SCIENTIFIC REPLIRTS

Whole Exome Sequencing
of Patients from Multicase
Families with Systemic Lupus
et Erythematosus Identifies Multiple
Rt Rare Variants
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Helga Kristjansdottir®, Kristjan Steinsson®, Sergey V. Kozyrev* & Marta E. Alarcén-Riquelme®??

. Inan effort to identify rare alleles associated with SLE, we have performed whole exome sequencing of

. the most distantly related affected individuals from two large Icelandic multicase SLE families followed

. byTatargeted genotyping of additional relatives. We identified multiple rare likely pathogenic variants
in nineteen genes co-segregating with the disease through multiple generations. Gene co-expression
and protein-protein interaction analysis identified a network of highly connected genes comprising

. several loci previously implicated in autoimmune diseases. These genes were significantly enriched

. forimmune system development, lymphocyte activation, DNA repair, and V(D)J gene recombination

. GO-categories. Furthermore, we found evidence of aggregate association and enrichment of rare

. variants at the FAM71E1/EMC10 locus in an independent set of 4,254 European SLE-cases and 4,349

. controls. Our study presents evidence supporting that multiple rare likely pathogenic variants, in newly
identified genes involved in known disease pathogenic pathways, segregate with SLE at the familial and
population level.

. Systemic lupus erythematosus (SLE [MIM:152700]) is a chronic and systemic autoimmune disease that affects
: primarily women (90%) during their reproductive years'. Clinically, SLE has heterogeneous manifestations rang-
* ing from skin rash and arthritis, through anemia and thrombocytopenia, to serositis, nephritis, seizures, and

even psychosis®*. The hallmark of SLE is the production of autoantibodies by autoreactive B-cells against multiple

cellular components, especially nucleic acids and their interacting proteins. The deposition of immune complexes
. and widespread inflammation lead to multiple organ damage. Although the pathogenic mechanisms leading to
. the breakdown of immune tolerance in SLE are not completely understood, it is well established that it depends
. on multiple genetic, epigenetic, hormonal, and environmental factors; therefore, it is a complex disease’.

While autoimmune diseases together affect around 3-5% of the world population?, SLE is relatively uncom-
mon. Its prevalence varies widely between populations, reflecting the effect of population-specific genetic and
environmental factors (i.e. diet, UV radiation). In 1984 the prevalence of SLE in the Icelandic population was
estimated to be 35.9 per 100,000 individuals with an overall incidence of 3.3 cases per 100,000 per year, similar to
other North European populations'*. In contrast, the risk of developing SLE among siblings of patients is up to
~30 times the risk of the general population (As =8-29)%, and approximately 8-12% of all SLE cases have a first,
second or third degree relative with the disease®.
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Early family-based studies of SLE revealed high heritability (~66%) and a most probable model of inheritance
in which multiple minor polygenic effects were acting in an additive fashion”®. Genetic linkage studies of mul-
ticase families provided the first evidence about the location of susceptibility genes for SLE*-'%. Over the last 10
years, an explosion of large case-control genome-wide association studies (GWAS) have provided strong evidence
of association for common variants (minor allelic frequency (MAF) >1%) in over 50 loci'®~** making clear that
SLE is a polygenic disease, although rare Mendelian forms of SLE-like disorders have been described**-?’. The
identification of these genes has greatly contributed to the understanding of the disease pathogenesis establishing
that innate and adaptive immune genes are primarily involved”. However, the variants identified so far by GWAS
explain about 10-19% of the heritability'®***°. As GWAS has focused on common variants, we still do not know
the relative impact of rare variants, or their role in the development of sporadic and familial SLE.

Thanks to the rapid development of next generation DNA sequencing (NGS) technologies, it is now feasible
and affordable to use whole exome sequencing (WES) or even whole genome sequencing (WGS) to systematically
interrogate virtually all coding variants in the human genome. Thus, in an effort to study the role of rare variation
in SLE, we analysed WES data from five patients from two large well-studied Icelandic SLE multi-case fami-
lies, for which we have clinical and linkage data. We interrogated whether rare, likely pathogenic variants were
co-segregating with the disease through multiple generations by sequencing the most distantly related individuals
in each family and then performed a genotyped-based follow-up of the variants identified in other affected family
members. Interestingly, we did not find single alleles in the multi-case families, but instead we found groups of
rare alleles in each family segregating with disease. These genes were further investigated by imputation of spo-
radic SLE GWAS data, and various omic strategies were implemented to identify and predict pathogenic networks
comprised by these genes. After applying very stringent criteria to correct for the potential effect of population
stratification and linkage disequilibrium, we found evidence of enrichment and aggregate association for a new
locus in an independent set of 4,254 European SLE cases and 4,349 controls. The set of genes was significantly
enriched for biological processes such as immune system development, lymphocyte activation, and DNA met-
abolic processes including DNA repair and V(D)] gene recombination. A graphic representation of the study
design is presented on Fig. 1.

Results

Exome Sequencing and Variant Filtering. We successfully sequenced the exome of the most dis-
tantly related patients with SLE (n=>5) from two well-studied multi-case SLE families from Iceland (Fig. 1 and
Table S1)°! to a mean read depth of 33.3X across targeted coding regions (Table S2). We chose a filtering strategy
favouring the best-quality single nucleotide variants (SNVs) shared by all the affected sequenced individuals from
each family, with a very low allele frequency (MAF < 0.01) in an internal control population (n = 642), and with
easily recognized functional consequences for protein coding genes (gain or loss of a stop codon, nonsense, mis-
sense, and essential splice sites). A total of nineteen variants passed all quality-, annotation- and frequency-based
filtering criteria, and were validated by SEQUENOM and/or Sanger sequencing (Table 1). All the 19 identified
variants were non-synonymous SNVs (nsSNVs) present in heterozygous state in the exome-sequenced patients.
No variant with a gene truncating effect (stop gain, stop loss, nonsense, or essential splice variant) was identified.

Segregation Analysis. We then performed a segregation analysis by looking at the variants co-segregating
with the disease status in other affected members within each family for whom DNA was available. This analysis
included five cases with SLE, one case with rheumatoid arthritis (RA) and one with multiple sclerosis (MS) in
“family 6” (n=8), as well as seven cases with SLE in “family 8” (Fig. S1).

All of the 19 identified variants were present in at least three affected members of each family including the
exome-sequenced patients. Variants in KRTAP4-9 (p.D18V), KIR2DS4 (MIM 604955) (p.1255L), and SLC5A9
(p.G103R) were the most frequent among patients of both families (12, 7 and 6 patients, respectively). However,
the former two variants were very frequent (MAF > 5%) among a set of 83 controls from Iceland and Sweden
(referred to as Nordic controls) (Tables 1 and S3). Due to the high frequency in the Nordic controls and discrepan-
cies across public databases, these variants were excluded from further detailed analysis.

