
Almost a century after Alexander Fleming discovered peni
cillin and forever changed the face of medicine, Massachusetts 
Institute of Technology (MIT) researchers made another dis-
covery potentially as valuable as Fleming’s ground-breaking 
work. They used artificial intelligence (AI) algorithms based 
on machine learning to trawl through a vast digital collec-
tion of pharmaceutical compounds to identify novel antibac-
terial molecules [1], and identified a new antibiotic that they 
dubbed halicin (named after 2001’s HAL 9000). Halicin, it 
turns out, acts in a manner different from conventional anti-
microbials—by damaging the ability of bacteria to maintain 
an electrochemical gradient necessary for survival. 
	 In the MIT study, a deep neural network model was devel-
oped to screen millions of molecules in mere days to identify 
potential antibiotics that employ mechanisms different from 
those of existing drugs. After screening numerous chemi-
cal libraries, the team identified halicin from the Drug Re-
purposing Hub [2], as a compound that shows bactericidal 
action against a wide assortment of pathogens, including 

Mycobacterium tuberculosis, carbapenem-resistant Entero-
bacteriaceae, Clostridioides difficile, and Acinetobacter bau-
mannii. This seminal study underscores the value of AI for 
expanding our pharmaceutical arsenal to include structur-
ally distinct antibacterial drugs.
	 Another potential role for AI in the realm of infectious dis-
eases is to provide prescription guidance for antibiotics. The 
use of such decision support systems would be expected to 
reduce inappropriate prescriptions of antibiotics and antimi-
crobial resistance. Such systems would apply machine learn-
ing techniques or expert systems methods (Figure 1) to data 
from healthcare databases. Predictions based on a patient’s 
medical information would estimate the probability of the 
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IF
[1] Gram stain is Gram Positive

and

[2] Morphology is Coccus

and

[3] Conformation is Chains

THEN

The organism is possibly Streptococcus

Figure 1. ‌�An example of an expert system rule pertaining to mi-
crobiology. This rule considers three organism-related 
factors (Gram stain, morphology, and conformation) to 
produce a conclusion that is probabilistic rather than 
certain. Example derived from Johnson L, Keravnou ET. 
Expert systems technology: a guide. Cambridge (MA): 
Abacus Press; 1985.
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patient having a particular pathogen and provide an early 
warning regarding the risk of sepsis development [3].
	 Excessive antibiotic use and the emergence of multi-drug 
resistant organisms (MDROs) is a major health problem 
[4,5]. Pathogens such as methicillin-resistant Staphylococcus 
aureus are now common and pose significant health risks. 
Clinicians are faced with a dilemma when treating sepsis 
caused by MDROs given the limited choice of effective anti-
biotics [6], as the indiscriminate use of antibiotics enhances 
the emergence of MDROs, which in turn burdens healthcare 
systems with the diagnosis and treatment of critically ill pa-
tients. This reality entails a hefty human and financial cost 
[7].
	 Antimicrobials work by disrupting bacterial multiplication, 
often by damaging the cell membrane (Table 1, Figure 2). 
However, few new antibiotics have been developed in recent 
decades, and there is a concern that we could eventually 
face the same problems that our ancestors experienced, with 
simple infections developing into life-threatening sepsis.
	 Antimicrobial resistance occurs through two principal 
mechanisms: mutation and the acquisition of resistance 
from another organism. In the former case, a mutated bacte-
rium may (for example) produce an enzyme that inactivates 
a class of antibiotics or develop a mechanism to expel that 
antimicrobial from the bacterium before it reaches its cellu-
lar target. Known mechanisms of acquiring resistance from 
another organism include transfer of genetic information via 

conjugation, the acquisition of “naked” free DNA from the 
environment, or DNA transfer achieved via viral delivery [8].
	 Researchers have already collaborated on the use of AI 
in radiology, dermatology, pathology, and ophthalmology 
to improve care [9]. In addition to diagnosis, AI supports 
prognosis-related applications, such as predicting sepsis [10], 

Table 1. Various mechanisms of antibiotic action

Mechanism Description

Enzyme inhibition Popular enzyme targets include transpeptidases, transglycosylases, topoisomerases, RNA poly-
merase, and peptidyl transferases.

