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Introduction

Neoadjuvant therapy of breast cancer is a safe 
and effective therapeutic approach to reduce the risk 
of recurrence and mortality. Although in some case, 
application of chemotherapy may not be effective or 
even lead to recurrence following treatment or treatment 
failures, but it is a routine option for treating breast 
cancer (Eatemadi et al., 2016a; Tabatabaei Mirakabad 
et al., 2016). Neoadjuvant therapy will apply to achieve 
two important goals i) reduce the size of unresectable 
tumor which allowing surgery to be performed and ii) 
in operable tumors it helps for greater conservation 
of the breast and decrease need for mastectomy 
(Thompson and Moulder-Thompson, 2012; Rami and 
Zarghami, 2013). Over the past few years, numbers 
of chemotherapy regimens have used to treatment and 
assessment the usefulness and mechanism of action these 
regimens (Ghalhar et al., 2014; Eatemadi et al., 2016b). 
Anthracycline-based regimens increase treatment benefits 
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in comparison with Cyclophosphamide, Methotrexate, 
and Fluorouracil (CMF) combinations (Bines et al., 
2014). The recent reports of incorporation the Taxane 
with anthracycline-based regimens and comparison of 
survival rates showed significant improvement in patient 
outcome, De et al., (2008) study on 23,000 women 
from 13 clinical trials showed that taxane-anthracycline 
chemotherapy improved DFS (Distance free survival) and 
OS (Overall survival) in high-risk and early-stage breast 
cancer patients (De Laurentiis et al., 2008). Increasing 
in applying anthracyclines and taxanes as a treatment 
option for early stage breast cancers, lead to resistance 
and failure in the mechanisms of action of these agents in 
patients or sub-populations of tumor lesions. Therefore, 
consideration of complications and high costs of these 
kinds of treatments make it necessary to select qualified 
case to administrate these drugs and also attention has 
to be paid to efficacy of applying variety combinations, 
optimization of dosage and different sequences of similar 
combinations of administrated drugs (Moreno-Aspitia 
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and Perez, 2009; Farajzadeh et al., 2017; Maasomi et 
al., 2017).

Recently, gene expression profiling has become 
useful as a robust genomic tool that used in screening the 
details of cells and applied to several field of biology e.g. 
clarification and understanding heterogeneous feedbacks 
to a special drug and treatment and more recently used 
to drive predicting signatures that have prognostic power 
for survival, the effectiveness of the drugs for special type 
of cancer or patients (Chang et al., 2003). Hatzis et al., 
(2011) tried to develop a predictor to define response and 
survival from chemotherapy in newly diagnosed invasive 
breast cancer. They studied two datasets, the first one that 
used for developing the predictor including 310 patients 
and the second population used to test the predictor on an 
independent group including 198 patients. They developed 
a genomic predictor which predicted chemoresistance, 
chemosensitivity and predicted endocrine sensitivity 
identified patients with high probability of survival 
following taxane and anthracycline chemotherapy. In this 
study, we aim to explore the mechanisms underlying in 
chemoresistance and chemosensitivity (Ch-R vs Ch-S) 
via PPI network approach and enrichment analysis of 
DEGs to find functional gene sets related to Ch-R/Ch-S 
driver genes.

Materials and Methods

Data preprocessing
Gene expression profile of GSE25066 including 508 

samples downloaded from InSilicoDB, a genomics data 
repository. The GSE25066 expression profile is based on 
the GPL96 (Affymetrix Human Genome U133A Array) 
that preprocessed by FRMA method (McCall et al., 2010).

DEG analysis of predicted Ch-R vs Ch-S samples
A linear model was created with limma package in R 

(Ritchie et al., 2015) to finding DEGs between samples 
that have been recognized as chemotherapy resistance and 
sensitive samples in the study.