We observed the best co-segregation with disease status in family 6 for a variant in XRCC6BP1 (also known as
ATP23) (p.A229V), which was carried by six out of eight affected members including four SLE patients, one RA
and one MS patient. In other words, the XRCC6BP]I variant segregated with all autoimmune diseases present in
this family. The variants in SLC5A9 (p.G103R) and CHD3 (MIM 602120) (p.A1523T) were also carried by four
SLE patients; the latter also by one RA patient. In family 8, five out of seven SLE relatives carried the variants in
DCLREIC (MIM 605988) (p.H283N), NOTCHI (MIM 190198) (p.D932N), FBXL14 (MIM 609081) (p.N102H)
and CLC (MIM 153310) (p.N65K) (Table 1). Hence, there was no single variant carried by all SLE patients within
each family, but rather a combination of a few rare and low frequency non-synonymous variants segregating
with the disease status in most of the affected members. A large fraction of these loci was already annotated as
immune-relevant, taking into account known pathways and Gene Ontology: NOTCH]I, KIR2DS4, NUP214, CLC,
DCLREIC and FBXL14. Moreover, 13 of 19 variants-corresponding genes are expressed in whole blood, spleen or
relevant cell lines (GTEX RNAseq data, Table 1 and Fig. 2).

Aggregate Association and Enrichment Analysis. We then tested whether any of the candidate genes
identified by exome sequencing had statistical evidence of association with SLE in the general European popu-
lation due to the combined effect of all rare variation within each gene (MAF < 1%) (Table 2). For this, we used
a large and independent imputed genome-wide association scan of 4,254 SLE patients and 4,349 controls with
European ancestry* (Table 2). Each gene was analyzed using two procedures: the sequence kernel association
test (SKAT)?? and an aggregated case-control enrichment test. It is important to note that we performed targeted
gene-based tests, that is, we did not test for association of rare variants neither at a genome-wide level nor tested
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Figure 1. Graphic summary of the study design. Step-by-step scheme shows initial variant detection, validation
and filtering followed by in silico functional analysis of candidate loci and analysis of candidate genes in
independent population-based data.

individual variants. To be as stringent as possible, the 10 first principal components (PC’s), accounting for all the
significant variability due to population stratification, and genomic control (GC) were used to correct for strat-
ification in both procedures (Figs S2 and S3). To further eliminate the potential effect of linkage disequilibrium
(LD) on the computation of empirical corrected P values, tests were run using only unlinked markers by applying
avery stringent LD threshold of r* < 0.1. It could be objected that such stringent filters could mask true associa-
tion signals, but our rationale was that if the signals were maintained after strict correction they would strongly
support a ‘true positive’ effect.

The exome-identified gene FAM71E1 and the adjacent EMC10 gene (MIM 614545), which is in high LD,
showed significant association with both procedures, case-control enrichment and SKAT, after application of
r* <0.1 threshold and having applied the appropriate corrections for stratification and multiple testing (Table 2).
The DCLREIC gene showed suggestive evidence of enrichment but did not remain significant after correction
for multiple testing.
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ANKRD50

chr4:125593332

T367M

rs140232140

Transport; protein
transport; retrograde
transport, endosome to
plasma membrane

Yes

3/8

0.0024

0.0091

CHD3

chr17:7810250

A1523T

15148451716

Activated PKN1 stimulates
transcription of AR
(androgen receptor)
regulated genes KLK2
and KLK3; Chromatin
organization; Gene
expression//chromatin
organization; chromatin
assembly or disassembly;
transcription, DNA-
templated

Yes

4/8

1.79

0.0003

FAT4

chr4:126238305

P247T

rs191329848

Hippo signaling
pathway//branching
involved in ureteric bud
morphogenesis; kidney
development; heart
morphogenesis; plasma
membrane organization

No

3/8

0.0016

0.0061

0.0042

KIR2DS4

chr19:55358686

1255L

15112697729

Innate immune system;
Allograft rejection;
Immune response Role
of DAP12 receptors in
NK cells//innate immune
response

Yes

6/8

1/7

2.06

0.1689

NUP214

chr9:134027138

1765V

1561756081

HIV Life Cycle; Cell
Cycle, Mitotic; Mitotic
Prophase; Influenza Viral
RNA Transcription and
Replication//regulation
of glycolytic process; RNA
export from nucleus

Yes

3/8

0.012

0.0097

PDHA2

chr4:96762158

R286P

15147966234

Citrate cycle (TCA cycle);
Glucose metabolism;
Carbon metabolism//
carbohydrate metabolic
process; glucose metabolic
process

No

3/8

0.0071

0.0241

0.0091

SCL25A9

chr1:48694594

GI03R

1861746559

Transport of glucose and
other sugars, bile salts and
organic acids, metal ions
and amine compounds;
Hexose transport//
transport; ion transport

No

4/8

2/7

1.13

24

0.0071

0.006

0.0525

XRCC6BP1

chr12:58350618

A229V

rs117230607

Double-strand break
repair via nonhomologous
end joining; protein
phosphorylation;
proteolysis

Yes

6/8

0.0063

0.0183

0.0053

TPRAI

chr3:127292588

E300K

1s372625321

Lipid metabolic process;
G-protein coupled receptor
signaling pathway; aging;
negative regulation of
mitotic cell cycle phase
transition

Yes

3/7

0.00008

10

KRTAP4-9

chr17:39261693

D18V

rs113059833

Aging; keratinization;
hair cycle

No

8/8

4/7

0.3765

0.1879

11

MPHOSPHS8

chr13:20224319

E499K

rs147594834

Transcription, DNA-
templated; regulation

of transcription, DNA-
templated; regulation of
DNA methylation; negative
regulation of transcription,
DNA-templated

Yes

3/7

0.008

0.003

12

NOTCH1

chr9:139404360

D932N

rs758642073

Signaling by NOTCHI1;
HIV life cycle//negative
regulation of
transcription from RNA
polymerase II promoter;
angiogenesis; in utero
embryonic development;
cell fate specification

517

0.0002

Continued
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13 PABPC3

chr13:25670676

mRNA surveillance
pathway; Deadenylation-
A114T | rs117014540 | dependent mRNA decay; | No — 3/7 — — 0.0094 0.012 0.0044
RNA transport//mRNA
metabolic process

14 WDR25

chr14:100847878

R206H | rs146976933 | _// Yes — 3/7 — — 0.0031 — 0.008

chr19:40225031

Regulation of T cell
anergy; regulation of T
N65K | rs146776010 | cell cytokine production; | Yes — 5/7 — 2.06 0.0071 0.006 0.0176
regulation of activated T
cell proliferation

