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The role of polygenic risk score gene-set analysis in the context
of the omnigenic model of schizophrenia
Alexandros Rammos1,2, Lara A. Neira Gonzalez2, The Schizophrenia Working Group of the Psychiatric Genomics Consortium 2,
Daniel R. Weinberger 3, Kevin J. Mitchell1 and Kristin K. Nicodemus 2,4

A recent development in the genetic architecture of schizophrenia suggested that an omnigenic model may underlie the risk for
this disorder. The aim of our study was to use polygenic profile scoring to quantitatively assess whether a number of experimentally
derived sets would contribute to the disorder above and beyond the omnigenic effect. Using the PGC2 secondary analysis
schizophrenia case-control cohort (N= 29,125 cases and 34,836 controls), a robust polygenic signal was observed from gene sets
based on TCF4, FMR1, upregulation from MIR137 and downregulation from CHD8. Additional analyses revealed a constant floor
effect in the amount of variance explained, consistent with the omnigenic model. Thus, we report that putative core gene sets
showed a significant effect above and beyond the floor effect that might be linked with the underlying omnigenic background.
In addition, we demonstrate a method to quantify the contribution of specific gene sets within the omnigenic context.

Neuropsychopharmacology (2019) 44:1562–1569; https://doi.org/10.1038/s41386-019-0410-z

INTRODUCTION
Schizophrenia is a highly heritable disorder showing complex
genomic architecture. Genome-wide association studies (GWASs)
have been used to identify the common variants contributing to
the risk of disease and measure their collective effect. A recent
schizophrenia GWAS [1] identified over a hundred common
single-nucleotide polymorphisms (SNPs) at genome-wide signifi-
cance levels, though the effect of each SNP on its own was
modest.
The underpinning architecture of schizophrenia remains unclear

[2]. Several methods have been applied to capture cumulative
common variation that might confer vulnerability, including
polygenic risk scores (PRSs) [3, 4]. PRSs use the coefficients
derived from a discovery GWAS as weights for each SNP allele in
order to calculate an overall risk score for each individual in an
independent sample. PRSs are capable of explaining some
proportion of overall variance in liability.
In order to identify the underlying biological pathways, gene-set

enrichment analyses have been conducted using categories
defined by gene ontology or by biochemical interaction with
the products of high-risk genes [5]. Methods such as MAGMA [6],
INRICH [7] and ALIGATOR [8] have allowed the in-depth
exploration of GWAS results in terms of finding biochemical
pathway enrichment, and have been crucial in expanding our
understanding of potential underlying mechanisms of complex
traits. However, despite their prominence in GWAS [9, 10] and
exome-sequencing studies [11], these analyses do not estimate
the contribution of these gene sets to the amount of variance
explained; instead, they state whether the gene set is more
enriched, in terms of GWAS p-values, than expected by chance.

A recent paper [12] suggested that SNPs in all genes expressed
in the relevant tissue (e.g., brain in schizophrenia) make a
contribution to heritability and polygenic risk. Within that context
there are two types of genes, core and peripheral, that confer risk.
Genes identified in GWASs or rare-variant studies may be core
genes that serve as the basis of developing networks used to
identify peripheral genes.
Our study aimed to quantitatively assess whether specific gene

sets, centred on putative core genes, make a larger-than-expected
contribution to polygenic risk. We focused on eight gene sets, six
of which are centred on genes previously implicated in schizo-
phrenia risk. We hypothesized that these sets would be associated
with schizophrenia case-control status at a greater-than-expected
level. The remaining two gene sets were associated with cancer
and cardiac disease (CD). The rationale behind the choice of each
included gene set is presented below. For comparison, we
examined the behaviour of the PRSs under H0. Finally, to
investigate the omnigenic hypothesis on schizophrenia risk [12],
we generated linkage disequilibrium (LD) independent random
genic and non-genic SNP sets of equal size to the gene sets
investigated. Comparison of these sets to the putative core gene
sets may produce a better estimate of their contribution under the
omnigenic model.
The six schizophrenia core gene-associated (SCGA) target

