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Efficient proteostasis is crucial for somatic maintenance, and its decline during aging
leads to cellular dysfunction and disease. Selective autophagy is a form of autophagy
mediated by receptors that target specific cargoes for degradation and is an essential
process to maintain proteostasis. The protein Sequestosome 1 (p62/SQSTM1) is a
classical selective autophagy receptor, but it also has roles in the ubiquitin-
proteasome system, cellular metabolism, signaling, and apoptosis. p62 is best
known for its role in clearing protein aggregates via aggrephagy, but it has
recently emerged as a receptor for other forms of selective autophagy such as
mitophagy and lipophagy. Notably, p62 has context-dependent impacts on
organismal aging and turnover of p62 usually reflects active proteostasis. In this
review, we highlight recent advances in understanding the role of p62 in coordinating
the ubiquitin-proteasome system and autophagy. We also discuss positive and
negative effects of p62 on proteostatic status and their implications on aging and
neurodegeneration. Finally, we relate the link between defective p62 and diseases of
aging and examine the utility of targeting this multifaceted protein to achieve
proteostatic benefits.

Keywords: p62 (sequestosome 1(SQSTM1)), autophagy, proteasome, aging, neurodegenerative diseases

1 INTRODUCTION

The health and survival of an organism is reliant on efficient proteostasis, and breakdown of this
process results in accumulation of toxic protein aggregates that contribute to aging and age-related
diseases (Kaushik and Cuervo, 2015). The main contributors to protein quality control include
chaperones for protein folding and the ubiquitin-proteasome system (UPS) and autophagy for
protein degradation. The UPS degrades individual proteins with specific polyubiquitin tags
including short-lived, misfolded, and damaged proteins (Rock et al., 1994), while autophagy
has the capacity to degrade large proteins as well as protein aggregates and damaged organelles
(reviewed by Lamb et al., 2013). Autophagy is enhanced as a compensatory mechanism for
impaired proteasomes and coordination between the UPS and autophagy ensures efficient protein
turnover (reviewed by Dikic, 2017). Sequestosome 1 (SQSTM1 or p62), hereafter p62, a ubiquitous
and multifunctional protein, can direct ubiquitinated proteins to the proteasome (Babu et al., 2005;
Myeku and Figueiredo-Pereira, 2011) or the growing autophagosome (Pankiv et al., 2007),
highlighting its role as a key receptor and pivot for the two main cellular pathways of protein
degradation. Here, this review discusses new knowledge in p62 biology with a focus on the role of
p62 during cellular stress and aging, and in age-related diseases.
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2 ROLES OF P62

p62 has multiple conserved domains that interact with
various proteins with diverse functions (Figure 1A). These
domains and associated post-translational modifications
have been discussed in detail in several excellent reviews
(Lin et al., 2013; Emanuele et al., 2020; Berkamp et al., 2021).
From N- to C-terminal, these domains include the PB1
domain for p62 homo- and hetero-dimerization and
oligomerization (Moscat et al., 2006; Nakamura et al.,
2010; Christian et al., 2014; Ciuffa et al., 2015; Turco
et al., 2021), the ZZ domain that recognizes N′-end
degrons in autophagic substrates (Cha-Molstad et al.,
2017; Kwon et al., 2018), a TRAF6 binding (TB) domain
(Wooten et al., 2005), the LC3- and Keap1-interacting
regions (LIR and KIR, respectively) (Pankiv et al., 2007;
Ichimura et al., 2013), and the ubiquitin-binding UBA
domain (Isogai et al., 2011). Flanking the TB domain lie

nuclear localization and nuclear export signal (NLS and NES)
sequences which mediate the nucleo-cytoplasmic shuttling of
p62. While p62 aggregates with cytoplasmic inclusions
containing ubiquitinated proteins, nuclear p62 associates
with nuclear polyubiquitinated proteins at promyelocytic
leukemia (PML) bodies and accumulates when nuclear
export mediated by the exportin XPO1 (CRM1) is blocked
(Pankiv et al., 2010). Nuclear p62 can form condensates with
ubiquitinated proteins to degrade nuclear proteins via the
nuclear UPS machinery (Fu et al., 2021). A nucleolar
localization sequence (NoLS) has recently been identified
between the PB1 and NLS regions that causes p62 to
shuttle to the nucleolus where it sequesters nuclear
proteins during cellular stress (Lobb et al., 2021). Overall,
p62’s domains provide a scaffold that directs substrates to
autophagosomes and facilitates the autophagic process. For
instance, formation of helical p62 filaments by polymeric
PB1 self-assembly facilitates autophagic cargo uptake (Jakobi