16 DCLREIC

chr10:14970085

DNA Double-Strand
Break Repair; Primary
immunodeficiency;
DNA Damage//telomere
H283N | 15772438042 | maintenance; adaptive Yes — 5/7 1 — 0 — 0.000008
immune response;
immune system process;
DNA repair; double-
strand break

17 FAM7IE1

chr19:50978724

L7F rs185418641 | _// No — 4/7 — 2.06 0.0063 0.0061 | 0.0073

18 FBXL14

chr12:1702929

Class I MHC mediated
antigen processing and
presentation; Innate
Immune System//protein
polyubiquitination;
NI102H | rs117331652 | protein ubiquitination Yes — 517 — — 0.0055 — 0.0049
involved in ubiquitin-
dependent protein
catabolic process;
post-translational protein
modification

19 FAMS8AI

chr6:17601340

G234R | 15202036280 | _//_ Yes — 3/7 — — — — 0.00005

Table 1. Segregation analysis and population frequency for exome-sequence variants. Table 1 shows the results
from the segregation analysis for the variants identified by WES as the number of family members who were
variant carriers affected with SLE (family 8) or any autoimmune disease (family 6), over the total number of
cases in each family. Z-score is indicated for the variants located in regions linked to SLE in Iceland according

to ref.?’. MAF (minor allelic frequency) of the variants in 642 internal whole-genome sequenced European and
83 Nordic controls. The maximum MAF corresponds to the highest frequency of allele in ExAc, 1000 Genomes
and GO-ESP data for global population. Variant numbers correspond to those seen in Fig. 3. Functional
annotation is shown according to GeneCards SuperPathways and Gene Ontology top biological process
categories. The presence of the particular gene transcripts in GTEX blood/immune samples is marked according
to Fig. 3. Additional annotation of the variants shown in Table S3.

Functional Annotation of Variants and Genes. Predicted effect of Non-synonymous SNVs on Protein
Function. 'The SNPDryad method* and ENSEMBL VEP (Variant Effect Predictor based on SIFT, PolyPhen2,
FATHMM, LRT, MetaLR, MutationAccessor, MutationTester, and Provean)?*, were used for the annotation of the
potential deleterious effects of the exome variants. Variants displayed consistent results across all the scoring algo-
rithms (Table S3). Out of the 19 nsSNVs, nine (47%) at SLC5A9, XRCC6BP1, MPHOSPHS, CHD3, CLC, TPRA1,
FAT4, PDHA2, and FBXL14 were predicted as having a likely deleterious effect by three or more ENSEMBL VEP
algorithms, and thirteen nsSNV's (63%) had SNPDryad scores over 0.5 (possibly deleterious: SLC5A9, DCLREIC,
NUP214, XRCC6BP1, MPHOSPHS, WDR25, CHD3, CLC, TPRAI, ANKRD50, FAT4, PDHA2, and FAMS8AI)
(Fig. 3 and Table S3). In addition, four genes (DCLRE1C, NOTCH1, NUP214, and FAT4) were connected to spe-
cific phenotypes with immunological features through OMIM (Online Mendelian Inheritance in Man) and the
Human Genome Mutation Database (HGMD)?*. None of the nineteen variants had been reported to ClinVar*®
(https://www.ncbi.nlm.nih.gov/clinvar/) or HGMD (http://www.hgmd.org) databases (as to Jun 29th, 2017).
Variants in DCLREIC (p.H283N) and NUP214 (p.I765V) were classified as likely benign by standard algo-
rithms, whereas the SNPDryad method predicted a likely deleterious effect. In addition, these two variants are
very rare (<0.5%) in European populations (ESP6500, ExAC and 1000 genomes) and in our internal sequencing
controls, which we considered as supporting evidence of a likely gene-disrupting effect (Tables 1 and S3). In
contrast, the SLC5A9 nsSNV (p.G103R) (rs61746559) segregated with SLE in both families, was not common in
our dataset and Nordic controls and was predicted to be damaging by several of the algorithms (Table S3), but it
shows very high allele frequency in non-European populations (20% in Asians, 26% in Southern Han Chinese
—1000 Genomes), which is against a gene-disrupting effect. Likewise, the variants in KRTAP4-9 (p.D18V) and
KIR2DS4 (p.I255L) were rare (MAF < 1%) in most European populations, but very common in the set of 85
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Figure 2. Tissue-specific expression patterns for genes with nsSN'Vs. The heat plot shows GTEX RNAseq
expression levels based on FPKM values. Inmune-relevant samples, reproductive system and gastrointestinal
tract are outlined in orange, blue and green boxes. For the bidirectional FAM71E1-EMC10 locus expression
pattern of both genes is shown.

genotyped Nordic controls (>5%). These common nsSNV's could be polymorphisms specific of the Asian and
Nordic population, respectively. We cannot exclude that any of these are functional and/or disease variants, or
that the high MAF is due to a founder effect in specific populations, but due to the high frequency and described
discrepancies they were regarded as polymorphisms, unlikely to be gene-disrupting variants (Table 1, Fig. 3, and
Table S3).

Gene Expression Analysis. We interrogated the potential biological relevance of the genes carrying the identified
exome variants by analysing their pattern of gene expression, regulation and gene networks. Since the association
of FAM71EI extends to the nearby gene EMCI0 (Table 2), and they are overlapping and transcribed in opposite
directions, we included both genes in the analysis. A heat-map representing the tissue-specific RNAseq data
(GTEx Project) for all genes is shown on Fig. 2 and summarized in Table S4. Most of the genes (13 out 19, or 14
out 19, taking into account expression of FAM71EI-neighbouring EMCI10) were expressed in immune-relevant
samples. Additionally, several genes are differentially expressed in infections and after specific pathogen exposure
(Table S5). We observed no evidence of expression of KRTAP4-9, coding for hair keratin-associated protein 4-9,
in any of the tissue samples analysed. The expression of PDHA2, PABPC3, and FAM71E]I was detected only in
testis. EMC10 was expressed in spleen and lymphoblastoid cell lines, albeit weakly. FAT4 cadherin as well as the
intestinal-specific SLC5A9 gene, although expressed in several tissues, were almost not detectable in any of the
immune-relevant tissues (Fig. 2). In summary, among the exome identified genes the fraction of loci showing
immune-relevant expression was high and included the EMC10 gene from the bidirectional FAM71E1/EMC10
locus. The tissue-specific expression patterns were independently corroborated using TSS activity data from the
FANTOMS project (Fig. S4).

