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We provide two programmatic frameworks for integrating philosophical research
on understanding with complementary work in computer science, psychology, and
neuroscience. First, philosophical theories of understanding have consequences about
how agents should reason if they are to understand that can then be evaluated
empirically by their concordance with findings in scientific studies of reasoning.
Second, these studies use a multitude of explanations, and a philosophical theory of
understanding is well suited to integrating these explanations in illuminating ways.
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INTRODUCTION

Historically, before a discipline is recognized as a science, it is a branch of philosophy. Physicists
and chemists began their careers as “natural philosophers” during the Scientific Revolution. Biology
and psychology underwent similar transformations throughout the nineteenth and early twentieth
centuries. So, one might think philosophical discussions of understanding will be superseded by a
“science of understanding.”

While we are no great forecasters of the future, we will suggest that philosophical accounts
of understanding can make two important scientific contributions. First, they provide a useful
repository of hypotheses that can be operationalized and tested by scientists. Second, philosophical
accounts of understanding can provide templates for unifying a variety of scientific explanations.

We proceed as follows. We first present these two frameworks for integrating philosophical
ideas about understanding with scientific research. Then we discuss the first of these frameworks,
in which philosophical theories of understanding propose hypotheses that are tested and refined
by the cognitive sciences. Finally, we discuss the second framework, in which considerations
of understanding provide criteria for integrating different scientific explanations. Both of our
proposals are intended to be programmatic. We hope that many of the relevant details will be
developed in future work.

TWO FRAMEWORKS FOR INTEGRATION

As several reviews attest (Baumberger, 2014; Baumberger et al., 2016; Gordon, 2017; Grimm,
2021; Hannon, 2021), understanding has become a lively topic of philosophical research over
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the past two decades. While some work has been done to integrate
these ideas with relevant findings from computer science,
psychology, and neuroscience, these interdisciplinary pursuits
are relatively nascent. While other frameworks are possible and
should be developed, we propose two ways of effecting a more
thoroughgoing synthesis between philosophy and these sciences
(Figure 1). In the first framework for integrating philosophy with
the cognitive sciences—what we call naturalized epistemology of
understanding (Figure 1A)—the philosophy of understanding
provides conjectures about reasoning that are tested and
explained by the relevant sciences. In the second integrative
framework—understanding-based integration (Figure 1B)—the
philosophy of understanding provides broad methodological
guidelines about how different kinds of scientific explanation
complement each other. The two proposals are independent of
each other: those unpersuaded by one may still pursue the other.
We discuss each in turn.

NATURALIZED EPISTEMOLOGY OF
UNDERSTANDING

In epistemology, naturalism is the position that philosophical
analyses of knowledge, justification, and kindred concepts
should be intimately connected with empirical science. Different
naturalists specify this connection in different ways; see Rysiew
(2021) for a review. Given that philosophical interest in
understanding has only recently achieved critical mass, the
more specific research program of a naturalized epistemology
of understanding is nascent. We propose to organize much
existing work according to the framework in Figure 1A. More
precisely, philosophical theories of understanding propose how
reasoning operates in understanding (see section “Philosophical
Theories Propose Reasoning in Understanding (I)”), and these
proposals are constrained by explanations and empirical tests
found in sciences that study this kind of reasoning (see section
“Scientific Studies of Reasoning’s Contributions to the Philosophy
of Understanding (II)”).

Philosophical Theories Propose
Reasoning in Understanding (I)
Two kinds of understanding have garnered significant
philosophical attention: explanatory understanding (Grimm,
2010, 2014; Khalifa, 2012, 2013a,b, 2017; Greco, 2013; Strevens,
2013; Hills, 2015; Kuorikoski and Ylikoski, 2015; Potochnik,
2017) and objectual understanding (Kvanvig, 2003; Elgin, 2004,
2017; Carter and Gordon, 2014; Kelp, 2015; Baumberger and
Brun, 2017; Baumberger, 2019; Dellsén, 2020; Wilkenfeld,
2021). Explanatory understanding involves understanding
why or how something is the case. (For terminological
convenience, subsequent references to “understanding-why”
are elliptical for “understanding-why or –how.”) Examples
include understanding why Caesar crossed the Rubicon and
understanding how babies are made. Objectual understanding
is most easily recognized by its grammar: it is the word
“understanding” followed immediately by a noun phrase,
e.g., understanding Roman history or understanding human

reproduction. Depending on the author, the objects of objectual
understanding are taken to be subject matters, phenomena, and
for some authors (e.g., Wilkenfeld, 2013), physical objects and
human behaviors. For instance, it is natural to think of Roman
history as a subject matter but somewhat counterintuitive to
think of it as a phenomenon. It is more natural to think of, e.g.,
the unemployment rate in February 2021 as a phenomenon than
as a subject matter. Human reproduction, by contrast, can be
comfortably glossed as either a subject matter or a phenomenon.