gene sets were selected from recent studies [13–16] based on
transcriptional or molecular interactions with schizophrenia
putative core genes. SNPs in the gene transcription factor 4
(TCF4) are genome-wide significantly associated with risk for
schizophrenia [1, 17], and haploinsufficiency of this gene causes
Pitt–Hopkins syndrome, associated with severe cognitive deficits
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[18, 19] and risk for psychosis [20]. The TCF4 gene set was
created on the basis of the differential expression of genes in
neuroblastoma cells after knockdown of TCF4 [13]. A total of
1052 autosomal genes (5652 SNPs) demonstrating differential
expression were included in the gene set. FMR1 (Fragile X metal
retardation 1) is a gene coding for FMRP (fragile X mental
retardation protein), whose loss of function results in fragile X
syndrome [21], often co-morbid with autism spectrum disorders.
FMR1 mutations have been linked with cognitive impairment
and earlier age of onset in schizophrenia [22]. The FMRP gene
set was created on the basis of functional gene sets based on
developmental expression of genes contingent on FMRP
expression [14]. All four gene subsets were combined into one
gene set containing 680 autosomal genes (5833 SNPs). MIR137 is
a microRNA with high levels of expression in the brain and
neural stem cells [23]. Transcriptional targets of MIR137, such as
ZNF804A and CACNA1C, as well as the gene itself, have been
implicated with schizophrenia [17, 24, 25]. The third and fourth
gene sets were chosen on the basis of the work of Hill et al. [15],
where two gene sets were generated from upregulated (817
genes and 7796 SNPs) and downregulated (761 genes and 8533
SNPs) genes after overexpression of MIR137 in neural progenitor
cells in vitro. CHD8 (Chromodomain Helicase DNA Binding
Protein 8) codes for a DNA helicase that suppresses gene
expression by affecting chromatin restructure, and is a
significant contributor to autism susceptibility [26] and CHARGE
syndrome (a congenital deaf–blindness syndrome) through its
interaction with CHD7 [27]. Rare variants in CHD8 may
contribute to schizophrenia risk [28]. The final neural gene sets
were generated from the findings of Sugathan et al. [16], where
CHD8 reduction in neural progenitor cells led to the creation of
two gene sets, one of upregulated (1140 genes and 8807 SNPs)
and the other of downregulated (616 genes and 4986 SNPs)
genes. For the latter two gene sets, the decision to split them
into downregulated and upregulated gene sets was based on
reports [15, 16] describing a more pronounced response under
one of the conditions. Additionally, we selected two
gene sets that were related to CD and cancer, drawn from the
CD database (http://www.bioguo.org/CADgene/) and the Atlas
of Genetics and Cytogenetics in Oncology and Haematology
(atlasgeneticsoncology.org). Those gene sets had 534 and 459
genes, respectively (with 8078 and 7316 SNPs). The rationale
for using these non-schizophrenia gene sets was mainly to serve
as null sets of roughly equal size to the SCGA gene sets.

MATERIALS AND METHODS
The Schizophrenia Working Group of the Psychiatric Genomics
Consortium 2 case-control GWASs
Sample composition and selection is described in detail in Ripke et al.
[1]. In brief, cases were selected based on a diagnosis of either
schizophrenia or schizoaffective disorder, as the two disorders tend
to aggregate together in family studies [29] and there is a low inter-
rater reliability across the two groups on the basis of their initial
diagnosis [30]. The quality of diagnosis for cases was assessed
through a questionnaire examining quality control and diagnosis
procedures [1]. Studies with different case ascertainment procedures
were included in the final sample [31]. Two of the studies included
cases that were selected on the basis of clozapine prescription and a
prior diagnosis of treatment-resistant schizophrenia [32]. In total, 39
different studies were included. The sample was composed of 29,125
cases and 34,836 controls of European ancestry. There were 36,318
males, 22,061 females and 5582 participants with no sex information.
Details of subject composition for each individual study and how
these were collected, as well as details about ethics committee review
and written informed consent, can be found in Ripke et al. [1] and in
the appendix (Supplementary Table S1). Genotypes were imputed
using the 1000 Genomes Project dataset (August 2012, 30,069,288