Gene Co-expression and PPI networks. We next constructed gene networks based on the detection of com-
mon partners between the exome identified genes including EMC10. Both gene co-expression and pair-
wise protein-protein interactions (PPI) were taken into consideration in the networks. We first performed a
family-specific analysis. The genes segregating in family 8 were part of a highly connected gene network (Fig. S5).
The family-6 gene set was small; nevertheless, the genes CHD3, NUP214 and FAM8A1 were connected via at least
one partner each (Fig. 5). Further on, the gene sets of both families were analysed together (Fig. 4). The resulting
network included twelve genes, of which the SLE associated genes EMC10 and DCLREIC, together with NUP214,
CHD3, NOTCHI, FAM8A1, MPHOSPHS, TPRAI and CLC showed high connectivity to each other and to other
genes in the network via several partners. One interaction partner connected genes ANKRD50 and FBXL14 each,
separately, to the network. Moreover, we observed strong inter-family gene connections: the family 6-specific
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Figure 3. Graphic summary of annotation-based filtering for the variants identified by whole exome
sequencing of patients with SLE from multicase families. The Venn diagram shows the genes harbouring
non-synonymous variants (nsSNV) with a likely deleterious effect on protein function based on: (Left) a
predicted deleterious effect by >3 with standard algorithms (SIFT, PolyPhen2, FATHMM, LRT, MetaLR,
MutationAccessor, MutationTester, Provean) - genes for which nsSN'Vs were also predicted as deleterious by
one-to-one orthologue-specific SNPDryad algorithm (score > 0.5) are shown in bold - (See detailed scores in
Table S3); and (right) a maximum minor allelic frequency of 1% in European populations (internal sequencing
and genotyping controls, 1000 Genomes EUR, ESP6500 EurAm and ExAc Eur non-Finish populations) (See
Tables S3 and 1). Genes with a significant aggregate association and enrichment of rare variants (top) have
further genetic evidence of being implicated in SLE. Genes associated after removing linked variants (r* < 0.1),
adjustment by 10 principal components and genomic control, and multiple test correction are highlighted with
a star (See Table 2).

DCLREIC 58 3.31E-02 6.51E-02 5.50E-01 6.54E-01
EMCI0 41 1.06E-02 2.47E-02 2.14E-02 3.67E-02
FAM7I1EI 19 5.23E-03 2.97E-02 3.13E-02 4.63E-02

Table 2. Rare-variant Association Analysis. Gene-based case-control association analysis of unlinked rare
variants (MAF < 1% and r* < 0.1) of the genes identified by exome sequencing in an independent imputed
genome-wide association scan from a set of 4,254 SLE patients and 4,349 controls with European ancestry®.
Two procedures were used, an enrichment case-control association test and the sequence kernel association test
(SKAT). Correction for multiple testing was run through a bootstrapping permutation process (Pmult). All tests
were corrected for stratification by adjusting for the first 10 principal components (PC) and Genomic Inflation
Control (Ag).

genes, CHD3 and NUP214, were highly connected to others, including family 8-specific NOTCH1, CLC, EMCI0,
TPRA1, and MPHOSPHS.

We independently validated the gene-gene relations by using the tissue-specific GIANT resource based on the
unsupervised analysis of public RNAseq data®. Of note, XRCC6BP1, which was absent in the co-expression and
PPI network, was connected to NOTCH1, whereas the CLC connections were not stable in the GIANT networks
(Figs 5 and S6). The difference between results could probably be due to the different calculation algorithms and a
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ANKRD50

Figure 4. Global pairwise gene interaction network of the exome identified genes. Gene co-expression and
direct protein-protein interactions are shown as a combined network. Family 8-specific genes are shown in red
ovals, family 6 - in blue ovals. The names of the genes with significant enrichment or aggregated association

of rare variants in SLE cases are shown in red italic. Genes associated after removing linked variants (r2 < 0.1),
adjustment by 10 principal components and genomic control, and multiple test correction are highlighted with
a star. Note the high connectivity within the network of the SLE-associated genes. Blue-filled ovals correspond
to the genes with known immunity-related Mendelian disorders (OMIM data), green-filled - to the genes with
published genome-wide significant associations with autoimmune and autoinflammatory disorders, yellow-
filled - with other genome-wide significant immunity-related traits (Table S4).
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Figure 5. GIANT network for tissue-specific gene connectivity. The connections are shown for “all tissues”,
lymph node, blood and for separate blood cell populations and correspond to one or more common partner
genes between each of the studied genes. The connecting lines coloured according to the specificity.

contribution of microarray-RNAseq differences in co-expression analysis. However, most of the highly connected
genes coincide in the two independent approaches.

Of interest, the networks contain several interaction partners previously genetically implicated in SLE, auto-
immune disorders, and other immune-related disorders and traits (Table 3 and Table S6). Importantly, EMCI0
has been consistently associated to the autoimmune disease primary biliary cirrhosis®-%.

Functional Enrichment. To further understand the functional relevance of the identified genes, we performed an
enrichment analysis for categories using two independent tools: GeneTrail2*! and TOPPGENE*2. We interrogated
the list of genes with nsSN'V's identified in the multicase families first, and then we included the stable interaction
partners identified in gene networks. We found that functional categories related to DNA metabolism and repair
were significantly enriched in the exome gene list (XRCC6BP1, DCLREIC, P(gpg corrected) = 1.08 X 107%, according
to TOPPGENE), with the most significant results for V(D)] recombination (DCLREIC, pgpg.corrected) = 3-8 X 1076).
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Acute lymphoblastic leukemia NUP214*(MIM 613065, S) 2 (BCR * [MIM 613065, S]; IKZF1)
Acute myeloid leukemia NUP214*(MIM 601626, S)

Alloimrr}uni_zat%on response to red blood cell 1 (ARAPI)

transfusion in sickle cell anemia

Antibody status in Tripanosoma cruzi seropositivity 1(FARSA)

Asthma 3 (CRBN, IKZF3, SMAD3)

Chronic lymphocytic leukemia 1 (PRKD2)

Chronic myeloid leukemia 1 (BCR * [MIM 608232, S])
Clozapine-induced agranulocytosis 1 (FARSA)

Crohn’s disease NOTCH1 g ﬁﬁg@f’éﬁiﬂ?’éﬁ%?z’ LST1, SCAMP3,
Familial cold autoinflammatory syndrome 2 1 (NLRP12 *[MIM 611762, AD])
Hennekam lymphangiectasia-lymphedema syndrome 2 | FAT4* (MIM 616006, AR)

HIV-1 control 1 (HMGXB3)

IgA nephropathy 1 (ITGAX)

IgG glycosylation 4 (CHD9, CRBN, IKZF1, SUV420H1)
Immune response to smallpox vaccine 2 (BCR, CRBN)

Inflammatory bowel disease 4 (IKZF1, IKZF3, SMAD3, SYK)
Multiple sclerosis 1(SYK)