FIGURE 1 | p62 domains, its multifaceted nature, and its impact on detriments associated with age-related degenerative diseases. (A) p62 protein consists of
several well-characterized domains that interact with various proteins leading to p62’s involvement in diverse functions (see text for details). (B) p62 plays roles in various
forms of selective autophagy, the UPS, programmed cell death, and signaling pathways. These functions are disrupted owing to mutations or aberrant expression/
accumulation of p62 in several age-related degenerative diseases discussed in this review. AD Alzheimer’s Disease, ALS Amyotrophic Lateral Sclerosis, AMD Age-
related Macular Degeneration, FTLD Frontotemporal Lobar Degeneration, HD Huntington’s Disease, NES Nuclear Export Sequence, NLS Nuclear Localization
Sequence, NoLS Nucleolar Localization Sequence, PD Parkinson’s Disease.
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et al., 2020). The ZZ domain that recognizes N-degrons such
as N-terminal arginine (Nt-R) mediates p62 puncta
formation and autophagy (Zhang et al., 2018). The UBA
domain has important phosphorylation sites S403 and
S409 that, when phosphorylated, increase p62’s affinity for
polyubiquitin chains (Matsumoto et al., 2011; Lim et al.,
2015). In addition to autophagy, some domains cause p62
to participate in signaling events, for e.g., p62’s TB domain
triggers TRAF6 polyubiquitination thereby activating the
inflammatory NF-κB pathway (Wooten et al., 2005; Zotti
et al., 2014). The KIR domain interacts with Keap1 which
releases the transcription factor Nrf2 to translocate to the
nucleus and stimulate expression of p62 and antioxidant
element-responsive and proteasomal genes (Ichimura
et al., 2013; Sha et al., 2018). Altogether, p62 levels and its
multiple interactions have important ramifications in the
onset of aging where UPS and autophagic capacities
progressively decline.

2.1 p62 and Selective Autophagy
p62 is the first selective autophagy receptor to be characterized
(Bjorkoy et al., 2005; Pankiv et al., 2007). Its transcription is
modulated by the conserved autophagy and lysosomal
regulator transcription factor EB (TFEB) (Sardiello et al.,
2009; Settembre et al., 2011; Lapierre et al., 2013), whose
nuclear localization is modulated by major nutrient sensor
mTORC1 (Pena-Llopis et al., 2011; Martina et al., 2012) and
nuclear export protein XPO1 (Kirli et al., 2015; Silvestrini
et al., 2018). The oxidative stress transcription factor Nrf2 also
induces p62 expression (Jain et al., 2010). One of the key roles
of p62 is to deliver various ubiquitinated cargoes bound to its
UBA domain to the autophagosome via LIR domains,
ultimately leading to their degradation by the lysosome
(Bjorkoy et al., 2005; Liu et al., 2016). Defective autophagy
leads to p62 accumulation, and p62 levels are used as a marker
for autophagic flux, along with LC3B (Mizushima et al., 2010).
During recognition of aggregated polyubiquitinated cargo,
p62 self-assembles and forms oligomers, resulting in
clearance of misfolded proteins by a process known as
aggrephagy (Wurzer et al., 2015; Galluzzi et al., 2017;
Zaffagnini et al., 2018). p62 forms cytosolic inclusion bodies
known as p62 bodies consisting primarily of K63-linked
polyubiquitinated substrates (Bjorkoy et al., 2005; Stolz
et al., 2014). Polyubiquitinated cargoes linked via lysine-63
(K63) are more apparent in p62 cluster formation than K48-
linked cargoes, suggesting the K63-linked chains specifically
triggered clustering, while K48-linked chains needed higher
concentrations for clustering, which might occur during
proteasomal inhibition (Zaffagnini et al., 2018). Recently,
interaction of the chaperone UTX with a Lim-binding
domain of p62 was found to increase clustering and p62
body formation (Yoon et al., 2021). Notably, p62 bodies
have liquid-like properties formed by polyubiquitin chain-
triggered phase separation (Sun et al., 2018; Zaffagnini
et al., 2018). While originally believed to be rigid, p62-
ubiquitinated protein clusters are dynamic structures in which
ubiquitinated proteins can freely move within them (Sun et al.,

2018). The formation of p62 bodies is mediated by autophagy
receptor NBR1, which activates Nrf2 and promotes Nrf2-mediated
stress response (Yang et al., 2019; Sanchez-Martin et al., 2020). The
oligomerization of p62 during aggrephagy, and its consequent
binding to LC3B and GABARAP, is negatively regulated by the
binding of short, non-coding RNA called vault RNA1-1 to p62
(Horos et al., 2019). Thus, understanding p62 cluster dynamics and
regulation could further shed light onto the range of effects of p62
in aging and diseases.