variants, release “v3.macGT1”) as a reference for the imputation
process, through the use of IMPUTE2/SHAPEIT [33]. Quality control
excluded the following: SNP missingness < 0.05 (before sample
removal), subject missingness < 0.02, autosomal heterozygosity devia-
tion (|Fhet| < 0.2), SNP missingness < 0.02 (after sample removal),
difference in SNP missingness between cases and controls < 0.02, and
SNP Hardy–Weinberg equilibrium (p-value > 10−6 in controls or
p-value > 10−10 in cases).

Leave-one-out (LOO) PRS analysis
Two datasets were created for each of the 39 studies: one with
every dataset but the held-out set, serving as the training set; and
the other with the held-out set, serving as the independent
testing set. For each study, a GWAS was performed in the training
set to calculate the p-value and ln(odds ratio) of each individual
SNP (Fig. 1a). To confirm that SNPs in the training set were coding
the same reference allele as the risk allele in the test study, we
coded all SNPs as risk by selecting the allele with OR > 1.
Afterwards, PRSs were created for nine different p-value cut-off
thresholds (0.0001, 0.001, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50).
These were generated for the training set to reduce the need of
correction for multiple testing on the held-out test set. A logistic
regression model was fitted for each of these nine scores in
each of the 39 training sets that included 38 studies, including
covariates (count of valid genotypes, principle components and
study indicators) [1]. In each study, the largest test statistic from
the nine scores in the training set was used to select the single
PRS to be tested on each of the 39 held-out test sets (Fig. 1a).

Statistical analysis
All analyses were performed in PLINK 1.90 [34] for PRS
generation and genetic data manipulation, and in R 3.2.4 for
the generation of regression models. The R package fmsb [35]
was used to calculate Nagelkerke’s R2. Note that the use of R2

here is to indicate the percentage of variation in case status
explained; the use of r2 below indicates the LD or correlation
between alleles at two SNPs. MetaP (Dongliang G, Duke Institute
for Genome Sciences and Policy, NC, USA) was used to perform
Stouffer’s Z p-value meta-analysis [36]. The gene sets described
above included only the autosomal SNPs. LD pruned the SNP
discovery set in PLINK using a sliding window of 50 SNPs, a
sliding step of 5 SNPs and an r2 threshold of inclusion at 0.25.
For the regression analysis, the original [1] principal components
were used to control for population stratification, adding the
study indicators as covariates. Finally, we used likelihood ratio
tests between nested regression models and calculated the
Nagelkerke R2 and the p-value for the PRS in each of the 39 held-
out test datasets.

Meta-analysis
To estimate the significance of the results in the overall sample,
we performed a meta-analysis of the 39 results from the test sets
only, using Stouffer’s Z p-value in metaP, also accounting for
directionality of effect and sample size. Because each training set
would have different ln(odds ratios) and p-values, each PRS was
different; we thus combined p-values. For the Nagelkerke nested
R2 values, we provided the median, interquartile range and range
from the held-out test sets.