Gene enrichment analysis
A dataset consisting more reproducible genes with 

adjust p-value < 0.05 from limma output selected from 
the original dataset, to analyze by GSEA desktop software 
(Subramanian et al., 2005). We select default setting of 
GSEA. Permutation type set to gene set to find the most 
affected pathways and functional gene sets in Ch-R vs 
Ch-S phenotypes.

Pathway analysis
Limma tap-rank genes with log fold change (lfc) > 0.5 

and adjust p-value < 0.05 selected to analyze with Ipathway, 
a web-based service that computes pathways perturbation 
vs over-representation (Draghici et al., 2007).

Network analysis
Constructing networks were done by STRING and 

NetworkAnalyst that have different options and utility to 
study the networks. The network constructed by STRING 
from significant DEGs with adjusted p-value < 0.05 

and absolute lfc > 0.5 that have PPI pairs whose protein 
interaction scores were > 0.4. The network constructed 
by NetworkAnalyst based on mentioned conditions along 
with lfc amounts. We used Walk Trap algorithm from 
NetworkAnalyst to finding subnetworks in network that 
created by NetworkAnalyst (Szklarczyk et al., 2014).

Results

Differential expression gene analysis
Differential expression gene analysis between 

predicted Ch-R and Ch-S samples resulted in 2,863 
differentially expressed prob-IDs with adjust p-value 
less than 0.05.

Gene set Enrichment Analysis of Ch-R vs Ch-S DEGs
More reproducible prob-IDs including 2863 prob-IDs 

related with 2328 DEGs extracted from the original 
dataset. GSEA was done with selected features and 
hallmark gene set in addition of Gene Ontology gene sets, 
including Molecular Function, Cellular Component, and 
Biological Process gene sets from MSigDB (Liberzon et 
al., 2011). The most significantly enriched gene sets for 
the chemoresistance phenotype were the innate immune 
response, cytokine activity, Phagocytic vesicle membrane 
and allograft rejection with BP, MF, CC and Hallmark gene 
sets respectively (Figure 1; Table 1). Enrichment results 
for the chemosensitive phenotype enriched in epithelium 
development, growth factor binding, extracellular matrix 
and estrogen receptor early as the most significant gene 
sets from BP, MF, CC and hallmark gene sets respectively 
(Figure 1; Table 2).

Figure 1. GSEA Plots of Ch-R vs Ch-S DEGs. (A-D) 
GSEA plots of chemoresistance phenotype enriched 
gene set with BP, MF, CC and hallmark gene sets. (E-F) 
GSEA plots of chemosensitive phenotype enriched gene 
set with BP, MF, CC and hallmark gene sets. The score at 
the peak of the plot shows enrichment score.
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DEGs with adjust p-value < 0.05 and lfc > 0.5. From the 
filtering stage of Ipathway, 51 genes selected (Figure 2A) 
to analyze via Ipathway to explore for the most impacted 
pathways between the Ch-R/Ch-S as different phenotypes 
(Figure 2B and 2C). The results from pathway analysis 
show Chemical carcinogenesis, KEGG: 05204 (P= 0.021), 
Complement and coagulation cascades, KEGG: 04610 
(P= 0.026) and Prolactin signaling pathway, KEGG: 
04917, (P= 0.046) as the most significant impacted 
pathways (Figure 2). 

Network analysis
Constructing of networks were done by mapping 

54 genes with adjust p-value < 0.05 and lfc > 0.5 using 
STRING. Resulting network includes 54 nodes and 65 
edges in comparison with 12 edges as the expected number 
of edges for the same number of random nodes that imply 
this network has significantly more connections. Average 
node degree is 2.41 and clustering coefficient (CC) is 
equal to 0.777 (Figure 3A). Screening for the functional 
modules in this network results in negative regulation 
of signal transduction (GO: Biological Process), protein 
binding (GO: Molecular Function) and extracellular 
space (GO: Molecular Function) as the most significant 

Pathway analysis of DEGs
The limma output was load into Ipathway to filter 

Figure 2. (A) Volcano plot of filtered DEGs by 
Ipathway that represents significant DEGs with adjust 
p-value< 0.05 and log fold change > 0.5. Genes on 
the right show up-regulated genes in chemosensitive 
and genes on the right represent up-regulated genes in 
chemoresistance phenotype. (B) Summary of significant 
impacted pathways related with Ch-R vs Ch-S DEGs. 
(C) Chemical carcinogenesis (KEGG: 05204) pathway 
that impacted with changing in expression of genes 
highlighted in red, including common genes between 
Chemical carcinogenesis pathway and anthracyclines 
and taxanes induced gene.