Omenn syndrome DCLREIC * (MIM 603554, AR)

Platelet count 1(BRD3)

Primary biliary cirrhosis NOTCHI, EMC10

Psoriasis 1(SNAII)

Psoriasis and Crohn’s disease combined NOTCH1

Response to tocilizumab in rheumatoid arthritis 1 (CCNG2)

Rheumatoid arthritis DCLREIC 4 (ARAPI1, ATM, Cllorf54, PFKL)
Selective immunoglobulin A deficiency 1 (SIRPBI)

Self-reported allergy 4 (IKZF1, IKZF3, RANGAPI, SMAD3)

Severe combined immunodeficiency with sensitivity to

P L DCLREIC * (MIM 602450, AR)
ionizing radiation

Sy ic lupus eryth t 4 (IKZF1, IKZF3, ITGAX, SNAI1)
Sy ic lupus erythemat and sy ic sclerosis 1 (IKZF3)

Type 1 diabetes DCLREIC 2 (PRKD2, SIRPBI)

Ulcerative colitis NOTCH1 1 (IKZF3)

Wegener’s granulomatosis 1 (RINGI1)

Table 3. Immune-related disorders and traits associated with genes identified through exome sequencing

and their partners. Genes associated with SLE (in bold), autoimmune diseases, and other immune-related
phenotypes according to published GWAS studies. Genes related to diseases according to OMIM Morbid are
indicated with a star (*). MIM phenotype numbers are specified between brackets. AD = autosomal dominant,
AR =autosomal recessive, S =somatic. See details and references in Table S6.

Several immunity-relevant biological processes were also among the top enriched functional categories, including
immune system development (NOTCHI, DCLREIC, CLC, Pgp-corrected) = 1.7 X 107°), and lymphocyte activation
(DCLREIC, CLC, P(epR.corrected) = 6.5 X 107°) (Fig. 6 and Table S7). Of note, when including mouse phenotype data
in the analysis, we observed highly significant enrichment of a phenotype of absent immature B cells (DCLREIC,
PEDR-corrected) = 5-3 X 1076). GO cellular component ontology analysis also revealed overrepresented functional
groups: genes associated with DNA repair complex and nuclear chromosome. Figure 6 shows a semantic group-
ing of the most significant GO categories overrepresented in the list of our SLE candidate genes and their interac-
tion partners and summarizes graphically the top enriched categories (shown also in Table S7).

Variants Putatively Linked to Gene Regulation. We observed that some of the exome variants were located in
gene regulatory regions and thereby could play a role in the regulation of their respective genes. The EMCI0
gene is located head-to head and shares a short bidirectional promoter with FAM71EI. According to RefSeq and
GENCODE v.19 annotation, the FAM71E1 5’-UTR overlaps with the EMCI0 transcription start site and the first
exon. These genes are in a genomic region with very strong LD. As mentioned before, unlike FAM71E1, whose
expression is restricted to testis, EMCI0 has a broad expression pattern. Using Haploreg* for 1000 Genomes
European data, we found that the FAM71E] variant (p.L7F) (rs185418641) and its proxies are located in an open
DNAse-hypersensitive chromatin site in various blood cell types. FAM7IE] is not expressed in those cell types,
in contrast to EMC10.
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Figure 6. GO categories enrichment for genes with SLE-associated nsSNVs in multicase families and their
interaction partners according to TOPPGENE. The overrepresented GO terms were summarized by REVIGO
to representative subsets of terms using a simple clustering algorithm that relies on semantic similarity
measures. The scatterplots are shown for Biological Processes and Cellular Component, the circles correspond
to the cluster representatives (i.e. terms remaining after the redundancy reduction) in a two dimensional space
derived by applying multidimensional scaling to a matrix of the GO terms’ semantic similarities with an allowed
similarity threshold =0.9. The colour code and the size of circles reflect p-value of the overrepresented term
(Table S7).

The SLC5A9 variant (p.G103R) (rs61746559) corresponds to a immune-relevant enhancer detected in two
independent functional genomics projects (FANTOMS5, based of CAGE sequencing and Roadmap Epigenomics,
based on histone marks). In contrast to the SLC5A9 gene, this enhancer was active in the blood, mostly in neutro-
phils, but not in gastrointestinal samples, similar to immune-relevant expression of candidate SLE genes.

We found significant eQTLs markers in SLC5A9 (9.76E-07, rs850762) and EMCI10 (rs921938, p-value 7.62E-
67) genes in BIOSQTL whole blood eQTL browser** (https://molgenis26.target.rug.nl/downloads/biosqtl-
browser/). However, the most significant eQTLs are not in LD with the SLE exome variants. We did not find
eQTLs neither for EMCI0 nor SLC5A9 in GTEX data (As to June 29, 2017).

Discussion

The pursuit of the genetic variants that explain why some individuals and their relatives have an increased risk
to develop SLE is a challenging task. In our study, we focused on the identification of rare coding variants with a
likely gene-disrupting effect segregating with SLE in two large pedigrees from Iceland for which we have clinical
and linkage analysis data. The structure of these families might suggest a Mendelian (monogenic) pattern of
inheritance, however, we found no single gene-disrupting variant segregating with the disease status in all family
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members. Instead, we observed a small set of rare and low frequency (MAF < 1%) coding non-synonymous var-
iants segregating with the disease status in each family.

We thus looked to interrogate whether there was supporting genetic evidence for any of the family genes
identified at the population level. We did so by using highly stringent rare-variant association analysis with data
from a recent GWAS, a strategy previously used by us that provided support for rare variants in the RNASEH2
genes®. More recently, genetic association of SLE with a common variant in RNASEH2C was identified and rep-
licated using this data in a European-Chinese meta-analysis, a variant that represented an eQTL*. Initial analysis
based on both aggregated association and enrichment analysis of rare and low frequency variants in the identified
loci supported the implication of the FAM71E1/EMCI0 locus and possibly DCLREIC. Further in silico analysis
suggests a role of the variant identified by exome sequencing on the regulation of EMC10 expression. EMCI0
(ER membrane complex subunit 10) codes for a protein involved in endoplasmic reticulum (ER)-associated deg-
radation and lipid transport, but any role in SLE is completely unknown. The association analysis performed
here might have been too stringent, but it allowed us to conclude with high confidence that the enrichment of
rare variants at the FAM71E1/EMCI10 locus is robust and not due to the effect of population stratification or LD.
Regarding the other genes not associated in the GWAS data, they still might play a role in these families but not
at the European population level, taking also into account possible differences between the populations studied.
However, we must keep in mind that to date there are no standard methods to detect association of rare variants
in complex diseases and this is a field under development with still with many challenges to address* .

