
Long-Term Prophylactic Antibiotic Treatment: Effects on

Survival, Immunocompetence and Reproduction Success

of Parasemia plantaginis (Lepidoptera: Erebidae)

Franziska Dickel,1,2 Dalial Freitak,3 and Johanna Mappes1

1Centre of Excellence in Biological Interactions, University of Jyvaskyla, Department of Biological and Environmental Science, P.O.

Box 35, FI-40014 University of Jyvaskyla, Finland (franziska.dickel@jyu.fi; johanna.r.mappes@jyu.fi), 2Corresponding author, e-mail:

franziska.dickel@jyu.fi, and 3Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, P.O.

Box 65, FI-00014, Finland (dalial.freitak@helsinki.fi)

Subject editor: Muhammad Chaudhury

Received 9 February 2016; Accepted 18 April 2016

Abstract

Hundreds of insect species are nowadays reared under laboratory conditions. Rearing of insects always impli-

cates the risk of diseases, among which microbial infections are the most frequent and difficult problems.

Although there are effective prophylactic treatments, the side effects of applied antibiotics are not well under-

stood. We examined the effect of prophylactic antibiotic treatment on the overwintering success of wood tiger

moth (Parasemia plantaginis) larvae, and the postdiapause effect on their life-history traits. Four weeks before

hibernation larvae were treated with a widely used antibiotic (fumagillin). We monitored moths’ survival and

life-history traits during the following 10 mo, and compared them to those of untreated control larvae.

Prophylactic antibiotic treatment had no effect on survival but we show effects on some life-history traits by

decreasing the developmental time of treated larvae. However, we also revealed relevant negative effects, as

antibiotic treated individuals show a decreased number of laid eggs and also furthermore a suppressed immu-

nocompetence. These results implicate, that a prophylactic medication can also lead to negative effects on life-

history traits and reproductive success, which should be seriously taken in consideration when applying a

prophylactic treatment to laboratory reared insect populations.

Key words: mass-rearing, antibiotic, reproduction, immunocompetence, trade-off

Mass-rearing of insects under laboratory conditions is a widely used

strategy in a variety of disciplines, but complications often arise

while optimizing the procedure. Insect rearing is important for

many different substantial research purposes such as the production

of chemical insecticides, agricultural health research, pest manage-

ment, genetic studies, and enhancement of domestic populations

(Leppla 2009, Sørensen et al. 2012). Due to the raising interest on

integrated and biological pest management methods, it is of special

importance to maintain high quality laboratory populations with

minimized workload (Singh 1982, Sørensen et al. 2012). However,

it is also known that conditions in laboratory facilities can have neg-

ative effects on insects’ fitness and reproductive success, as insects’

performance can be affected by various behavioral, reproductive, or

genetic factors (Singh 1982, Sørensen et al. 2012). The rearing of

well-established laboratory model organisms like the confused

flower beetle Tribolium confusum, the housefly Musca domestica,

or the tobacco budworm Heliothis virescens is well recorded by

freely available rearing protocols (Leppla 2009), though the number

of scientifically based rearing protocols is humble (Cohen 2001).

Establishing new insect species as laboratory populations is highly

time consuming (Leppla 2009) due to work needed for the optimisa-

tion of rearing techniques, which is necessary to minimize the nega-

tive effects of the artificial rearing conditions.

The main limiting factor of artificially reared insect quality is,

besides temperature and humidity conditions, a suboptimal nutri-

tion that can consequently lead to microbial contaminations of the

populations (Sikorowski and Lawrence 1994), which are known as

major threats of low overwintering survival and reproduction suc-

cess (Rull et al. 2005; Van Der Hoeven et al. 2008; Sørensen et al.

2012). Especially under laboratory conditions infections and dis-

eases can easily establish and spread, affecting sensitive life stages

such as overwintering, which is strongly influenced by light- and

temperature conditions as well as by food quality (Bale and

Hayward 2010, Xu et al. 2011, Spurgeon 2012, Sinclair 2014).