In addition to its classical role as an aggrephagy receptor,
p62 is involved in several other forms of selective autophagy.
Mitochondrial proteins that are damaged beyond the capacity
of the unfolded protein response and mitochondria losing
membrane potential (Chen et al., 2020) can be autophagically
degraded via mitophagy (Geisler et al., 2010). p62 is recruited
to ubiquitinated outer mitochondrial membrane proteins in
Parkin-dependent mitophagy and has a role in mitochondrial
ubiquitination in PARKIN-independent mitophagy
(Narendra et al., 2010; Yamada et al., 2018; Yamada et al.,
2019). Lipid droplets, in addition to being lipid storage
organelles, are emerging as hubs of cellular proteostasis
integrating cytosolic and ER-related degradation processes
(Roberts and Olzmann, 2020). The selective engulfment of
lipid droplets (LDs) is mediated by the autophagic machinery
in a process called lipophagy (Singh et al., 2009; Roberts and
Olzmann, 2020). p62-mediated autophagy targets LDs for
autophagic turnover in myocytes (Lam et al., 2016), hepatic
cells (Wang et al., 2017; Yan et al., 2019), and macrophage
foam cells (Robichaud et al., 2021), highlighting p62 as a
potential receptor for LD turnover. Xenophagy, or the
targeted clearance of foreign entities such as invading
pathogens by autophagy, is an important part of host
immune defense (Sharma et al., 2018). Phosphorylated p62
promotes ubiquitin conjugation to xenophagy target proteins
(Tsuchiya et al., 2018) and Mycobacterium tuberculosis
protein (Chai et al., 2019). Targeted autophagic
degradation of the proteasome itself, termed proteaphagy,
occurs in mammalian cells in response to amino acid
starvation (Marshall et al., 2016; Cohen-Kaplan et al.,
2017). Ubiquitinated proteasomes are recognized and
recruited for autophagosomal uptake by p62 via its UBA
domain independent of its PB1 domain (Cohen-Kaplan et al.,
2017) or could be partially sequestered into aggresomes (Choi
et al., 2020). Damaged lysosomes and harmful products of
lysosomal rupture are cleared by lysophagy (Yim and
Mizushima, 2020), and p62 is the major receptor
discovered to play a role in lysophagy. It is present on
damaged lysosomes along with ubiquitin-targeted AAA +
-ATPase p97, and p62 deletion impairs lysosome clearance
(Papadopoulos et al., 2017). p62 is also a receptor for selective
autophagy of peroxisomes, termed pexophagy, where p62
interacts with NBR1 to promote clustering of peroxisomes
and enhance pexophagy (Deosaran et al., 2013; Germain and
Kim, 2020). Owing to its involvement in selective autophagy
of several organelles, perturbance of p62 could result in
accumulation of different damaged organelles commonly
observed in stress, aging, and age-related diseases.
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2.2 p62 and the Ubiquitin-Proteasome
System
The Ubiquitin-Proteasome System (UPS) accounts for nearly 80% of
protein degradation in the cell (Lee and Goldberg, 1998). p62
colocalizes with proteasomes (Seibenhener et al., 2004; Myeku and
Figueiredo-Pereira, 2011) and can shuttle polyubiquitinated substrates
for degradation via the proteasome (Babu et al., 2005).While theUBA
domain on p62 recognizes ubiquitinated substrates, the PB1
“oligomerization” domain interacts with Rpn10 and Rpn1, proteins
of the regulatory 19S subunit of the proteasome, to facilitate delivery of
ubiquitinated substrates to the proteasome by p62 (Seibenhener et al.,
2004). Additionally, with the help of its two NLS domains, p62 enters
the nucleus, where it has been shown to phase separate into p62 foci
which recruit functional proteasomes that actively degrade nuclear
proteins and unincorporated proteasome subunits (Pankiv et al., 2010;
Fu et al., 2021). Formation of such condensates is responsive to various
stressors (Fu et al., 2021) and could be important in recruiting
components of the UPS machinery thus improving efficiency of
degradation. Inhibition of proteasome activity stimulates p62
transcription along with that of proteasomal genes (Sha et al.,
2018). p62 overexpression in presence of autophagy inhibition
hampers proteostatic flux through the UPS without affecting
proteasome catalytic activity (Korolchuk et al., 2009) indicating a
block in delivery of ubiquitinated substrates to the proteasome by p62.