Bioinformatics analysis indicated that a part of the identified variants may be predicted as having a deleterious
effect, and for some variants methods did not agree. For example, the variant in DCLREIC (DNA cross-link repair
1C) coding for the nuclear protein Artemis, was predicted as probably benign by standard algorithms but highly
deleterious using a one-to-one orthologue specific approach®. Further analysis showed though that the detected
His- > Asn change is located in a well conserved loop nearby the catalytic center and predicted DNA binding sites
(Fig. S7). In addition, analysis of two variants disregarded later due to their high allelic frequency (MAF > 1%)
nevertheless indicated them as worth further study: one in the neutrophil-specific enhancer in the intronic area of
SLC5A9 gene and the other in the natural killer-specific KIR2DS4 gene, one of the KIR family of genes involved in
the inhibition and activation of NK cell function that interact with class I MHC molecules®. This highlight some
of the limitations of this study. First, in the absence of functional evidence, results from variant prediction algo-
rithms can only be taken as suggestive evidence. Second, here we did not evaluate the role of common variants
nor have we analysed other types of genetic variation such as structural or copy number variants.

We carried out the analysis of gene networks based on gene co-expression and protein-protein interactions
and identified a functional overlap between genes, even for those segregating independently in each family. The
constructed gene networks revealed among the exome genes, partners previously implicated in autoimmune dis-
eases, including the SLE-associated genes IKZF1, IKZF3, and ITGAX?°%! (Tables 3 and S6), further supporting
arole for the genes identified in the disease pathogenic pathways. The importance of multiple factors and gene
interactions in the genetics of complex traits is well known, and even minor fluctuations of genes expressed in
the disease-relevant cells could probably contribute to the disease susceptibility, as discussed in the recent “omni-
genic” hypothesis®. We demonstrate that even for SLE in multicase families with apparent Mendelian inheritance
the underlying mechanism is complex and involves several functionally interacting genes. In contrast to family
studies of Mendelian diseases, we cannot easily address issues such as incomplete penetrance nor the possibility
of phenocopies, as to do so we would need to take into account all the possible genetic and non-genetic factors
contributing to complex landscape of this disease.

Functional enrichment analysis of the identified genes and their interaction partners demonstrated signifi-
cant overrepresentation of immunity related terms within GO categories such as DNA repair and DNA metab-
olism including V(D)] recombination, a critical process in the rearrangement of the T cell and B cell receptors,
double strand break (DSB) repair, cellular response to DNA damage stimuli, and chromosome organization.
Also, we detected a significant enrichment of genes involved in the NOTCH1 pathway (Fig. 6 and Table S7).
The DSB repair and V(D)] recombination categories were represented by DCLREIC and XRCC6BP1 (XRCC6
binding protein 1) genes and their interacting partners. Of note, DCLREIC recessive mutations cause Omenn
syndrome (MIM 603554) (OS), a severe combined immunodeficiency (SCID) associated with increased cellular
radio sensitivity due to a defect in V(D)] recombination that leads to early arrest of both B- and T-cell matura-
tion®. OS displays autoimmune-like manifestations of the skin and gastrointestinal tract. SNPs in DCLREIC
have shown suggestive evidence of association with RA and T1D>**. A recent functional study demonstrated
that in Artemis-deficient cells type I and type III IFN signatures are elevated due to the chronic accumulation
of DNA%®,

In addition, a widely expressed heterochromatin gene MPHOSPHS8 (M-phase protein 8), whose protein binds
H3K9me and promotes DNA methylation®, was connected to DCLREIC in all our networks, both directly and
via partners. Another gene participating in chromatin regulation and highly connected to other genes in our
networks was CHD3 (Chromodomain Helicase DNA Binding Protein 3). Autoantibodies against this protein
are found in a subset of patients with dermatomyositis, also an autoimmune disease®®*. Similarly, and possibly
related through XRCC6BP1, the XRCC6 gene codes for the Ku70 helicase and V(D)] recombination repair pro-
tein, a well established lupus autoantigen®.

Our results contribute to the growing evidence linking SLE to DNA damage and repair mechanisms (reviewed in®').
Increased DNA damage and radiosensitivity have been consistently reported in cells from SLE patients®"®2,
Abnormalities in V(D)J recombination in individuals with combined immunodeficiency carrying hypomor-
phic RAGI pathogenic variants show manifestations of autoimmunity®. Importantly, abnormalities in enzymes
involved in DNA metabolism have been implicated in the type I IFN response and the development of auto-
immunity®. For example, several other genes involved in DNA repair pathways have been previously found
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associated with SLE: TREX1 (3’ repair exonuclease 1)°>% and X-Ray Repair Complementing Defective Repair
genes including XRCC1, XRCC3, and XRCC457<8,

Finally, we detected a significant enrichment of genes involved in the NOTCHI1 pathway. We did not detect
association of rare variants in the NOTCHI gene itself but previous GWAS have implicated polymorphisms in this
gene with several autoinflammatory diseases (Tables 3 and S5)%~7!. It is worth to note also that somatic recurrent
mutations in NOTCH1I and NUP214 are found in patients with hematologic malignancies for which SLE patients
have an increased risk compared to the general population”7%,

In summary, we identified novel SLE susceptibility genes using exome sequencing of distantly related patients
from extended pedigrees from Iceland. Taking into consideration the genetic co-segregation of variants, similar
gene expression patterns, results of nsSNV protein effect prediction and gene networks modeling, we propose
joint multigene mechanisms of SLE predisposition in these families. These genes highlight a role for DNA metab-
olism and repair in SLE pathogenesis.

Subjects and Methods

Patients and Families. We sequenced the exome of the most distantly related patients from two previously
described SLE multi-case families from Iceland for which genetic linkage data was available*' (Fig. S1). Both fami-
lies have been extensively studied and have multiple cases of SLE as well as a high frequency of other autoimmune
diseases”. All patients fulfilled the 1997 ACR classification for SLE”®. The National Bioethics Committee (NBC) of
Iceland approved the study (Approval: 02022-V4-31) and all participants gave informed consent. All experiments
were performed in accordance with relevant guidelines and regulations. The details of each exome-sequenced
individual and clinical data are provided in Table S1. Two SLE patients were selected from “Family 6” and three
from “Family 8” (n=5). The linkage evidence involved regions with LOD scores of 1.5-4.5. Family 8 contributed
the most to the genetic linkage signals observed in the Icelandic linkage study?! including the HLA. Family 6 did
not show linkage to the HLA region®,, thus suggesting that the genetic contribution in both families was different.