Insect mating behavior is dependent on various environmental fac-

tors, but also on courtship behavior and fitness, and is furthermore

affected by diseases (Leppla 2009). Production of high numbers of

high quality insects might be achieved by including a prophylactic
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microbial control treatment (Singh 1982, Parker et al. 2005,

Sørensen et al. 2012). Developing and understanding the importance

of artificial diets and optimal rearing conditions is essential to guar-

antee high quality insect populations as well as the applicability of

the results obtained from experiments (Cohen 2000, 2001; Leppla

2009; Sørensen et al. 2012).

The use of prophylactic antibiotic treatments in laboratory-reared

insect populations is a commonly used strategy to eliminate microbial

infections and increase the quality of mass-reared insects (Sørensen

et al. 2012). Laboratory-reared colonies of Lepidoptera (McLean-

Cooper et al. 2008, Van Der Hoeven et al. 2008), Diptera (Dimou

et al. 2010), and Coleoptera (Lehman et al. 2009) are fed on artificial

diets complemented with antibiotics to eliminate epidemic infections

such as contamination with obligate intercellular parasites, for exam-

ple microsporidia (Higes et al. 2007). They can affect insect life-his-

tory traits negatively by a restricted larval development, decreased

pupal weight, lower fecundity, and immune suppression, as detected

for instance in Choristoneura fumiferana (Thomson 1958) and Apis

mellifera (Ant�unez et al. 2009). These effects could render insects

more susceptible to secondary and/or opportunistic infections.

Moreover, it is known that the adaptation to chemicals is associated

with fitness costs, which may also include suppression of the immune

response, as it is a costly mechanism (Coustau et al. 2000, Schmid-

Hempel 2005). Insect immune system is a well-evolved defense

against infections, consisting of complex multi-level interactions be-

tween specific detoxification enzymes and genes (Gillespie et al.

1997, Vilmos and Kurucz 1998). Up-regulating and maintaining an

immune response is highly costly and thus trades off with other cost-

associated factors, such as environmental stressors and diseases

(Moret and Schmid-Hempel 2000, Schmid-Hempel 2003).

A commonly used antibiotic reagent for prophylactic therapy

against microsporidia infection is fumagillin, isolated from the fun-

gus Aspergillus fumigatus (Huang et al. 2013, Van Den Heever et al.

2014). For example the leading company of insect supplies (Frontier

Agricultural Science) is offering ready mixed insect diets supple-

mented with antibiotics. However, there is little known about the

long-term effects of the applied agents. Possible negative effects on

life-history traits are suspected but still not well documented.

Prolonged larval, pupal, and adult developmental times, as well as

decreased reproductive success, are possible long-term consequences

of a prophylactic treatment of laboratory insect populations

(Wilkinson 1998). Wild insect populations are also facing increasing

amounts of different xenobiotics. With the increased usage of antibi-

otics in human medical treatment, as well as in food animal produc-

tion, insects might encounter their residuals, which stay active in

environmental compounds (Daghrir and Drogui 2013).

The main objective of this study was to test the effect of a pro-

phylactic antibiotic treatment on life-history traits and overwinter-

ing success of Lepidopteran larvae not showing obvious symptoms

of an infection or disease, as well as the general long-term conse-

quences of the medicine. Polyphagous larvae of the wood tiger

moth, Parasemia plantaginis where used for this experiment. We

treated the larvae by feeding them with the antibiotic fumagillin for

a time span of 4 wk until they began to hibernate. We then moni-

tored larval mortality before hibernation as well as 5 mo during hi-

bernation. Furthermore, we examined the effect of the antibiotic on

the immune response of the larvae before hibernation, by analyzing

the activity of phenoloxidase. The possible long-time consequences

of the medicine where assessed in several ways: 1) we measured the

weight of the larvae before hibernation and after hibernation, as

well as the pupal weight; 2) we monitored the developmental time

from egg to pupa, and from egg to adult; 3) we examined the effect

on egg laying success and on the number of laid eggs after mating

the eclosed adults. Our findings offer a better understanding of the

side effects that the treatment with prophylactic medicine has on

laboratory-reared Lepidoptera larvae.