To clarify what they mean by explanatory and objectual
understanding, philosophers have disambiguated many other
senses of the English word “understanding.” Frequently, these
senses are briefly mentioned to avoid confusion but are not
discussed at length. They are listed in Table 1. Scientists may
find these distinctions useful when characterizing the kind of
understanding they are studying. That said, we will focus on
explanatory understanding hereafter. Thus, unless otherwise
noted, all subsequent uses of “understanding” refer exclusively to
explanatory understanding.

Virtually all philosophers agree that one can possess an
accurate explanation without understanding it, e.g., through rote
memorization. In cases such as this, philosophers widely agree
that the lack of understanding is due to the absence of significant
inferential or reasoning abilities. However, philosophers disagree
about which inferences characterize understanding. Three broad
kinds of reasoning have emerged. First, some focus on
the reasoning required to construct or consider explanatory
models (Newman, 2012, 2013, 2015; De Regt, 2017). Second,
others focus on the reasoning required to evaluate those
explanatory models (Khalifa, 2017). On both these views,
explanatory models serve as the conclusions of the relevant
inferences. However, the third and most prominent kind of
reasoning discussed takes explanatory information as premises
of the relevant reasoning—paradigmatically the inferences about
how counterfactual changes in the explanatory variable or
explanans would result in changes to the dependent variable
or explanandum (Hitchcock and Woodward, 2003; Woodward,
2003; Grimm, 2010, 2014; Bokulich, 2011; Wilkenfeld, 2013;
Hills, 2015; Kuorikoski and Ylikoski, 2015; Rice, 2015; Le
Bihan, 2016; Potochnik, 2017; Verreault-Julien, 2017). This
is frequently referred to as the ability to answer “what-if-
things-had-been-different questions.” Many of these authors
discuss all three of these kinds of reasoning—which we
call explanatory consideration, explanatory evaluation, and
counterfactual reasoning—often without explicitly distinguishing
them in the ways we have here.

Scientific Studies of Reasoning’s
Contributions to the Philosophy of
Understanding (II)
A naturalized epistemology of understanding begins with
the recognition that philosophers do not have a monopoly
on studying these kinds of reasoning. Computer scientists,
psychologists, and neuroscientists take explanatory and
counterfactual reasoning to be important topics of research.
Undoubtedly, each discipline has important insights and
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FIGURE 1 | Two ways to integrate philosophical work on understanding with relevant sciences. (A) Naturalized epistemology of understanding. (B)
Understanding-based integration.

contributions. Moreover, these scientific disciplines may raise
interesting questions about understanding that are not on the
current philosophical agenda.

Cognitive psychological investigations into the nature of
explanation and understanding frequently focus on the role of
those states in our cognitive lives. To the extent that one can
derive a general lesson from this literature, it is probably that both
having and seeking explanations aid other crucial cognitive tasks
such as prediction, control, and categorization. Developmental
psychologists argue that having proper explanations promotes

TABLE 1 | Kinds of understanding that philosophers infrequently discuss
(Khalifa, 2017, p. 2).

Kind of
understanding

Typical complement Examples

Propositional That + declarative
sentence

I understand that you might not
enjoy reading this book.

Broad linguistic Name of a language Schatzi understands German.

Narrow linguistic What + a linguistic
expression + means

Schatzi understands what “Ich
bin ein Berliner” means.

Procedural How + infinitive Miles understands how to play
trumpet.

Non-explanatory
interrogative

Embedded question that
does not seek an
explanation as its answer
(most who, where, what,
and when questions)

I understand who my friends are.
I understand where my friends
will be going. I understand what
my friends are doing. I
understand when my friends
need a good laugh.

survival, and that at least the sense of understanding evolved to
give us an immediate reward for gaining such abilities (Gopnik,
1998). In cognitive psychology, Koslowski et al. (2008) have
argued that having an explanation better enables thinkers to
incorporate evidence into a causal framework. Lombrozo and
collaborators have done extensive empirical work investigating
the epistemic advantages and occasional disadvantages of simply
being prompted to explain new data. They find that under
most normal circumstances trying to seek explanations enables
finding richer and more useful patterns (Williams and Lombrozo,
2010). This work also has the interesting implication that
the value of explanation and understanding depends on the
extent to which there are genuine patterns in the world,
with fully patterned worlds granting the most advantages from
prompts to explain (ibid.), and more exception-laden worlds
providing differential benefits (Kon and Lombrozo, 2019). It
has also been demonstrated that attempts to explain can
(perhaps counterintuitively) systematically mislead. For example,
attempts to explain can lead to miscategorization and inaccurate
predictions when there are no real patterns in the data (Williams
et al., 2013). Similarly, laypeople can be misguided by the
appearance of irrelevant neuroscientific or otherwise reductive
explanations (Weisberg et al., 2008; Hopkins et al., 2016). In
more theoretical work, Lombrozo (2006) and Lombrozo and
Wilkenfeld (2019) consider how different kinds of explanation
can lead to understanding that is either more or less tied to
specific causal pathways connecting explananda and explanantia
vs. understanding focused on how different pathways can lead to
the same end result. Thagard (2012) has argued that explanatory
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reasoning is key to science’s goals both intrinsically and as they
contribute to truth and education.