Exome Sequencing. Three micrograms of genomic DNA purified from blood of the five selected patients
were enriched for coding regions using the Agilent SureSelect® Human All Exome Target Enrichment System
(38MB and 51MB kit, protocol v1.7). Deep sequencing was performed at Uppsala University on an ABI SOLiD™
5500x1 system (Life Technologies). Colour space read correction and alignment to the Human reference sequence
library (hg18) were performed at the Centro Pfizer-Universidad de Granada-Junta de Andalucia de Genémica
e Investigacion Oncoldgica (GENYO) with SOLID™ Bioscope Software (v.2.1, Life Technologies), obtaining a
mean read depth of 33.3X across targeted coding regions (see Supplemental data and Table S2).

Variant Calling, Annotation and Filtering.  We selected only reliably mapped reads with a mapping qual-
ity (MAPQ) value over 20. PCR duplicates were removed with Picard (v1.35). Single nucleotide variants (SN'V's)
and indels were called by using SAMTOOLS (v0.1.10) and then exported to pileup files. Indels were called but not
included in the present study because the difficulties this posed with the very short reads obtained. Information
about the population frequency of Indels in public databases was also very limited at the time we selected variants
for validation. SNVs in pileup file format were annotated and filtered at the Center for Human Genome Variation,
Duke University, by using the Sequence Variant Analyzer (SVA) software developed by Dongliang Ge””. Whole
genome sequence (WGS) data from 642 Caucasian unrelated individuals without any immune-related phenotype
served as internal control genomes. Annotated variants in cases were annotated and filtered using the same qual-
ity control criteria and methods as the controls. Only SNVs supported by a minimum of 6 reads were included.
Variants situated within UCSC Genome browser repeat masker regions were excluded. The alternative allele
was compared to the chimpanzee reference allele to ensure none of the alternative alleles represent the expected
ancestral allele. Tables S8 and S9 contain the summary statistics for all the shared variants filtered by SVA. The
average read depth of the filtered variants in the patients was 51.44X (range 12X-180.79X).

We then selected variants by function and MAF as follows: Only protein-coding variants either introducing
or removing a stop codon (stop gained and stop lost, respectively), altering a splice acceptor or splice_donor_site
(essential splice site), or introducing an amino acid change (non-synonymous coding) were included. SVA uses stand-
ard Sequence Ontology (SO) definitions (http://www.ensembl.org/info/genome/variation/predicted_data.html).
We considered SNV shared between the patients of each family, with a MAF <0.5% in the control genomes.
We also considered SN'V's that were absent in the controls (MAF = 0), that is, those carried only by the patients
(case-only variants), as well as SNV carried in homozygous state exclusively by the patients and present in the
control population only in heterozygous state with a MAF < 5% (case-only-homozygous variants). We annotated
variants present within the Icelandic SLE linkage regions’! (+/—20MB) by using BEDTools. Finally, after var-
iant validation, we also compared the allele frequencies obtained with the allele frequencies observed by the
NHLBI GO Exome Sequencing Project (ESP6500) (European American population), The Exome Aggregation
Consortium (European-non Finnish population) and the 1000 genomes project (Phase 3 European population)
by using ANNOVAR v2012 Oct2378. This strict filtering strategy favours a reduction in false positives and has
been widely and successfully used for the identification of disease variants in Mendelian disorders”#°. For further
genetic analysis, the genes where the selected variants are located were referred to as candidate genes.

Segregation Analysis. The identified SNVs were genotyped on a MassARRAY System (SEQUENOM) in:
affected as well as healthy members from the multi-case families for whom DNA was available (Fig. 1) in 83
matched Nordic controls (n =36 Icelandic and n =46 Swedish controls) to determine if any of the variants were
polymorphisms (MAF > 5%) specific of the North European population, and in the exome-sequenced patients
as genotype controls (n=>5). We selected only individuals with a call rate per sample >80%. In total, six patients
with SLE, one with rheumatoid arthritis (RA), one with multiple sclerosis (MS), and 1 healthy relative were

SCIENTIFICREPORTS | (2018) 8:8775 | DOI:10.1038/s41598-018-26274-y 12


http://www.ensembl.org/info/genome/variation/predicted_data.html

www.nature.com/scientificreports/

included from family 6 (n =9). Five patients with SLE, 2 individuals fulfilling 3 of 4 SLE criteria, and 4 healthy rel-
atives were included from family 8 (n =11). We selected only variants with a genotyping call rate >90% in all gen-
otyped individuals and for which the alternative allele identified by WES was validated in the exome-sequenced
patients. As we needed complete genotypes for segregation analysis, missing genotypes for the filtered variants
were completed with Sanger sequencing.

Genome-Wide Association Analysis. SNP Data. We used previously genotyped GWAS data from
5,478 individuals of European ancestry including 4,254 SLE patients and 1,224 controls genotyped as described
in* using the Illumina® HumanOmnil_Quad_v1-0_B chip and 3,125 out-of-study controls of European ori-
gin obtained from three studies available through dbGaP with informed consent, namely the DCEG Dataset
(phs000396.v1.p1; 1175 individuals), the GENIE UK-ROI Diabetic Nephropathy GWAS (phs000389.v1.p1; 903
individuals) and the High Density SNP Association Analysis of Melanoma (phs000187.v1.p1; 1047 individu-
als). The final data set used for aggregate/association analysis consisted of 4,212 cases and 4,065 controls (see
Supplemental data).

Imputation. For each disease candidate gene, a region of interest was extended in 500,000 additional base pairs
upstream and downstream, respectively, as it is known that large buffers may improve accuracy for low-frequency
variants during imputation®!. Markers within each extended region were extracted from the GWAS data for
imputation with IMPUTE2?? using the 1000 Genomes Project as reference panel. Specifically, we used 1000
Genomes Phase 3 (b37) as these haplotypes have lower genotype discordance and improved imputation perfor-
mance into downstream GWAS samples, especially at low frequency variants®. Prior to imputation, each GWAS
gene extended region was phased with SHAPEIT®! using the EUR subpopulations as reference. A restrictive
QC-filter was applied on the imputed genotypes (SNP genotyping rate >99%, sample genotyping rate >95%)
without restriction of allele frequencies, in order to include both rare and low frequency variants. To ensure a
highly reliable imputation, a conservative IMPUTE info_value threshold of >0.7 and a concordance value thresh-
old of >95% for each marker were applied. We have further addressed potential bias introduced by imputation by
using different association methods and keeping a very stringent significance threshold in our analyses.

Gene case-control association analysis of rare variation. ~ Since a minor allele frequency (MAF) of 1% or more
is the conventional definition of polymorphism®, thus we considered a MAF < 1% as ‘rare variation. We tested
whether any of the genes identified by exome sequencing had statistical evidence of association with SLE in the
general European population due to the combined effect of all rare variation within each gene (MAF < 1%). For
this, and because there was no availability of DNA from large enough sets of patients to be sequenced, we took
an alternative approach. We used a large and independent imputed genome-wide association scan from a set of
4,254 SLE patients and 4,349 controls with European ancestry?. Each gene was analyzed using two procedures:
the sequence kernel association (SKAT) test®? and an aggregated case-control enrichment test where adjusting a
logistic regression model with a ‘transformed’ genetic variable equals to the sum of minor frequency alleles, below
the MAF threshold, for the j markers in the gene, in each individual.