Simulation and validation studies
We performed two additional studies to examine the metho-
dology used and the influence of genic versus non-genic SNPs,
as genic SNPs might produce inflated results [37]. The first
analysis was a standard experiment-wise randomization test on
the TCF4 gene set, consisting of permuting the phenotype 100
times and rerunning the entire experimental pipeline, leaving a
single study out at a time, on these randomly generated
phenotypes (Supplementary Fig. 1). If the pipeline is robust to
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Fig. 1 a Leave-one-out cross-validation process. Example of leave-one-out cross-validation process for a sample containing four datasets. The
same process was followed with the 39 PGC datasets. b Flowchart for polygenic score generation in each leave-one-out Iteration. Flowchart of
the process followed in each iteration of the leave-one-out cross-validation. PRS input files are the polygenic scoring file and the individual
SNP p-value file. PRS polygenic risk score; LRT likelihood ratio test
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type I error, 5% of these permuted experiment-wise results
should show a significant result at α= 0.05. For the second
analysis, we generated 50 random subsets of genic SNPs,
defined as SNPs found within genes, 5 kb upstream of genes
or 1 kb downstream of genes, of a mean size of 5000 SNPs
and an equal number of non-genic SNP subsets, defined as
SNPs not included in the genic subset. All SNPs were pruned at
an R2 cutoff of 0.01 beforehand to make sure that only
independent SNPs were selected. We ran the pipeline with all
methods as previously outlined to establish if there was an
omnigenic effect consistently present across the random sets
and if there was a further systematic enrichment of the genic
SNPs sets.

RESULTS
Gene set characteristics
Initially, we investigated if there was any overlap among the
SCGA and control gene sets. We found little overlap among any
gene sets (Fig. 2). In the SCGA gene sets, there were no
overlapping genes in all four sets, and no two sets overlapped
by more than 3% of the total genes shared. The CD and cancer
gene sets showed minimal overlap between them (31 genes,
2.8%). Finally, the SCGA and non-SCGA sets had an overlap of
261 genes (5.3%). The biggest groups among overlapping genes
were protein-binding genes, signalling molecule genes and
receptor molecule genes.

PRS analysis
TCF4 gene-set-weighted scores were the most strongly asso-
ciated in the meta-analysis (Stouffer’s Z p-value= 1.18 × 10−46;
Fig. 2). This particular gene set was one where most of the
individual studies, as independent test sets in the LOO, were
significant (29/39), showing evidence for association at
p-value < 0.05 (uncorrected, as only one score was tested in
each of the held-out test sets; Table 1). This gene set explained
the highest percentage of variability among the studies
described (Nagelkerke R2= 0.6%; Fig. 3). In the original
PGC2 study [1], TCF4 was GWAS-significantly associated with
schizophrenia, and thus might have been driving the results.
To test this, 12 SNPs within TCF4 were removed and the
analysis was repeated, with results at the same level of
significance (Stouffer’s Z p-value= 4.28 × 10−40) and effect size
(Nagelkerke R2= 0.6%). FMRP gene-set-weighted scores were
also significant (Stouffer’s Z p-value= 1.66 × 10−33), with 23/39
individual independent test set results showing evidence for
association; it explained 0.43% of the schizophrenia case-control
status. For the two MIR137-regulated gene sets, we observed
significant association with schizophrenia with Stouffer’s Z
p-value= 3.28 × 10−23 for the upregulated gene set, and
Stouffer’s Z p-value= 1.06 × 10−11 for the downregulated gene
set, explaining 0.4% and 0.28%, respectively, of schizophrenia
case status. For the CHD8 gene set PRSs, the downregulated
gene set was significant (Stouffer’s Z p-value= 1.91 × 10−33) and
explained 0.37% of the variability. The scores created from the

Fig. 2 Overlap of gene sets. a Neuronal gene sets. b Non-neuronal gene sets. c Combination of a and b. Percentages in the graph indicate
the percentage of the total genes found in each overlapping segment. MIR137 and CHD8 indicate all the genes for both the down- and the
upregulated gene sets as there was no overlap between the two
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upregulated genes were also significant (Stouffer’s Z p-value=
1.73 × 10−11), but only a small number of individual held-out
test sets were individually significant (7/39) and the overall
effect explained 0.2% of the variability.
Gene sets created from the non-SCGA sources were weakly, but

still statistically significantly, associated with the outcome (Stouffer’s
Z p-value= 2.14 × 10−4 and 1.67 × 10−3, respectively). Six and four
out of the 39 polygenic scores were significant at p-value < 0.05
(uncorrected) in those analyses, respectively. To examine the
distribution of p-values across all of the gene sets investigated,
we created p-value bins corresponding to deciles under H0, where
p-values are distributed ~U (0,1). For all the gene sets investigated,
there was an increased proportion of SNPs in the top 10% bin for
all gene sets, consistent with the quantile–quantile (Q–Q) plot from
the PGC2 mega-analysis [1] and our own Q–Q plot demonstrating
a deviation of the distribution of p-values from expected under H0