One recent thread in the cognitive science and philosophy
of understanding combines insights from information theory
and computer science to characterize understanding in terms
of data compression. Data compression (Grünwald, 2004)
involves the ability to produce large amounts of information
from relatively shorter hypotheses and explicitly encoded
data sets—in computer science and model-centric physics,
there is a burgeoning sense that understanding is tied to
pattern recognition and data compression. Petersen (2022)1

helpfully documents an array of such instances. Li and Vitányi
(2008) use compression and explanation almost interchangeably,
and at some points even suggest a possible equivalence
between compression and the scientific endeavor generally,
as in Davies (1990). Tegmark (2014) likewise connects the
notion of compression with the explanatory goals of science.
Wilkenfeld (2019) translates the importance of compression
to good scientific (and non-scientific) understanding into
the idiom of contemporary philosophy of science. While
part of the inspiration characterizing understanding in terms
of compression comes from the traditional “unificationist”
philosophical position that understanding involves having to
know fewer brute facts (Friedman, 1974) or argument patterns
(Kitcher, 1989), the introduction of compression helps evade
some objections to unificationist views, such as the fact that such
views require explanations to be arguments (Woodward, 2003)
and the fact that they allow for understanding via unification
that no actual human agent can readily use (Humphreys, 1993).
[Compression as a marker for intelligence has come under
recent criticism (e.g., Chollet, 2019) as only accounting for
past data and not future uncertainties; we believe Wilkenfeld’s
(2019) account evades this criticism by defining the relevant
compression partially in terms of usefulness, but defending that
claim is beyond the scope of this paper.]

There has also been more direct work on leveraging insights
from computer science in order to try to build explanatory
schemas and even to utilize those tools to reach conclusions about
true explanations. Schank (1986) built a model of computerized
explanations in terms of scripts and designed programs to look
for the best explanations. Similarly, Thagard (1989, 1992, 2012)—
who had previously (Thagard, 1978) done seminal philosophical
work on good-making features of explanation and how they
should guide theory choice—attempted to automate how
computers could use considerations of explanatory coherence to
make inferences about what actually occurred.

One underexplored area in the philosophy of understanding
and computer science is the extent to which neural nets and
deep learning machines can be taken to understand anything.
While Turing (1950) famously argued that a machine that could
behave sufficiently close to a person could thereby think (and
thus, perhaps, understand), many argue that learning algorithms
are concerned with prediction as opposed to understanding. The
most extreme version of this position is Searle’s (1980) claim
that computers by their nature cannot achieve understanding

1Petersen, S. (2022). Explanation as Compression.

because it requires semantic capacities when manipulating
symbols (i.e., an ability to interpret symbols and operations,
and to make further inferences based on those interpretations).
Computers at best have merely syntactic capabilities (they
can manipulate symbols using sets of instructions, without
understanding the meaning of either symbols or operation upon
them). However, at the point where deep learning machines
have hidden representations (Korb, 2004), can generate new
(seemingly theoretical) variables (ibid.), and can be trained to
do virtually any task to which computer scientists have set their
collective minds (including what looks from the outside like
abstract reasoning in IBM’s Watson and their Project Debater),
it raises vital philosophical questions regarding on what basis we
can continue to deny deep learning machines the appellation of
“understander.”

Elsewhere in cognitive science, early psychological studies
of reasoning throughout the 1960s and 1970s focused on
deductive reasoning and hypothesis testing (Osman, 2014).
A major influence on this trajectory was Piaget’s (1952) theory of
development, according to which children develop the capacity
for hypothetico-deductive reasoning around age 12. The kinds
of reasoning studied by psychologists then expanded beyond
their logical roots to include more humanistic categories such
as moral reasoning (Kohlberg, 1958). The psychology literature
offers a rich body of evidence demonstrating how people reason
under various conditions. For example, there is ample evidence
that performance on reasoning tasks is sensitive to the semantic
content of the problem being solved. One interpretation of this
phenomenon is that in some contexts, people do not reason
by applying content-free inference rules (Cheng and Holyoak,
1985; Cheng et al., 1986; Holyoak and Cheng, 1995). This
empirical possibility is of particular interest for philosophers.
In virtue of their (sometimes extensive) training in formal
logic, philosophers’ reasoning practices may be atypical of the
broader population. This in turn may bias their intuitions about
how “people” or “we” reason in various situations, including
when understanding. Another issue raised by sensitivity to
semantic content is how reasoning shifts depending on the
object of understanding. Although the distinctions explicated
by philosophers (e.g., explanatory vs. objectual understanding)
are clear enough, it is an open empirical question whether
and how reasoning differs within these categories depending on
the particular object and other contextual factors. As a final
example, a further insight from psychology is that people may
have multiple modes of reasoning that can be applied to the
very same problem. Since Wason and Evans (1974) suggested
the idea, dual-process theories have dominated the psychology of
reasoning.2 Although both terminology and precise hypotheses
vary significantly among dual-process theories (Evans, 2011,
2012), the basic idea is that one system of reasoning is fast
and intuitive, relying on prior knowledge, while another is
slow and more cognitively demanding. Supposing two or more
systems of reasoning can be deployed in the same situation, one
important consideration is how they figure in theories about