Correcting for stratification in rare variant association analysis. 'To be as stringent as possible, the 10 first prin-
cipal components (PC) accounting for all the significant variance due to population stratification (Figs S2 and
$3) and genomic control (GC) were used to correct for stratification in both procedures. The genomic inflation
factor (\gc) was equal to 1.11 and 1.24 for ‘enrichment case-control’ and SKAT 10 PC-corrected tests respectively
(Fig. S8). These A values were used as an additional correction of the resulting inflation (GC-correction=S$
tatistic10PCc_corrected/N\gc). Without 10 PC-correction the \gc was equal to 1.44 and 2.97 for ‘enrichment
case-control’ and for SKAT respectively (Fig. S8). Thus, the 10 PC-correction reduced the inflation by 33% in the
enrichment test, and by 174% in the SKAT test.

Correcting for multiple testing in gene case-control association analysis of rare variation. Regarding the correc-
tion for multiple testing in association of rare variants, a genomic association threshold of 107° is commonly
accepted (equivalent to Bonferroni correction for 19,000 to 20,000 protein encoding genes in the genome). It
is also accepted that Bonferroni, although mathematically right, would be very penalizing for biological data,
therefore, we opted for techniques based on permutation procedures. Our multi-test correction procedure brings
together all the markers of the analysed genes into a single table; for each gene a number of markers equal to that
of the analysed gene were randomly extracted from the table and its association test calculated; by repeating the
procedure for N times, an empirical corrected P value (Pmult) was calculated for the analysed gene. However,
in association tests that simultaneously include several markers, co-linearity due to LD between markers could
potentially inflate the significance of the P value. Also, elimination of the LD by the random extraction of markers
in the permutation procedure could affect the computation of empirical corrected P values. A simple correction
to this is to run the association and the multiple test correction tests only with unlinked markers by applying a
very stringent LD threshold of r* < 0.1. These corrected P values would depend on the observed P values used
as thresholds. We have verified by linear correlation (P corrected multi-testing ~ P observed) that R* was equal
to 0.99 for the enrichment tests and 0.97 for the SKAT tests. Thus the LD would not affect the correction, as
expected, given the applied r* threshold.

It could be objected that applying such strict filers could mask true association signals, but given the issues
related to the association of rare variants®®, we reasoned that under all these stringent criteria any significant asso-
ciation signal would strongly support a real or ‘true positive’ association effect.
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Functional Bioinformatic Analysis. Annotation of SNV Effects on Protein Function. ENSEMBL VEP
(Variant Effect Predictor)* was used for the annotation of the potential deleterious effects of the exome var-
iants based on the following algorithms: SIFT, PolyPhen2, FATHMM, LRT, MetaLR, MutationAccessor,
MutationTester, and Provean. None of the applied methods was adapted for distinguishing effects in the paralo-
gous proteins. Further, functional prediction of SNVs on protein-coding ENSEMBL transcripts was performed
using the SNPDryad method?® (http://snps.ccbr.utoronto.ca:8080/SNPdryad/), for which only one-to-one orthol-
ogous proteins were used for scoring. An SNPDryad score below 0.5 was assigned as possibly neutral, from 0.5 to
0.7 as possibly deleterious, and more than 0.7 as deleterious. To deal with multiple annotations, gene transcripts
were first scanned for isoform-specific expression level in the GTEx Portal® (http://gtexportal.org). Only the
main protein-coding isoforms were selected for the annotation of putative gene-damaging effects. The analysis
was based on the Human Genome annotation GRC38_p3.

Annotation of Nearby Variants Associated in GWAS. ~ All known genetic associations were parsed using GRASP
GWAS database®” (http://grasp.nhlbi.nih.gov) and NHGRI-EBI GWAS Catalogue® (https://www.ebi.ac.uk/gwas/
home). For each identified exome variant, 100 kb and 500 kb-flanking genomic regions were scanned for the pres-
ence of published immune-relevant GWAS markers (p-value = <1077). Genes associated with known monogenic
disorders were searched using OMIM database® (http://www.omim.org/). The relevance of the phenotype to
immunity was parsed based on the Associated Human Phenotype HPO classes using the HPO Browser™ (http://
human-phenotype-ontology.github.io/tools.html).

Tissue-specific Expression and Gene Regulation Analyses. The differential expression of genes including
tissue-specific and from eQTL profiling was analysed using aggregated public microarray and RNAseq data avail-
able at GTEx®® and MuTHER®!. The TSS activity and gene enhancers were studied based on the FANTOM5
project CAGE data?%, which contains about 900 tissue and cell specimens (http://fantom.gsc.riken.jp/5/). The
regulatory enhancer elements and their tissue-specific activity were recovered from Roadmap Epigenomics data™
(http://www.roadmapepigenomics.org/). The differential expression data were extracted from the EMBL-EBI
Expression Atlas®, (https://www.ebi.ac.uk/gxa/about.html) Only relevant differential expression results, involv-
ing immunity, inflammation, immune- or inflammatory-stimuli and cell activation, infections, cell exposure to
bacteria or bacterial components. The adjusted p-value threshold was selected as <0.05 and the absolute value of
log2 fold-change as >=2.5.

Gene and Protein Network Analyses. Gene-gene pairwise networks were constructed using two main data
sources: gene co-expression data and protein-protein interactions. Gene pairs detected in two or more of the
co-expression data sets were selected and included in the network analysis. Protein pairs detected in two or
more sources were also included in the network analysis (See Supplemental data). Combined co-expression and
protein-protein pairwise interactions were searched for direct pairs between query genes or indirect, through
gene/protein partner (only one node between query genes allowed). Family-specific sub-networks were also con-
structed. Tissue-specific gene relations were extracted from the GIANT database®” (http://giant.princeton.edu/;
See Supplemental data).

Gene Functional Enrichment Analysis. A functional enrichment analysis was performed using TOPPGENE
Suite*? (https://toppgene.cchmc.org) and GeneTrail2*! (http://genetrail2.bioinf.uni-sb.de/) Genomics tool. The
significantly enriched GO categories were visualized using REVIGO®® (http://revigo.irb.hr/).

Data availability. Inadherence with the confidentiality requirements by The National Bioethics Committee
(NBC) of Iceland, individual sequences or genotype data cannot be publicly shared. All summary data generated
or analyzed during this study are included in the article and its Supplementary Information files.
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