Figure 3. PPI Networks of DEGs in Ch-R vs Ch-S. 
The nodes indicate the DEGs and the edges indicate 
the interactions between two genes. In the network in 
right side of the figure red nods expressed higher in the 
sensitive samples and the green node represent nods 
expressed higher in the insensitive samples.

NAME NES FDR q-val
BP GO_INNATE_IMMUNE_RESPONSE -3.9926152 0

GO_IMMUNE_RESPONSE -3.7706816 0
GO_DEFENSE_RESPONSE -3.6039486 0

MF GO_CYTOKINE_ACTIVITY -2.4459608 0
GO_SIGNAL_TRANSDUCER_ACTIVITY -2.352623 0
GO_SIGNALING_RECEPTOR_ACTIVITY -2.350062 0

CC GO_PHAGOCYTIC_VESICLE_MEMBRANE -2.4337091 0
GO_ENDOCYTIC_VESICLE_MEMBRANE -2.3747494 0
GO_SIDE_OF_MEMBRANE -2.3073456 0

Hallmarks HALLMARK_ALLOGRAFT_REJECTION -3.799198 0
HALLMARK_INTERFERON_GAMMA_RESPONSE -3.7596009 0
HALLMARK_INTERFERON_ALPHA_RESPONSE -3.361638 0

Table 1. Three Most Significant Enriched Gene Sets for Chemoresistance Phenotype Features from BP, MF, CC and 
Hallmark Gene Sets
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enriched modules from GO analysis of involved proteins 
(Table 3). The network from NetworkAnalyst constructed 
by 54 proteins as seed nodes. Obtained network from 
NetworkAnalyst includes 1,620 nodes and 2,111 edges 
(Figure 3B). Three top modules that found using Walk 

Trap algorithm named subnetwork1 (p= 3.52e-23, 
size=163), subnetwork2 (p= 6.62e-239, size= 620), and 
subnetwork3 (p= 2.28e-20, size= 136), (Figure 4). KEGG 
pathway enrichment analysis of genes that involved in 
each subnetwork represent in Table 4.

NAME NES FDR q-val
BP GO_EPITHELIUM_DEVELOPMENT 2.5826445 0
               GO_EPITHELIAL_CELL_DIFFERENTIATION 2.465178 0

GO_EPITHELIAL_CELL_DEVELOPMENT 2.3974626 3.35E-04
MF GO_GROWTH_FACTOR_BINDING 2.2345507 0.002986222
               GO_CORE_PROMOTER_BINDING 2.1788 0.005907953

GO_TRANSCRIPTIONAL_ACTIV
ATOR_ACTIVITY_RNA_POLYMERASE_II 2.1535537 0.005258679
_CORE_PROMOTER_PROXIMAL_REGION
_SEQUENCE_SPECIFIC_BINDING

CC GO_EXTRACELLULAR_MATRIX 2.163985 0.011273597
                GO_APICAL_PART_OF_CELL 2.1007788 0.014542908

GO_RIBONUCLEOPROTEIN_COMPLEX 2.0989242 0.009695271
Hallmarks HALLMARK_ESTROGEN_RESPONSE_EARLY 3.5579836 0
     HALLMARK_ESTROGEN_RESPONSE_LATE 3.4210422 0