2.3 Bridging the Ubiquitin-Proteasome
System and Autophagy
The UPS and autophagy are two major intracellular degradation
routes and p62 is a key mediator of crosstalk between these
pathways (Liu et al., 2016). Proteasome inhibition leads to
proteotoxic stress that promotes p62 phosphorylation at S403
in humans. This stabilizes ubiquitinated proteins in p62 clusters
and promotes their clearance by autophagy (Matsumoto et al.,
2011; Lim et al., 2015). Reducing proteasomal capacity by
knocking down UPS ubiquitin receptors, PSMD4 and
ADRM1, stimulates the transcription of p62 via the
transcription factor ATF4 and induces compensatory
autophagy (Demishtein et al., 2017). Similarly, p62 can also be
induced by transcription factor Nrf1 upon pharmacological
inhibition of the proteasome, which promotes cell survival by
sequestering ubiquitinated proteins into inclusions (Sha et al.,
2018). Upregulation of the deubiquitinase TRIM44, that binds
K48-linked ubiquitin chains, promotes p62 oligomerization (Lyu
et al., 2021). Prolonged proteasomal inhibition and ubiquitin
overexpression causes accumulation of ubiquitinated p62 that
activates autophagy (Peng et al., 2017).

Like the UPS, inhibiting autophagy also causes accumulation
of p62, but this accumulation delays delivery of ubiquitinated
proteins to the proteasome and thus reduces flux through the
UPS (Korolchuk et al., 2009). Autophagy inhibition can also
impair proteasomal function by affecting proteaphagy, in which
p62 recognizes ubiquitinated proteasomes, especially prevalent
during starvation, and targets them for autophagic degradation
(Marshall et al., 2016; Cohen-Kaplan et al., 2017). Although p62
primarily carries out aggregation-dependent clearance of
damaged material, p62 can turn detrimental by exacerbating

pathological aggregation and proteotoxicity during autophagy
inhibition or when proteostasis is overwhelmed. Since p62 is an
important receptor that delivers substrates for both proteasomal
degradation and autophagy, alterations in p62 levels and function
could influence the activity of UPS versus autophagy.

2.4 Additional Roles of p62
In addition to its well-studied role in autophagic and
proteasomal degradation, p62 influences other cellular
pathways, including pathogen resistance, programmed cell
death, and signal transduction, through its scaffolding
property brought about by its several interacting domains
(Figure 1A). Along with other autophagy components such
as LC3, ATG7, and ATG16L1, p62 restricts the growth of
Toxoplasma gondii by encapsulating them in vesicles that do
not fuse with lysosomes (Selleck et al., 2015). In addition to
pathogen resistance, p62 also controls programmed cell death
independent of autophagic cargo degradation. By recruiting
RIPK1, a component of the necroptosis complex, p62
controls a switch from apoptosis to necroptosis in a prostate
cancer model (Goodall et al., 2016). Due to its ability to provide
scaffolding, p62 participates in several signal transduction
cascades by bringing together pathway components (Bitto
et al., 2014). Briefly, it facilitates TNF-R and IL-1βR
signaling, activating the NF-κB pathway (Sanz et al., 1999;
Wooten et al., 2005), enables the oxidative stress response by
binding to Keap1 which allows the release of Nrf2 to induce the
antioxidant response (Ichimura et al., 2013), and stimulates
apoptosis by acting downstream via cullin-3 regulation of
caspase-8 (Jin et al., 2009). p62 also participates in amino
acid sensing by the mTORC1 pathway, which is perhaps
most relevant to stress and aging. p62 associates with
components of the mTORC1 complex, Raptor and Rag
GTPases, which sense amino acid levels and activate
mTORC1 (Duran et al., 2011). Since mTORC1 signaling
regulates autophagy, p62 can influence the balance between
autophagy and cell growth by its action on finetuning mTORC1
signaling (Moscat and Diaz-Meco, 2011; Komatsu et al., 2012).
Through its involvement in signaling pathways governing cell
growth and autophagy, p62 is an important player in tumor
initiation and progression (Moscat et al., 2016; Hennig et al.,
2021). Altogether, owing to its multifaceted nature and ability to
modulate growth and survival mechanisms, p62 plays a pivotal
role in cellular stress, aging, and various pathologies including
metabolic and neurodegenerative diseases (Figure 1B).