Material and Methods

Animals

The wood tiger moth, P. plantaginis, is a day active moth belonging

to the Arctiinae subfamily (Conner 2008). They are herbivorous

generalistic insects, which are able to consume and digest a variety

of plant species. P. plantaginis is widely distributed over the north-

ern hemisphere and is mostly studied for its warning coloration

(Lindstedt et al. 2009, Hegna et al. 2015), but also for immunocom-

petence questions and host–parasite interactions (Ojala et al. 2005,

Friman et al. 2009, Zhang et al. 2012, Nokelainen et al. 2013).

Under natural conditions they overwinter as larvae and have one

generation per year, whereas under laboratory conditions it is possi-

ble to have up to three generations per year (Ojala et al. 2007).

All P. plantaginis larvae used in this experiment were obtained

from a laboratory stock population from the University of

Jyv€askyl€a, Finland (re) established in 2012. The laboratory stock is

reared under greenhouse conditions of 25�C, a photoperiod of 18:6

(L:D) h, 80% RH, maintained in plastic boxes in groups of around

30 individuals, and fed with dandelion (reared following the meth-

ods from Lindstedt et.al [2009]). All larvae used for this experiment

had the same hatching date, 16 September 2013. The individuals for

the experiment were maintained continuing the above-mentioned

rearing conditions.

Fumagillin

For conducting the experiment we obtained the product fumagilin-B

(hereafter always referred as fumagillin), a soluble powder from

Medivet (Medivet Pharmaceuticals Ldt., High River, Alberta,

Canada), which is equivalent to 21 mg fumagillin base per gram.

Fumagillin is a commonly used antimicrobial agent in bee-manage-

ment and human medicine (Huang et al. 2013, Van Den Heever

et al. 2014). It is a complex biomolecule isolated from the fungus A.

fumigatus. Due to its ability to inhibit and block the enzyme methio-

nine aminopeptidase-2 (MetAP2) it is widely used in human medi-

cine to treat microsporidian infections (Fallon et al. 2011). MetAP2

is an essential enzyme in microsporidia and thus its inhibition by

fumagillin kills microsporidian cells (Upadhya et al. 2006). The

most relevant field of fumagillin application is in beekeeping man-

agement, as this substance is proved to be highly effective against

nosema diseases in honeybees, A. mellifera. Both Nosema apis infec-

tion, as well as the microsporidian pathogen, Nosema ceranae, can

be treated with a periodic fumagillin treatment (Webster 1994,

Huang et al. 2013). Hives are treated in autumn and spring to

ensure microsporidia-free colonies by prophylactically applying a

recommended concentration of 25 mg/l of fumagilin in sugar syrup

(Huang et al. 2013).

Treatments

Larvae for the experiment were taken from four families of the

Finnish laboratory stock population in Jyv€askyl€a with same hatch-

ing date (16 September 2013). Twenty-five-day-old larvae were div-

ided into two treatment groups and placed individually in petri

dishes (Sarstedt AG & Co, Nuernbrecht, Germany), resulting in 400

antibiotic treated and 400 control treated individuals. Because of

uneven development within the families, the number of larvae per
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family could not be perfectly balanced, resulting in a sample size of