HALLMARK_ANDROGEN_RESPONSE 2.2230856 0

Table 2. Three Most Significant Enriched Gene Sets for Chemosensitive Phenotype Features from BP, MF, CC and 
Hallmark Gene Sets

pathway ID pathway description count in network false discovery rate
Biological Process (GO)
     GO:0009968 negative regulation of signal transduction 14 0.000501
     GO:0030155 regulation of cell adhesion 11 0.000501
     GO:0045785 positive regulation of cell adhesion 9 0.000501
     GO:0065008 regulation of biological quality 23 0.000501
     GO:0042127 regulation of cell proliferation 16 0.000592
     GO:0042592 homeostatic process 15 0.000619
     GO:0048585 negative regulation of response to stimulus 15 0.000619
     GO:0048519 negative regulation of biological process 26 0.000908
     GO:0048523 negative regulation of cellular process 25 0.000908
Molecular Function (GO)
     GO:0005515 protein binding 27 0.00817
     GO:0001948 glycoprotein binding 4 0.0336
     GO:0035662 Toll-like receptor 4 binding 2 0.0336
     GO:0019838 growth factor binding 4 0.0466
     GO:0050544 arachidonic acid binding 2 0.0466
Cellular Component (GO)
     GO:0005615 extracellular space 20 1.41E-08
     GO:0044421 extracellular region part 31 1.66E-08
     GO:0005576 extracellular region 32 1.68E-07
     GO:0070062 extracellular exosome 24 2.78E-06
     GO:0031988 membrane-bounded vesicle 23 0.000537
     GO:0009986 cell surface 9 0.00892
     GO:0009897 external side of plasma membrane 5 0.0362
     GO:0071944 cell periphery 23 0.0362

Table 3. GO Analysis of Differentially Expressed Genes in the Protein-Protein Interaction Network
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The top ten highest degree nodes in NetworkAnalyst 
are ESR1, CCND1, PTN, MYB, S100A9, ERBB3, MAPT, 
IGF1R, KRT15, NRIP1 that represent the most important 
hubs in Ch-R/Ch-S network. From the above list, the 
S100A9 was up-regulated hub node in chemoresistance 
tumor cell and the others are important hub nodes that 
up-regulated in chemosensitive tumor cells, (Figure 3B). 
Since there are accumulating evidences that imply the role 
of the phagocytic pathway in chemoresistance, significant 

Figure 4. Top Three Modules in the PPI Network of the 
DEGs in Ch-R/Ch-S.

Figure 5. Clustergrams of Enrichment Analysis of 
Significantly Enriched Phagocytic Vesicle Membrane 
Gene Set with Chemical Agents (A) and ligands (B) lead 
to perturbation down, genes that up-regulate in phagocytic 
vesicle membrane significant genes in chemoresistance 
breast cancer. (C, D) Clustergrams of enrichment 
analysis of hub nodes in chemoresistance network with 
chemical agents and ligands that lead to perturbation 
down, hubs that up-regulate in chemoresistance, or cells. 
(E) PPI network of significant genes related phagocytic 
vesicle membrane gene module.

SubNetwork1 SubNetwork2 SubNetwork3
Pathway p-value Pathway p-value Pathway p-value
ErbB signaling pathway 1.45E-18 Pathogenic Escherichia coli 0.0000165 Cell cycle 6.09E-16
Jak-STAT signaling pathway 3.44E-17 Regulation of actin cytoskeleton 0.0000173 Chronic myeloid leukemia 1.01E-13
Chemokine signaling pathway 1.99E-14 Glycolysis / Gluconeogenesis 0.0000251 Pathways in cancer 6.89E-11

Table 4. Three Top Pathways Obtained from KEGG Pathway Enrichment Analysis of Genes That Involved in Each 
Sub-Network