3 CONTRIBUTION OF P62 DYNAMICS TO
AGING

p62 contributes to many cellular processes, so in theory,
mutations, loss, or mislocalization of p62 is bound to trigger
various outcomes, and the context will determine its impact on
health (positive or negative). p62 expression is age- and
disease-dependent, characterized by a decline of expression
with age and senescence in mice (Kwon et al., 2012; Salazar
et al., 2020) and flies (Aparicio et al., 2019), as well as a decrease in
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human and mouse brains with Alzheimer’s disease (Du et al.,
2009). To this end, few p62 mutations that lead to disease have
been identified, such as those in Paget’s disease of bone and
Amyotrophic Lateral Sclerosis (ALS) (Kwok et al., 2014; Seton
et al., 2016; Ma et al., 2019); however, the effects due to complete
loss, overexpression, protein-protein interaction disruptions, or
mislocalization of the protein have been explored
experimentally. Much of the research investigating p62’s role
has been done in p62 null or p62 overexpression backgrounds in
different species, with only a few studies investigating the tissue-
specific or spatio- and temporal-specific roles of the p62 protein.
This section will cover what is known about the requirement of
p62 for lifespan and disease prevention, how the timing,
location, and protein levels are essential to the overall health
of the organism, and the role of p62 in specific age-related
diseases (Figure 1B).

3.1 Positive Role of p62 in Lifespan and
Healthspan
A number of studies have shown a beneficial lifespan response
to p62 overexpression, albeit with context-specific caveats.
For instance, p62 overexpression has been shown to prolong
lifespan in Drosophila melanogaster, but only in females that
have the overexpression initiated at middle-age. This follows
the endogenous expression pattern: transcript levels of p62
are increased in early adulthood, but the sharp decrease in
expression after midlife can be rescued by p62 overexpression
only at that stage (Aparicio et al., 2019). There is no effect on
lifespan when p62 is overexpressed in early adulthood, and it
is not clear why there is a sex-dependent benefit. In another
example, Caenorhabditis elegans shows an extension of
lifespan with the overexpression of SQST-1/p62, similar to
the lifespan extension seen with hormetic heat shock.
However, this lifespan extension is impaired by the loss of
neuronal sqst-1/p62. Further, only the nerve-ring neurons
require SQST-1/p62 for autophagosome formation (Kumsta
et al., 2019). This study indicates a potential tissue-specific
requirement of SQST-1/p62, which reveals differential
benefits or detriments depending on the tissue target.

Other studies have demonstrated the importance of p62 by
investigating the effects of p62 knockout. For example, loss of
p62 in the pituitary has a detrimental effect on female mouse
fertility due to impaired luteinizing hormone production
through mitochondrial OXPHOS signaling (Li X. et al.,
2021). Another study showed that p62 protects against
glycation-derived toxicity by driving the autophagic
degradation of harmful age-associated advanced glycation
end products (Aragones et al., 2020). Also, loss of p62
increases the rate of aging by inducing senescence through
downregulation of autophagy in vascular smooth muscle
cells, suggesting a protective role of p62 in vascular disease
and atherosclerosis (Salazar et al., 2020). Many other studies
have found that p62maintains health by mediating the oxidative
stress response through interactions with other proteins.
Notably, p62 interacts with Keap1 (Figure 1A), which
prevents its inhibitory binding to Nrf2. Increased p62 leads

to hyperactivation of Nrf2 target genes, which protect against
oxidative damage and inflammation. The interaction between
p62 and Keap1 declines with age and is lost in some
neurodegenerative diseases, leading to age-associated
oxidative damage and inflammation (Ma et al., 2019).
Further adding to this decline is the oxidative damage to the
p62 promotor, demonstrated in cells treated with H2O2, which
yields lower p62 levels (Du et al., 2009). Another recent finding
shows that treatment with spermidine, a lifespan-extending
polyamine, upregulates p62 expression, and this induces
cytoprotective autophagy of female germline stem cells
(FGSCs) ex vivo. The upregulation of p62 by spermidine is
indispensable to delay aging caused by oxidative stress-induced
senescence (Yuan et al., 2021). Interestingly, p62 bodies can
form “gel-like” droplets, which serves as a platform for the anti-
oxidative stress response by sequestering Keap1 within the
droplets (Kageyama et al., 2021). Overall, many studies
support that the loss of p62 is generally detrimental due to
its protective role in the oxidative stress response.