(Supplementary Fig. 2).
A genome-wide PRS was generated (3,848,785 SNPs) with a

median nested Nagelkerke R2 value of 0.24. If each SNP
contributed equally to the score, then the results for the pathways
of interest should only be able to explain roughly between 0.03%
(0.24/3848785*4986, for CHD8 downregulated) and 0.055% (0.24/
3848785*8807, for CHD8 upregulated). It is important to note that
these results were for the 39 studies without pruning, and
therefore not directly comparable to the ones that were generated
with the LOO process.

Simulation and validation studies
In the simulation study that was performed, for 100 runs with
permuted phenotypes, the type I error rate at α= 0.05 was
as expected under H0, with 4 out of 100 having a Stouffer’s Z
p-value value of less than 0.05 (i.e. type I error of 4%). In the
examination of the omnigenic effect and the possible additional
effect attributable to genic SNPs, 50 random subsets of 5000
independent (with LD < 0.25) genic and non-genic SNPs were
generated, and the same analytical protocol described previously
was implemented. On average, all sets of SNPs that were tested
had a level of significance ranging from 10−2 to 10−7, with no
individual set exceeding the significance of the SCGA sets. Genic
sets were consistently, but only slightly, more significant than
non-genic sets (median Stouffer’s Z p-value= 1.06 × 10−4 versus
2.54 × 10−3). The nested Nagelkerke R2 values were also higher in
the genic set with a median value of 0.0021 versus 0.0016 for
the non-genic set.
We examined our SCGA gene sets for enrichment in genes

specifically expressed in nervous system tissues or for broadly
expressed genes. The omnigenic model suggests that there
will be enrichment in gene sets associated with schizophrenia.

Results from that analysis (Supplementary Table S2) indicate
an enrichment of broad terms for most of the gene sets
under examination, with the exception of the FMRP gene
set, which showed an excess enrichment for neuron-specific
functions and more specifically nervous system development
(p-value= 3.36 × 10−60) and generation of neurons (p-value=
6.97 × 10−44). For the non-SCGA gene sets, there was
an enrichment for DNA regulation elements (cancer) and
response to stressors (CD).

DISCUSSION
PRSs were used to investigate whether potential core gene sets
played a significant role in the omnigenic model of schizophrenia.
There was significant heterogeneity among the gene sets, with
the TCF4 gene set, the FMRP gene set, the gene set upregulated in
the presence of excess MIR137 and the gene set downregulated in
the absence of CHD8 shown to be associated with schizophrenia.
In contrast, the apparently significant effects that were observed
in the control gene sets (cancer and CD), as well as the gene set
downregulated in the presence of excess MIR137 and the gene set
upregulated in the absence of CHD8, were not higher than a floor
effect observed with random sets of genic SNPs and non-genic
SNPs and could be attributable to an omnigenic or highly
polygenic background [12]. Our results were not driven by gene
sizes within each gene set (Supplementary Table S3).
Among the investigated sets, the TCF4 gene set was the most

strongly associated with schizophrenia, with a Stouffer’s Z p-value
of 1.18 × 10−46. The nested R2 effect observed was three times
that of any set of random SNPs of the same size. The result
retained its significance and magnitude of effect size even after
removing SNPs within the core gene TCF4, indicating that the
observed relationship exists between peripheral genes of the
gene set and the phenotype above the effect that TCF4 might
exert as a core gene. There is consistent evidence for the
role of TCF4 in schizophrenia [1, 17]. Additionally, due to the
nature of SNPs implicated (non-coding genetic elements),
the pathway of genes influenced by TCF4 expression [38] might
also be potentially involved in the common polygenic background
of the disorder.
The FMRP gene set was also significantly associated with