150, 330, 190, and 130 in families 1, 2, 3, and 4, respectively. In

order to induce diapause, the temperature and light conditions of

the growth chamber where stepwise decreased every week (first

week 20�C and a photoperiod of 16:8 (L:D) h, second week 16�C

and a photoperiod of 12:12 (L:D) h, third week 12�C and a photo-

period of 8:16 (L:D) h, fourth week 8�C and a photoperiod of 4:20

(L:D) h). For the antibiotic treatment we used 1% fumagilin solu-

tion in water. Larvae were orally treated with the antibiotic by dip-

ping the food plant into the fumagillin solution. The treatment

lasted for 4 wk. The procedure was repeated every second day to

ensure a continuous exposure with the antibiotic. Remaining diet

from the last inoculation was removed. Control larvae were treated

with the same method, by using water as dipping solution for the

food plant, to ensure similar leaf conditions. After 4 wk all larvae

were transferred to individual overwintering containers, filled with

moss and stored in a climate chamber with 4�C in complete dark-

ness for hibernation. Larvae were kept for 5 mo under hibernation

conditions and then placed in a warmer climate chamber (7�C) with

increasing temperature and light conditions to slowly wake them up

(7�C and a photoperiod of 8:16 (L:D) h cycle with low light inten-

sity (2 out of 5, light intensity level), 4 d after waking up 15�C and a

photoperiod of 16:8 (L:D) h cycle, 6 d after waking up 20�C and a

photoperiod of 16:8 (L:D) h cycle with high light intensity (4 out of

5), 10 d after waking up greenhouse conditions of around 25�C).

Individual rearing was then changed to group rearing, wherefore the

larvae were placed in new bigger rearing containers according to

their weight, family, and treatment. This grouping allowed further

assignment of the larvae to its previous treatment group (fumagillin

or control) as well as family. Overall 27 containers with control lar-

vae and 28 containers with fumagillin treated larvae were kept for

further observation. Gender was determined in pupa stage.

Survival

The survival was checked during the whole period of individual

rearing. We monitored daily survival of individually reared larvae

from both fumagillin and control treatments during the 4 wk prior

to overwintering. During overwintering, larval mortality was

checked every 2 wk and dead animals were removed. The survival

monitoring ended with the start of group rearing after the 10 d wak-

ing-up period following the overwintering phase.

Immunity

Four weeks after the first fumagillin treatment (see Supp Fig. 1

[online only]) hemolymph from 100 individuals from both treatment

groups was sampled. Hemolymph was collected by puncturing the

larvae with a sterile needle. Four microliters of hemolymph were

immediately mixed with 100ml chilled phosphate buffered saline

buffer and stored at �80�C until further use. For estimating the

Phenoloxidase activity samples were thawed on ice and then centri-

fuged at 4�C for 7 min at full speed to obtain the supernatant. The

assay was performed in a 96-well plate. Twenty-four microliters of

each supernatant were mixed with 200ml 3 mM L-Dopa (Sigma

Aldrich, Helsinki, Finland). To analyze the phenoloxidase activity,

changes in absorbance where measured at 30�C and 490 nm for 90

min with a Victory X4 2030 plate reader (Perkin Elmer, Waltham,

MA, USA).

Development

Developmental time. To control the effect of fumagillin on develop-

mental time of P. plantaginis, every developmental stage was

monitored and dates documented. The egg-laying date was used as

the starting date for development. During the whole experimental

process larval hatching date, pupation date, as well as adult eclosion

date were monitored and recorded. These data were further used to

calculate the developmental time from egg to pupa and from egg to

adult and thus the effect of the fumagillin treatment on the develop-

ment of P. plantaginis larvae could be examined.

Weight. Larval weight was measured on three different time points

before pupation; pupa weight was measured too (see Supp Fig. 1

[online only]). The first weight measurement was taken on 25-d-old

larvae before the treatment started; the second one was taken 4 wk

later, and the third one right after the overwintering period. Pupa

weight was measured 1 d after pupation.

Egg laying and hatching. To examine the egg laying and hatching-

success single-pair matings were performed with the emerged adults,

within families and within the treatment groups. In total, 24 matings

were conducted within the antibiotic treatment group and 15 mat-

ings in the control group. Pairs were placed together in plastic boxes

(12 by 10 by 10 cm) under above-mentioned rearing conditions

(25�C, a photoperiod of 18:6 (L:D) h, 80% RH). After 3 d all eggs

were counted. Additionally hatched larvae were counted after 21 d

(18 d after egg counting).

Statistical Analyses

All statistical analyses were performed with R 3.1.1 (R Foundation

for Statistical Computing, 2014, Vienna, Austria).