3.2 Negative Role of p62 in Lifespan and
Healthspan
While it is evident that p62 plays an important role in cellular
homeostasis through proteostasis and signaling pathways, it
is important to highlight that elevated levels of p62 can also
be detrimental. A number of studies demonstrate the
harmful effects of p62 accumulation through loss of
autophagy, such as the loss of oxidative stress response
via FOXO1/3 (Zhao et al., 2019). Other studies show that
overexpression or general induction of p62 can be damaging.
For instance, tumorigenesis is associated with increased p62
(Mathew et al., 2009), or inflammation is triggered by the
interaction between p62 and αPKCs to activate the NF-kB
pathway which induces senescence (Ma et al., 2019). Genetic
overexpression of p62 can have unfavorable effects as well.
Indeed, the UPS pathway of degradation does not respond to
p62 overexpression efficiently; it is not sufficient to increase
proteasome activity, but it instead delays UPS substrate
delivery, causing proteotoxic stress that eventually
activates the autophagic pathway (Korolchuk et al., 2009).
Finally, our group has found that lifelong SQST-1/p62
overexpression in C. elegans maintained under mild heat
stress (25°C) causes SQST-1/p62 to accumulate, leading to a
decrease in lifespan (Kumar et al., 2021). This shortened
lifespan in the SQST-1/p62 overexpressing strains is due to
the marked upregulation in SQST-1/p62 transcription and
protein levels which exacerbates the proteotoxic stress of
accumulated ubiquitinated proteins. Notably, lipid droplet
accumulation restores SQST-1/p62 function and dynamics
and prevents the rapid proteostatic decline. Overall, these
studies highlight the need to reassess the idea that enhancing
the expression of a single autophagy receptor, such as p62, is
necessarily beneficial for proteostasis and lifespan, especially
when the whole process of autophagy, involving more than
30 proteins (Wong et al., 2020a), is not enhanced
concomitantly.
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4 THE ROLE OF P62 IN AGE-RELATED
DISEASES

4.1 Neurodegenerative Diseases
4.1.1 Alzheimer’s Disease
Alzheimer’s Disease (AD) is a progressive neurodegenerative
disease that destroys memory and cognitive functions and is
characterized by accumulation of amyloid-β (Aβ) and
hyperphosphorylated tau, causing amyloid plaques and tau
tangles, respectively, in the brain. Low expression of p62 has
been observed in the frontal cortex of AD patients as well as in
transgenic AD mouse models; however, the remaining p62 is
associated with tangles, and is believed to play an important role
in tau degradation (Salminen et al., 2012). In addition to
decreased tau clearance, the low levels of p62 also lead to
decreased Nrf2-dependent antioxidant response (Ma et al.,
2019), suggesting that impaired oxidative stress resistance may
significantly contribute to AD pathology.

4.1.2 Parkinson’s Disease
Parkinson’s Disease (PD) is characterized by intracellular
accumulation of Lewy bodies and Lewy neurites, which consist of
p62-associated aggregated proteins, including α-synuclein, parkin, and
ubiquitinated proteins (Shin et al., 2020). Disrupted p62-mediated
mitophagy due tomutations in PINK and parkin is themost common
cause of familial PD (Geisler et al., 2010). Mutations in the kinase
LRRK2 disrupt the p62-LRRK2 interaction and impairs LRRK2-
mediated phosphorylation of p62 and LRRK2 degradation.
Phosphorylated p62 cannot interact with Keap1, which allows
Keap1 to inhibit Nrf2 signaling, connecting oxidative stress to PD
pathology (Park et al., 2016). Hyperactivation of Parkin/PINK1
mitophagy is also implicated in PD pathogenesis, but recent
research suggests that p62 could prevent apoptotic cell death by
clustering mitochondria to regulate this process (Xiao et al., 2017).