Term P-value Adjusted P-value Z-score
LINCS L1000 Chem Perturbations down phagocytic vesicle membrane significant gene set
     LJP006_HME1_3H-celastrol-1.11 3.31E-07 0.000459075 -1.937454563
     LJP006_SKBR3_24H-alvocidib-0.04 1.09E-07 0.000300973 -1.796769478
     LJP006_SKBR3_24H-HG-6-64-01-3.33 2.12E-06 0.001957743 -2.014133824
LINCS L1000 Ligand Perturbations down phagocytic vesicle membrane significant gene set
     MCSF-MCF7 0.000348385 0.003135466 -1.641055509
     BNGF-BT20 0.000324264 0.003135466 -1.633430948
     EGF-MDAMB231 0.004760296 0.028561776 -1.500470998
LINCS L1000 Chem Perturbations down significant hub nodes in chemoresistance network
     LJP005_PC3_24H-CP466722-3.33 6.46E-07 0.000415406 -2.28816605
     LJP005_MCF7_24H-linsitinib-1.11 3.18E-07 0.000415406 -2.25671746
     LJP008_HA1E_24H-GSK-1059615-0.04 1.14E-06 0.000415406 -2.22757269
LINCS L1000 Ligand Perturbations down significant hub nodes in chemoresistance network
     KGF-MCF7 0.000827715 0.013136852 -1.975009722
     BTC-HS578T 0.000799327 0.013136852 -1.920521786
     INS-SKBR3 0.000856751 0.013136852 -1.797721404

Table 5. Enrichment Analysis Results of Phagocytic Vesicle Membrane Significant Gene Set and Hub Nodes in 
Chemoresistance Network with Chemical and Ligand Database in from Enrichr
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genes related to phagocytic vesicle membrane gene set 
from GSEA results, extract and mapped on STRING, PPI 
database (Figure 5C). The network created with significant 
genes in vesicle membrane gene set include 13 nodes and 
8 edges in comparison with 1 edge that was expected 
for this network with random nodes and the same size. 
Average node degree and CC for this network are 1.23 and 
0.872 respectively (Figure 5C). Since all genes related to 
this pathway in Ch-R/ Ch-S DEG test, were up-regulated 
in chemoresistance phenotype, enrichment analysis of 
these genes was done using Enrich R (Chen et al., 2013) 
along with chemical agents and ligands perturb down, 
that defined potentially agents lead to perturb down genes 
that were up-regulated in phagocytic vesicle membrane 
significant genes (Figure 5; Table 5).

Discussion

Due to the high probability of recurrence of breast 
cancer after chemotherapy, understanding the mechanisms 
by which chemoresistance can occur is important to 
developing novel therapeutic approaches and finding 
potential therapeutic targets. Anthracyclines and Taxanes 
are the most widely used chemotherapeutic drugs for 
breast cancer. Anthracyclines acts through inhibition of 
DNA and RNA synthesis, Inhibition of topoisomerase 
II enzyme, and a variety of mechanism underlying 
DNA damage (Offermanns and Rosenthal, 2008). On 
the other hand, Taxanes disrupt microtubules formation 
and function and perturb the mitotic organization and 
cell division (Rowinsky, 1997). There are numerous 
evidences for the roles of immune system, especially 
innate immune systems in chemoresistance activity of 
cancer cells that is in concordance with GSEA results with 
GO biological process in this study, e.g. enrichment of 
chemoresistant driver genes significantly represent GO_
INNATE_IMMUNE_RESPONSE, GO_RESPONSE_
TO_INTERFERON_GAMMA, and some other gene 
sets related to immune systems (Schmidt et al., 2008; 
McDonnell et al., 2011). Also, GSEA with GO molecular 
function gene sets represents GO_CYTOKINE_
ACTIVITY as the most significant gene set with 
chemoresistance DEGs. Furthermore, enrichment result of 
chemoresistance DEGs with hallmark gene sets represents 
HALLMARK_ALLOGRAFT_REJECTION that imply 
immune systems role in chemoresistance activity of 
cancer cells. On the other hand, accumulating evidence 
has suggested a key role for the cancer stem cells that have 
high self-renewal activity and form a specific population 
that tends to be refractory to conventional treatments 
(Dean et al., 2005; Abdullah and Chow, 2013). One of stem 
cells features that involved in chemoresistance of cancer 
cells is involving ATP binding cassette (ABC) transporters 
(Ou and Guo, 2007). Screening in DEGs results, for this 
family of proteins showed that ABCA4 was up-regulated 
in predicted chemoresistant cells. It has been demonstrated 
that anthracycline immunogenicity relies on their ability 
to induce the tumor cells phagocytosis by dendritic cells 
(Kopecka et al., 2011). On the other hand, Phagocytosis 
of tumor cells often mediates the immunosuppressive 
properties of tumor-associated antigen-presenting cells 