All data were checked for normality and homogeneity of var-

iance, and family was used as a random factor. Reported error terms

are standard deviations, unless specified otherwise. We analyzed the

survival upon treatment separately for the time before and during

hibernation with Cox Proportional Hazard-Models. Treatment was

added as a fixed factor and family as a random effect. We used anal-

ysis of variance (ANOVA) to test for differences in larval weight

gain across treatment and developmental time point (day). To

account for differences in larval weight before the experiment, we

subtracted the weight of first weight measurement from the weights

of second and third weight measurement after treatment. Larval

development was calculated as timespan between egg laying date

and pupation date; overall development was calculated as timespan

between egg laying date and adult date. We analyzed each develop-

ment characteristic with a separate ANOVA, with treatment and

gender as fixed factors, and an interaction term of the two factors.

Reproductive success was analyzed as the amount of laid eggs per

mating couple with a Zero inflated Count Model. The Zero inflated

Count Model performed a binomial test on the probability to lay

eggs among treatment and a Poisson regression on the amount of

laid eggs per treatment. Furthermore a generalized linear mixed

model via penalized quasi-likelihood (PQL) was used for examining

the proportion of hatched larvae depending on the amount of laid

eggs and treatment. Data of immune parameters were analyzed with

a Mann–Whitney test, using treatment as factor.

Results

Survival

Treatment effect on larval survival before and during hibernation. A

prophylactic treatment with fumagillin did not increase P. plantagi-

nis survival during overwintering in comparison to control larvae

(Fig. 1: Cox proportional-hazard regression; b¼0.06 6 0.14 (se),
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v2¼0.17, P¼0.68). Furthermore, the treatment did not affect the

survival before the start of hibernation (Fig. 1: Cox proportional-

hazard regression; b¼0.09 6 0.2 (se) v2¼0.2, P¼0.65)

Immunity

Phenoloxidase activity. Larval phenoloxidase activity in the hemo-

lymph was significantly higher in the fumagillin treatment group

than in the control group (Fig. 2: Wilcox-test: W¼2271,

P¼0.007).

Development

Effect of fumagillin on developmental time of P. plantaginis

Developmental time was calculated as the larval development (time-

span from egg-laying date until pupation date) and also as the overall

developmental time (timespan from egg-laying date until adult eclosion

date). Development differs between the genders, with males showing a

shorter developmental time (Table 1: mean days to pupation: mal-

es¼237.95 6 2.63; females¼240.46 6 2.92). Fumagillin treated lar-

vae develop faster than control treated larvae (Table 1: mean days to

pupation: control¼239.49 6 3.0; fumagillin¼238.53 6 2.95).

However, there is no effect of fumagillin on the overall developmental

duration from egg to adult (Table 1: mean days to eclosion: con-

trol¼248.73 6 3.59; fumagillin¼248.05 6 3.54). There is no differ-

ence in sex ratio (appearance of male and female pupae) and

fumagillin does not affect the survival of male and female pupae differ-

ently (v2 test: x2¼0.003, df¼1, P¼0.955).

Effect of fumagillin on larval and pupal weight. Compared to control

larvae, there is no significant weight gain or loss of fumagillin treated

larvae neither during overwintering (Table 2: standardized larval

weight: control¼1.44 6 8.81 g; fumagillin¼1.31 6 9.78 g), nor at the

two time points (Table 2: standardized larval weight: second

weighing¼�1.36 6 6.96g; 3rd weighing¼3.27 6 10.19 g). The

weight of P. plantaginis pupa is not affected by a prophylactic fumagil-

lin treatment of the larvae before overwintering (Table 2: mean pupa

weight: control¼198.03 6 48.97 g; fumagillin¼203.06 6 49.96 g),

although male pupae are heavier than female pupae (Table 2: mean

pupa weight: males¼181.89 6 35.62 g; females¼236.56 6 52.61 g).

Effect of fumagillin on egg laying- and hatching success. Egg laying

success was evaluated by comparing the pairings that did not lay

eggs (0 eggs produced 3 d post mating date) as well as the pairs that

successfully laid eggs (at least one egg laid 3 d post mating date). We

0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

l avi vr us evit al u
mu

C

Days

before overwintering during overwintering

Control
Antibiotics

Fig. 1. Effect of fumagillin treatment on larval survival of P. plantaginis before hibernation (50 d) and during hibernation compared to survival of control larvae.