4.1.3 Amyotrophic Lateral Sclerosis
Amyotrophic Lateral Sclerosis (ALS) is characterized by ubiquitin-
p62 positive intraneuronal inclusions, with increased levels of p62
in the spinal cord and motor neurons. Some cases of ALS are
associated with p62 mutations in the UBA, LIR, or KIR domains.
UBA domain mutations prevent interactions with ubiquitinated
proteins tagged for degradation (Ma et al., 2019), and LIR domain
mutations lead to reduced LC3 binding, both causing decreased
p62-mediated cargo degradation (Deng et al., 2020). Finally, KIR
domain mutations disrupt the interaction with Keap1, deactivating
Nrf2 and preventing an effective response to oxidative stress, which
may contribute to the etiology of ALS (Goode et al., 2016). There is
also evidence that p62 itself might intensify ALS. For instance,
autophagic induction by rapamycin treatment exacerbated the
pathology in an SOD mutant mouse model of ALS, probably
due to apoptosis and oxidative stress (Zhang et al., 2011).
Additionally, a C. elegans model of ALS showed defective
autophagy and increased levels of p62; however the removal of
p62 alleviated the locomotion defect without restoring the
autophagy defects (Baskoylu et al., 2022), suggesting that the
autophagy defects are upstream and not dependent on p62 in
C. elegans.

4.1.4 Frontotemporal Lobar Degeneration
Frontotemporal Lobar Degeneration (FTLD) is characterized by
neuronal cytoplasmic inclusions of TDP-43, which are correlated
with neurodegeneration. Overexpression of p62 leads to the
mislocalization of TDP-43 to the cytoplasm, causing aggregates
and neuronal death (Foster et al., 2021). p62 has also been found
in TDP-43-negative inclusions in a subset of FTLD patients (Al-
Sarraj et al., 2011), opening the possibility that other protein
aggregates contribute to FTLD pathogenesis. p62’s interaction with
these aggregates suggests their degradation is mediated by p62, and
mutations in p62 that decrease this interaction or any disruption in
the autophagic or UPS pathways could possibly lead to the
accumulation of these inclusions. Notably, the same KIR mutation
in ALS is also seen in FTLD cases (Ma et al., 2019).

4.1.5 Huntington’s Disease
Huntington’s Disease (HD) is characterized by neuronal
degeneration associated with a CAG repeat expansion (polyQ) in
the huntingtin gene (mHTT). Early work investigating mTOR
inhibition by rapamycin treatment in a HD mouse model
demonstrated reduce HD pathology (Ravikumar et al., 2004);
however, later work shows that it is independent of autophagy
and is instead due to decreased protein synthesis (King et al.,
2008). In fact, autophagy is already upregulated in HD, but the
defect lies in the recognition of autophagic cargo, not the process itself
(Martinez-Vicente et al., 2010). Therefore, the inability for
autophagosomes to recognize cargo for degradation (Martinez-
Vicente et al., 2010) and p62’s sequestration of ULK into an
insoluble cellular fraction (Wold et al., 2016) are likely responsible
for the dysfunctional autophagy seen inHD cells. The role of p62 was
investigated in a Huntington mouse model which revealed that levels
of p62 were reduced in all brain regions at early stages of the disease,
but then accumulated in striatal and hippocampal neurons in the late
stage of the disease, in particular in the nuclei of these cells. Indeed,
the increased p62 accumulated with mHTT in neuronal nuclei (Rue
et al., 2013). Thus, p62 depletion reduces nuclear inclusions and
ameliorates HD (Kurosawa et al., 2015), but reduction of p62 protein
levels or dysfunction of p62 significantly increased cell death induced
by mHTT in HD (Bjorkoy et al., 2005). Generally, p62 is upregulated
in response to proteotoxic stress (Lim et al., 2015), and the subcellular
localization of p62 in response to this stress may underlie the
vulnerability of HD cells to cell death under proteotoxic stress
(Huang et al., 2018).

4.2 Age-Related Macular Degeneration
Age-related macular degeneration is a progressive and degenerative
eye disease, with aging and oxidative stress contributing to its
pathogenesis. This disease is mainly caused by breakdown of
proteostasis in Retinal Pigment Epithelium (RPE), leading to the
accumulation of cellular waste such as lipofuscin. Oxidative stress
induced by H2O2 leads to inhibition of proteasome activity and an
increase in p62 expression in RPE cells. Silencing of p62 increases the
accumulation of protein aggregates in RPE cells that showed
decreased autophagy and Nrf2-mediated antioxidant response
(Blasiak et al., 2019). RPE protection against oxidant-induced
protein damage seems to rely on p62; however, if p62 is unable to
be cleared by autophagy, the aggregates that form will likely
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contribute to further damage to the RPE cells, highlighting the
importance of properly regulating p62 expression.

