. Beerthuis, N. Masoud, C. Louis, L. Delannoy, P. E. de Jongh, J. Phys. Chem. C 2021, 125, 366–375.
- [46] R. Beerthuis, N. L. Visser, J. E. S. van der Hoeven, P. Ngene, J. M. S. Deeley, G. J. Sunley, K. P. de Jong, P. E. de Jongh, J. Catal. 2020, 0–8.
- [47] R. Beerthuis, J. W. de Rijk, J. M. S. Deeley, G. J. Sunley, K. P. de Jong, P. E. de Jongh, J. Catal. 2020, 388, 30–37.
- [48] J. L. Figueiredo, J. Mater. Chem. A 2013, 1, 9351-9364.
- [49] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Carbon 1999, 37, 1379–1389.
- [50] M. L. Smith, A. Campos, J. J. Spivey, Catal. Today 2012, 182, 60-66.
- [51] G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, Appl. Catal. A 1996, 137, 327–348.
- [52] E. Kleymenov, J. Sa, J. Abu-Dahrieh, D. Rooney, J. A. van Bokhoven, E. Troussard, J. Szlachetko, O. Safonova, M. Nachtegaal, *Catal. Sci. Technol.* 2012, 2, 373–378.
- [53] P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, H. Topsøe, *Science* 2002, 295, 2053–2055.
- [54] P. C. K. Vesborg, I. Chorkendorff, I. Knudsen, O. Balmes, J. Nerlov, A. M. Molenbroek, B. S. Clausen, S. Helveg, J. Catal. 2009, 262, 65–72.
- [55] G. Prieto, J. Zečević, H. Friedrich, K. P. De Jong, P. E. De Jongh, Nat. Mater. 2013, 12, 34–39.
- [56] C. Holse, C. F. Elkjær, A. Nierhoff, J. Sehested, I. Chorkendorff, S. Helveg, J. H. Nielsen, J. Phys. Chem. C 2015, 119, 2804–2812.
- [57] A. Bansode, B. Tidona, P. R. von Rohr, A. Urakawa, Catal. Sci. Technol. 2013, 3, 767–778.
- [58] M. D. Porosoff, B. Yan, J. G. Chen, Energy Environ. Sci. 2016, 9, 62-73.
- [59] S. Kattel, P. Liu, J. G. Chen, J. Am. Chem. Soc. 2017, 139, 9739-9754.
- [60] C. Wu, L. Lin, J. Liu, J. Zhang, F. Zhang, T. Zhou, N. Rui, S. Yao, Y. Deng, F. Yang, W. Xu, J. Luo, Y. Zhao, B. Yan, X.-D. Wen, J. A. Rodriguez, D. Ma, *Nat. Commun.* **2020**, *11*, 5767.
- [61] R. Naumann d'Alnoncourt, X. Xia, J. Strunk, E. Löffler, O. Hinrichsen, M. Muhler, Phys. Chem. Chem. Phys. 2006, 8, 1525–1538.
- [62] K. A. Almusaiteer, A. Al-Hadhrami, O. Abed, G. Biausque, A. Al-Amer, Catalysts and Methods for Methanol Synthesis from Direct Hydrogenation of Syngas and/or Carbon Dioxide, 2019, US20190076828 A1.
- [63] D. V. Stynes, Inorg. Chem. 1975, 14, 453-454.
- [64] N. J. Divins, D. Kordus, J. Timoshenko, I. Sinev, I. Zegkinoglou, A. Bergmann, S. W. Chee, S. Widrinna, O. Karslioğlu, H. Mistry, M. Lopez Luna, J. Q. Zhong, A. S. Hoffman, A. Boubnov, J. A. Boscoboinik, M. Heggen, R. E. Dunin-Borkowski, S. R. Bare, B. Roldan Cuenya, *Nat. Commun.* 2021, *12*, 1435.
- [65] D. Großmann, K. Klementiev, I. Sinev, W. Grünert, *ChemCatChem* 2017, 9, 365–372.
- [66] M. W. E. Van Den Berg, S. Polarz, O. P. Tkachenko, K. Kähler, M. Muhler, W. Grünert, *Catal. Lett.* 2009, 128, 49–56.
- [67] A. Roine, P. Lamberg, J. Mansikka-aho, P. Björklund, J.-P. Kentala, T. Talonen, T. Kotiranta, R. Ahlberg, A. Gröhn, O. Saarinen, J. Myyri, J. Sipilä, A. Vartiainen, *Metso Outotec HSC Chemistry v7.14 Software* 2011, 7.14.
- [68] L. C. Grabow, M. Mavrikakis, ACS Catal. 2011, 1, 365–384.
- [69] H. Okamoto, J. Phase Equilib. Diffus. 2018, 39, 87-100.
- [70] S. Kattel, B. Yan, Y. Yang, J. G. Chen, P. Liu, J. Am. Chem. Soc. 2016, 138, 12440–12450.
- [71] P. Kofstad, Solid State Ionics 1984, 12, 101–111.
- [72] C. La Fontaine, S. Belin, L. Barthe, O. Roudenko, V. Briois, Synchrotron Radiat. News 2020, 33, 20–25.
- [73] B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537-541.
- [74] C. M. van den Bleek, K. van der Wiele, P. J. van den Berg, Chem. Eng. Sci. 1969, 24, 681–694.

Manuscript received: April 1, 2022 Revised manuscript received: July 19, 2022 Accepted manuscript online: July 21, 2022 Version of record online: August 11, 2022