Dashed line separates survival curve in before overwintering mortality (left) and mortality during overwintering (right).

Fig. 2. Phenoloxidase activity in the hemolymph of P. plantaginis larvae, fed

on fumagillin, 4 wk after treatment exposure, compared to control treated lar-

vae of same age. Phenoloxidase activity (slope at Vmax.) measured from

hemolymph samples, comparing the activity of antibiotic treated larvae and

control larvae.

Table 1. Effect of fumagillin treatment on the developmental time

of P. plantaginis

Source of variation df MS F P

Developmental time

egg to pupa

treatment 1 58.3 7.296 0.007

gender 1 333.7 45.274 1.556e–10

treatment:gender 1 2.6 0.354 0.552

residuals 213 7.4

egg to adult

treatment 1 12.35 1.463 0.228

gender 1 55.48 6.573 0.011

treatment:gender 1 4.63 0.548 0.460

residuals 198 8.44

Results of ANOVA testing for the effect of treatment, gender and their

interactions on developmental time measured as time in days from egg to

pupa and egg to adult (df¼ degrees of freedom; MS¼Mean Square, F¼ F-

value; P¼ significance probability).
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found no significant effect of antibiotic treatment on egg laying suc-

cess (Fig. 3a: Zero-inflated Count Data Regression:

estimate¼�0.405, z-value¼�0.561, Pr(>jzj)¼0.575), but mating

pairs treated with the antibiotic laid less eggs than control mating

pairs (Fig. 3b: Zero-inflated Count Data Regression: z-val-

ue¼236.13, Pr(>jzj)¼<2e-16). The proportion of hatched larvae

per number of laid eggs is not significantly different between the

control and antibiotic treatment groups, even though hatching suc-

cess is higher in the antibiotic treated group (Fig. 3c: Generalized

Linear Mixed Model via PQL: P¼0.246 and Fig. 3d: Linear mixed

effects model: t-value¼0.357).

Discussion

We found significant effects of fumagillin treatment on central life-

history traits in wood tiger moths but at the same time antibiotic

treatment did not affect either larval overwintering survival or weight

gain. Antibiotics are commonly added to artificial diets of mass-reared

insects to suppress diseases and infections, which can easily spread in

laboratory-reared colonies. However, there is limited knowledge on

how the antibiotic itself might influence important life-history traits

like overwintering performance and reproductive success. The

observed negative effects in our experiment are related to reproduc-

tion and immune responses, and are important both in lab and wild

insect populations. The lack of negative effects on larval survival can

however be misleading to users of antibiotics in insect mass-rearing

and skew the population fitness characteristics.

Guaranteeing a good overwintering performance is an important

factor for mass-rearing techniques to maintain a functioning insect

population. Overwintering is a highly sensitive life stage, affected by

various factors, and can greatly influence the insects’ quality (Bale

and Hayward 2010, Xu et al. 2011, Spurgeon 2012). Our results

show that the antibiotic treatment does not affect the larval over-

wintering success. Survival and weight gain were also similar

between treated and nontreated individuals. It is known that antibi-

otics can interact with intestinal microbiota, resulting in growth pro-

moting effects by changing the gut flora, and thus promote better

weight gain (Lin 2011). We did not see a growth promoting effect,

initiated by fumagillin, on larval weight gain performance, but in

this study it remains unanswered, whether this is caused by the

antibiotic not affecting the insects’ microbiota. Thus, the 4-wk con-

tinuous fumagilin treatment seems not to affect the larval ability to

prepare for hibernation. A prophylactic antibiotic treatment might

help to limit the risk of infection without affecting the larval ability

to overwinter.