4.3 Cancer
p62 is commonly upregulated in human tumors (Zatloukal et al.,
2007), and the multiple roles p62 plays in cancer has been recently
reviewed (Hennig et al., 2021). Suppression of tumorigenesis by
autophagy is accomplished by limiting p62 accumulation and
preventing activation of NF-κB. p62-induced expression of NF-κB
in autophagy-defective cells is sufficient to activate the DNA damage
response and enhance tumor growth (Mathew et al., 2009). Further,
p62 overexpression promotes bone metastasis by stimulating
migration, but not proliferation, of lung adenocarcinoma. High
expression of p62 was associated with poor prognosis in patients
with bone metastasis (Li D. et al., 2021). p62-induced tumorigenesis
reveals an important concern when considering p62 induction as a
potential therapeutic via autophagy induction.

5 CONCLUSION

Most degenerative diseases are characterized by protein aggregation,
so naturally it would seem that targeting autophagy would be the best
option to clear large aggregates. Butwhat is the best way to induce this
process when it requires coordination of multiple steps for autophagy
to work? Since p62 has a multitude of roles beyond protein turnover
and is also not essential for autophagy (Fan et al., 2010; Xu et al.,

2015), specifically targeting p62 is not necessarily the answer.
Induction of the entire autophagic pathway may instead be
required. Therefore, identifying the limitations of pharmacological
or genetic induction of autophagy (for example, by rapamycin
treatment or TFEB activation), may offer better opportunities to
therapeutically harness this process.

Loss of p62 leads to accelerated aging due to a decline in
proteostasis, dysregulation of signaling pathways, and inability to
sufficiently respond to oxidative stress. However, overexpression of
p62 has potential detrimental effects, including accumulation of
cellular p62-aggregates (Kumar et al., 2021), tumorigenesis and
metastasis induction (Zatloukal et al., 2007; Mathew et al., 2009; Li
D. et al., 2021), and mislocalization of the protein (Kurosawa et al.,
2015). In order for p62 overexpression to be beneficial, global
coordination of the induction of the 30 + autophagy genes (Wong
et al., 2020b) by, for example, transcription factors FOXO and TFEB
(Lapierre et al., 2015) may enhance autophagy protein levels and
increase autophagic flux. In addition, the upstream ubiquitination
machinery, including the E3 ligases correctly linking the poly-
ubiquitin (K-63), must be functional to label appropriate cargo for
degradation (Ma et al., 2019). Research remains to be done to
elucidate the p62-associated changes that contribute to aging
(Table 1). Additionally, it will be essential to classify what effects
tissue- and spatiotemporal-specific p62 expression are accountable
for. Understanding how to harness the positive and avoid the negative
effects of p62 is crucial before it can be seriously considered as a
therapeutic target for proteinopathies and neurodegenerative diseases.

TABLE 1 | Exploratory avenues of p62-associated changes.

Cellular process Potential
p62-associated effects

Refs

Post translational modifications

Phosphorylation, Ubiquitination, Acetylation p62 is under or over post translationally modified McEwan and Dikic (2011)
Autophagy induction, regulation, and fine tuning: p62 accumulation if autophagy
dysregulated
Selective autophagy dysregulated

Ubiquitination Cargo is not appropriately ubiquitinated, then p62 will not recognize it for degradation

Phosphorylation p62 pS407: release UBA domain Kageyama et al. (2021)
p62 P-S403: enhance Ub binding
p62 P-S349 enhances Keap1 interaction (Nrf2 activation) and FIP200 interaction

Protein-Protein interactions
Regulated degradation of signaling pathway
components

Loss of p62 interactions with proteins that should be degraded dysregulates pathways
Dishevelled protein not degraded will increase Wnt signaling Wei (2012)
cyclic AMP phosphodiesterase-4A4 (PDE4A4) not degraded augments cAMP
signaling

Ma et al. (2019)

Autophagic cargo recognition Cargo tagged for autophagic clearance is not recognized, p62 accumulates Martinez-Vincente et al.
(2010)

Signaling pathways
mTORC1 Overexpression of p62 causes hyperactivation of mTORC1, leading to tumorigenesis Duran et al. (2011)

Cellular localization
Nucleus/cytoplasmic partitioning p62 mislocalized from the nucleus leads to decreased nuclear UPS/proteostasis Fu et al. (2021)
Trafficking of aggregates HDAC6 needs tubulin for trafficking, p62 accumulates if aggregates are not delivered to

AP formation site
McEwan and Dikic (2011)

Trafficking of autophagosomes (AP) p62 accumulates in APs if not delivered to LY
Trafficking of lysosomes (LY) p62 accumulates in APs if LY cannot localize and fuse with AP
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