Interference with cell  
membrane permeability

For example, polymyxin B and colistin (polymyxin E) disrupt the cell membrane integrity of 
Gram-negative bacteria by binding to membrane phospholipids. 

Interference with cell  
wall synthesis

The cellular contents of bacteria are surrounded by an inner peptidoglycan cell wall in addition 
to an inner plasma membrane. Gram-negative bacteria have an additional outer lipid bilayer. 
Antibacterials in this class interfere with cell wall synthesis, damaging the peptidoglycan scaffold 
within the bacterial wall. 

Interference with DNA  
synthesis

DNA replication requires the activity of a class of enzymes called topoisomerases. Quinolones 
interfere with bacterial topoisomerase II, while fluoroquinolones act similarly. 

Interference with protein 
synthesis

Protein synthesis is a complex, multi-step process involving many enzymes and requiring con-
formational alignment. Aminoglycosides are antibiotics that block bacterial protein synthesis, 
interfering with the processes in the bacterial ribosome.

Interference with the cell 
membrane’s electroche
mical gradient

The electrochemical gradient is necessary to produce ATP (a molecule that provides energy for 
many cellular processes), and disruption of this gradient is the proposed mechanism by which 
the novel antibiotic halicin works.

Information taken from www.sigmaaldrich.com and other online sources. See also Figure 2.

Cell Wall Synthesis Nucleic Acid Synthesis

Protein Synthesis

Folate synthesis
Sulfonamides
Trimethoprim DNA gyrase

Quinolones

RNA polymerase
Rifampin

50S subunit
Macrolides

Clindamycin
Linezolid

Chloramphenicol
Streptogramins

30S subunit
Tetracyclines
Aminoglycosides

Cell membrane
Polymyxins

Vancomycin
bacitracin

Beta lactams
Penicillins
Cephalosporins
Carbapenems
Monobactams

2011 TheMedSchool.com

PABA

DHF A

THF A

50S

30S

Figure 2. ‌�Illustration of some of the known mechanisms of an-
tibiotic action. These include the inhibition of cell wall 
biosynthesis, inhibition of nucleic acid metabolism and 
repair, and protein synthesis inhibition, in addition to 
cell membrane disruption. Adapted from https://com-
mons.wikimedia.org/wiki/File:Antibiotics_Mechanisms_
of_action.png.
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with alerts generated by an AI model that provides an early 
warning. Such models predict deterioration and suggest pos-
sible pathogens and antibiotic susceptibility [11]. Schinkel et 
al. [12] reviewed the clinical applications of AI in sepsis and 
concluded that AI has the potential to prompt physicians 
when to intervene. Although these models offer a marginal 
advantage over current tools, data interpretation can be dif-
ficult [12]. Giacobbe et al. [13] reviewed applications of AI 
in the management of multidrug-resistant Gram-negative 
infections, classifying algorithms into applications such as 
predicting infection risk, identifying the aetiology, estimat-
ing the risk of emerging MDROs, and identifying antibiotic 
misuse [14]. 
	 The development of clinical decision support (CDS) sys-
tems remains a daunting challenge, as improving their posi-
tive predictive value is critical to improving performance 
and reducing alert fatigue. However, some studies may 
overestimate model performance due to poor adaptability 
and the definition of sepsis. There is also the matter of how 
alerts affect the provider’s actions and prescribing behaviour, 
as alert and CDS systems need to have a predictive value of 
over 60% to avoid alert fatigue [10]; therefore, developers 
need to understand these factors and their impact on clinical 
management. Unsurprisingly, evaluations of these systems 
by their own developers tend to report more favourable out-
comes than evaluations conducted by a third party [15].
	 In conclusion, while medical AI offers promising opportu-
nities to improve outcomes, our focus must be to solve clini-
cal problems and not merely throw technology at patients. If 
history is kind to us again, in a hundred years, scientists will 
be looking back at us in the same way we viewed Alexander 
Fleming’s mould discovery.
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