schizophrenia. FMRP has primarily been implicated in autism
spectrum disorders. There are commonalities among both the
clinical features and genomics of major psychiatric disorders and
a recent cross-disorder mega-analysis GWAS [39] that indicated
that common variation predisposing to mental illnesses might
be shared to some degree among major psychiatric disorders.
Additional evidence of the involvement of FMRP targets
to schizophrenia can be observed from rare variant studies that
have consistently implicated FMRP pathways with schizophrenia
[40–42].
In the two MIR137 gene sets, there was a positive effect only on

the gene set that was upregulated after MIR137 over expression.
The downregulated gene set, although statistically significant,
did not show an effect stronger than what would be expected
by the omnigenic model using randomly selected genic SNPs.
This result is consistent with findings of other studies of MIR137
expression indicating that upregulation of the gene is linked with
pathways implicated in psychosis (such as the major histocompat-
ibility complex) [43] and with enrichment analyses of MIR137
potential target pathways [44].
Of CHD8 gene sets, only the downregulated gene set showed

evidence for significant association. CHD8 has not previously been
centrally implicated in psychosis as it is associated with a
congenital disorder (CHARGE syndrome) and linked to autism
[26]. However, there is a reasonable argument to be made on the
basis of common susceptibility to mental disorders that genes
central to other major mental disorders might also affect

Fig. 3 R2 and p-values from meta-analysis of all gene sets. Numbers
on top of the bars denote the meta-analysed Stouffer’s Z p-value for
the gene set and the number of polygenic scores that were
significant in independent, held-out test studies. For the genic and
non-genic sets, the statistics represent the median of 50 sets; the
line above the box represents the range of these sets for the 50
iterations of each. The final box is the median results for 100
permuted phenotype iterations
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schizophrenia. There has been recent evidence on rare variants in
the gene [28, 45] being implicated in psychosis, which adds to the
notion of the cross-disorder nature of CHD8 pathways. The
downregulated gene set that was significantly associated with
schizophrenia in the present study was also the one that Sugathan
et al. [16] reported to be significantly enriched in autism.
In addition to the above findings, a systematic floor effect in

polygenic scores was observed. We propose that this observation
is consistent with predictions that would be made based on the
recently proposed omnigenic model of complex traits such as
schizophrenia. This model states that most genes expressed in
cells that are relevant to the biology of an illness contribute to
heritability and PRSs because of the likely interaction of multiple
signalling pathways within cells that support their biological
functions. In the light of this omnigenic hypothesis [12],
implicating a greater number of SNPs than the ordinary polygenic
model would suggest, our results support the hypothesis by
demonstrating a weak polygenic effect extant in every random
subset of genes. This omnigenic effect is also supported by
Supplementary Fig. 2, which demonstrates an overall increase in
SNP test statistics versus expected values, as well as the Q–Q plot
in the original PGC2 report [1] that also showed a very similar
effect across an increased number of observations. Enrichment
analysis indicated an enrichment for broadly expressed genes,
which also corroborates the principle finding of the omnigenic
model [12] for schizophrenia. Additionally, we report that genic
SNP sets seemed to explain slightly more variation than their non-
genic counterparts. This indicates that studies implementing a
pathway stratagem should be mindful of both effects when
assessing if a gene set explains more variation than a random
subset of genic or non-genic SNPs.
This study showed that several of the target putative core gene-

sets investigated were highly significantly associated with
schizophrenia, with the strongest effect being observed for the
TCF4 core gene set. Even though most of the genes in these sets
are not associated with risk in current GWAS datasets, they may be
part of networks of genes that underlie common mechanisms for
schizophrenia. These findings strongly indicate that, despite a very
widespread, possibly even omnigenic contribution to risk, it is
possible to identify subsets of genes making relatively larger
contributions—putative core genes—which may implicate spe-
cific biochemical pathways or molecular processes with selectively
greater roles in pathogenesis.
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