leading to the resistance of tumors to chemotherapy 
(Jinushi, 2014). Screening in our results shows that the 
gene set related with Phagocytic vesicle membrane is 
up-regulated in chemoresistance samples. Searching for 
chemical agents and ligands that can adjust this gene 
set activity enriched in potentially chemical agents and 
ligands that could perturb-down the up-regulated gene set 
related with phagocytic vesicle membrane and modify this 
gene set related with anthracyclines and taxanes resistance.

Moreover we found that GO_CYTOKINE_ACTIVITY 
and GO_GROWTH_FACTOR BINDING, are up-
regulated gene sets in chemoresistance phenotype. Growth 
factors and cytokines are two agents that induced the 
immune systems for recruiting APCs and promoting 
tolerogenic phagocytosis (Bines et al., 2014). Another 
example of factors that contribute in chemoresistance 
is the up-regulation of TLR-2, TLR-4, or TLR-7/8 
that enhances tumor cell survival through the action of 
immune-mediated and cell autonomous NF-κB- and 
Bcl2-dependent antiapoptotic programs (Cherfils-Vicini 
et al., 2010). Screening in our result showed the TLR2 
with lfc= 0.23 in predicted chemoresistance cells. In this 
study screening of taxane-anthracycline chemotherapy 
response, show common mechanisms with Chemical 
carcinogenesis pathways (KEGG: 05204), (Figure 
2C) which have shared up-regulated genes including 
NAT1 (N-Acetyltransferase 1) and GST (Glutathione 
S-transferases) with taxane-anthracycline chemotherapy 
response that have higher expression in sensitive tumor 
cells. Chemical carcinogenesis significantly contributes to 
the causation of a sizable fraction of human cancers that 
acts through genotoxic and non-genotoxic mechanisms 
that imply i) attack to biological macromolecules such 
as DNAs and RNAs and ii) carcinogens act through the 
mechanisms for example induction of inflammation, 
immunosuppression, etc (Fine et al., 2010). Most important 
hub nodes that play as driver agents in chemoresistance 
phenotype are including S100A9, PTPRC, S100A8, 
SELL, SRGN. The S100A9 involved in the regulation 
of numbers of cellular processes including cell cycle 
progression and differentiation and has important roles in 
regulation of inflammatory processes, immune response 
and regulatory effect on toll-like receptor, etc. that is in 
concordance with previously mentioned enriched gene sets 
in GSEA results (Srikrishna, 2012). In particular, numerous 
studies represent roles of S100 family in progression after 
chemotherapy and chemoresistance. Zhou et al., (2016) 
found that patients with lymphoma that have higher 
expression of S100A9 displayed unfavourable treatment 
outcome, this result in addition to other referenced results 
endorsed the role of S100 family proteins in poor outcome 
of cancer patients after treatment (Zhou et al., 2016). 
Protein tyrosine phosphatase, receptor type C (PTPRC) 
involve in the variety of cellular processes including cell 
growth, immunomodulator and oncogenic transformation, 
etc (Tchilian and Beverley, 2006). However less attention 
has been paid to roles of this protein in breast cancer 
chemoresistance. Potentially increasing in expression of 
this protein in our network analysis results, in addition of 
immunomodulator and oncogenic transformation activity 
of this protein raise the important role of this protein in 
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chemoresistance of breast cancer. S100A8 is another 
member of S100 family. Although there are numerous 
studies that referred role of S100A8 in progression of 
breast cancer and gaining invasive properties of breast 
cancer, but contribution of this protein in breast cancer 
chemoresistance has not attracted much attention (Moon 
et al., 2008; Yin et al., 2013) Although, Yang et al., 
(2016) and Yang et al., (2014) suggested association of 
up-regulation of S100A8 protein with drug resistance 
by promoting autophagy and influencing the apoptosis 
pathway in leukemia (Yang et al., 2014; Yang et al., 2016), 
but relation between taxane-anthracycline Chemotherapy 
in breast cancer and up-regulation of S100A8 is not 
clear. Our results represent S100A8 as one of the most 
important hub nodes in chemoresistant tumor cell network 
and high rank genes associated with chemoresistance 
in GSEA feature selection result. Selectin L (SELL) is 
another important hub node in chemoresistance network. 
According GeneCards, this protein encodes a cell surface 
adhesion molecule that belongs to a family of adhesion/
homing receptors (Safran et al., 2010). Although this 
protein is a prominent node in chemoresistance network 
but it is not known as a key agent in chemoresistant breast 
cancer in scientific texts. Serglycin (SRGN) encodes a 
protein that best known as a hematopoietic cell granule 
proteoglycan and expressed in some tumor cells. It 
promotes metastasis and protects some tumor cells from 
complement system attack (Korpetinou et al., 2013). 