While previous studies have focused only on how fumagillin is

affecting infected insects, we examined the possible negative effect

of the antibiotic on the lifespan development of noninfected lepidop-

teran larvae. A study with the mosquito Anopheles stephensi has

revealed possible negative effects of the toxin fumagillin on insects;

the larval developmental period was prolonged, rising with increas-

ing antibiotic dose (Rutledge 1970). Our results did not display a

similar effect on noninfected Lepidoptera, as the development of

P. plantaginis larvae was actually shortened by the fumagillin treat-

ment, whereas the overall developmental time from egg to adult was

neither shortened nor prolonged. A prophylactic antibiotic treat-

ment in mass-reared colonies could thus be used without expecting

negative effects on the overall insects’ development, even in the

absence of a disease.

Fumagillin treatment increased the immune response of larvae,

measured as activity of phenoloxidase in the hemolymph, meaning

that the antibiotic affects immune- related enzymes. Antibiotics

might be recognized as nonself by the insects’ immune system.

Consequently, the immune response will be up-regulated, resulting

in increased enzyme levels. On the other hand, Fallon et al. (2011)

found a limited hemocyte activity in hemolymph of Galleria mello-

nella larvae treated with fumagillin (Fallon et al. 2011). This

showed, that the ability to fight infections decreases after being

exposed to the antibiotic, resulting in a lower survival. A treatment

of not obviously infected or sick individuals does not reveal the

same results, as the survival was not affected and at the same time

the immune response was activated. Thus, we propose that the anti-

biotic is recognized as nonself by the immune system. Because up-

regulation of immune response is related with high costs as well as

with the production of reactive oxygen species, this can result in a

decrease of other fitness traits, especially when exposed to an

infection.

Our study shows a significantly reduced number of laid eggs by

fumagillin treated adults. These results, together with those from

studies on the effect of fumagillin on Nosema infections in Bombyx

occidentalis (Whittington and Winston 2003) and A. mellifera

(Webster 1994), reveal negative consequences on brood levels, indi-

cating that antibiotics negatively affect insects’ reproduction success.

Establishing new wild populations as a lab colony, however, implies

mainly the maintenance of the insects’ reproductive success. It is

known that maternal stress can affect offspring quality by altering

fitness traits such as hatching success, growth, or development

(Mousseau et al. 1991, Kyneb and Toft 2006) as shown for instance

in rove beetles (Kyneb and Toft 2006) and Trichoplusia ni larvae

(Freitak et al. 2009). Offspring quantity and quality could also

trade-off, such that large egg clutches might result in smaller off-

spring, whereas the hatching success and fitness of larvae from

smaller egg clutches might be higher (Koch and Meunier 2014).

Interestingly, the antibiotic treatment decreased the number of laid

eggs while slightly increasing the number of hatched larvae. Still the

proportion of hatched larvae per eggs laid did not differ between

treatments. A prophylactic fumagillin treatment does, however,

limit reproductive success. How this might affect long-term fitness,

measured as decreased population size in the following generations,

remains unanswered.

Our findings offer a better, more holistic understanding of pro-

phylactic medicine treatments for laboratory-reared Lepidoptera

Table 2. Effect of fumagillin on weight of P. plantaginis larvae and

pupa

Source of variation df MS F P

Weight

larva

treatment 1 44.59 0.550 0.458

day 1 69.33 0.856 0.355

treatment:day 1 10.96 0.135 0.713

residuals 1,162 81.01

pupa

treatment 1 0 0.000 0.997

day 1 156,974 83.159 <2e–16

treatment:day 1 2,616 1.386 0.240

residuals 213 1,888

Results of ANOVA testing for the effect of treatment on larva weight as

well as pupa weigh. Analysis for larva weight also use day (before and after

hibernation) and the interaction between treatment and day as factors. The

ANOVA testing for the effect of treatment on pupa weight also tests for effect

of gender and the interaction between treatment and gender (df¼ degrees of

freedom; MS¼Mean Square, F¼ F-value; P¼ significance probability).
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larvae. Even though the application of antibiotics as prophylaxis is a

common strategy in mass-rearing of insects, there was no recent

study about possibly negative side effects. In conclusion, we show

that although a prophylactic fumagillin treatment does not adversely

affect larval development, it has a negative effect on reproductive

success. The application of antibiotics in mass-reared insect colonies

should thus be carefully considered, and possible negative side

effects taken into account.
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