There are some functional gene sets and hub nodes 
suggested as a treatment target in BC in this work. 
Also, there are several papers (Moreira et al., 2014; 
Hsu et al., 2015). Benzyl butyl phthalate increases the 
chemoresistance to doxorubicin/cyclophosphamide by 
increasing breast cancer-associated dendritic cell-derived) 
that point to some of these driver agents as important 
factors in cancer chemo-resistance and also there are some 
routine therapies for BC that these functional gene sets and 
hub nodes are involved in its targets, eg from hub nodes, 
ERBB3 is one of the hub nodes up regulated in sensitive 
breast cancer that, there are some drugs like Gefitinib, a 
kinase inhibitor drug and Iressa, which approved in cancer 
treatment. ESR1 is one of the hub nodes in CHR vs CHS 
network that is a target for Tamoxifen and Estrone drugs 
that approved too. From functional gene sets, innate 
immune gene set is one of the most significant gene sets 
and includes some genes like STAT1 that encodes a protein 
that is a target for Fludarabine, an approved drug to inhibit 
cell making. EGFR is one of the genes in HALLMARK_
ALLOGRAFT_REJECTION, CELL-CYCLE, and some 
other significant gene set in this work, and is a target for 
Lapatinib, Gefitinib, Erlotinib, Cetuximab, Panitumumab, 
that could be inhibitors of this genes in chemo-resistance 
breast cancer cells (Safran et al., 2010).

Since the output of the gene expression analysis 
showed lots of significant genes and these genes with 
a high possibility could be find as a target in literature 
and databases, it has preferred to find these genes in 
a significant gene sets framework. Lots of functional 
significant gene sets of these work are subjects of routine 
therapies in breast cancer eg. Cell cycle, immune system 
and etc. 

In conclusion, the resistance of breast cancer to 
anthracycline and taxanes raised the need of understanding 
underlying mechanisms in resistance to these drugs. 
Events responsible to chemoresistance have not been 
clearly identified, but a variety of mechanisms including 
contribution of cancer stem cells (CSCs), immune response, 
microenvironment, epigenetic changes or combination of 
these biological phenomena can be involved in changing 
drug sensitive cancer to insensitive tumor cells. In this 
study using systems approach many of functional gene 
sets and hub nodes highlighted mechanisms that can be 
potentially involved in chemoresistance.
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