2Though see Osman (2004), Keren and Schul (2009), and Stephens et al. (2018) for
examples of criticisms.
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the reasoning involved in understanding. To the extent that
philosophical accounts are not merely normative but also aim
at describing how people actually reason when understanding,
psychological studies provide valuable empirical constraints and
theoretical considerations.

With the aid of techniques for imaging brains while subjects
perform cognitive tasks, neuroscientists have also made great
progress in recent decades on identifying regions of the brain
involved in reasoning. While that is certainly a worthwhile
goal, it may seem tangential to determining the kind of
reasoning that characterizes understanding. Here, we suggest
two ways in which findings from neuroscience may help
with this endeavor. First, neuroscientific evidence can help
resolve debates where behavioral data underdetermine which
psychological theory is most plausible. More precisely, in cases
where competing psychological models of reasoning make the
same behavioral predictions, they can be further distinguished
by the kinds of neural networks that would implement the
processes they hypothesize (Operskalski and Barbey, 2017). For
example, Goel et al. (2000) designed a functional magnetic
resonance imaging (fMRI) experiment to test the predictions
of dual mechanism theory vs. mental model theory. According
to the former, people have distinct mechanisms for form- and
content-based reasoning, and the latter should recruit language
processing structures in the left hemisphere. Mental model
theory, by contrast, claims that reasoning essentially involves
iconic representations, i.e., non-linguistic representations whose
structure corresponds to the structure of whatever they represent
(Johnson-Laird, 2010). In early formulations of the theory, it
was assumed that different kinds of reasoning problems depend
on the same visuo-spatial mechanisms in the right hemisphere
(Johnson-Laird, 1995). Goel et al. (2000) tested the theories
against one another by giving subjects logically equivalent
syllogisms with and without semantic content. As expected,
behavioral performance was similar in both conditions. Neither
theory predicts significant behavioral differences. Consistent
with both theories, the content-free syllogisms engaged spatial
processing regions in the right hemisphere. However, syllogisms
with semantic content activated a left hemisphere ventral
network that includes language processing structures like Broca’s
area. Unsurprisingly, proponents of mental models have disputed
the interpretation of the data (Kroger et al., 2008). We do
not take a stance on the issue here. We simply raise the
case because it illustrates how neuroscience can contribute
to debates between theories of reasoning pitched at the
psychological level.

Neuroscientific evidence can also guide the revision of
psychological models of understanding and reasoning. The
broader point is about cognitive ontology. In the sense we mean
here, a cognitive ontology is a set of standardized terms which
refer to the entities postulated by a cognitive theory (Janssen
et al., 2017). The point of developing a cognitive ontology
is to represent the structure of psychological processes and
facilitate communication through a shared taxonomy. One role
for neuroscience is to inform the construction of cognitive
ontologies. Price and Friston (2005), for instance, defend a
strong bottom-up approach. In their view, components in a

cognitive model (e.g., a model of counterfactual reasoning)
should be included or eliminated depending on our knowledge
of functional neuroanatomy. Others agree that neuroscience has
a crucial role to play in theorizing about cognitive architecture
but reject that it has any special authority in this undertaking
(Poldrack and Yarkoni, 2016; Sullivan, 2017). We take no
position here on how exactly neuroscience should influence the
construction of cognitive models and ontologies. Instead, we
highlight this important interdisciplinary issue to motivate the
potential value of neuroscience for models of understanding
and the reasoning involved in it, including those developed
by philosophers.

PHILOSOPHICAL THEORIES OF
UNDERSTANDING INTEGRATE
SCIENTIFIC EXPLANATIONS (III)

Thus, there appear to be ample resources for a naturalized
epistemology of understanding, in which explanations and
empirical tests from the cognitive sciences empirically constrain
philosophical proposals about the kinds of reasoning involved in
understanding. However, we offer a second and distinct proposal
for how the philosophy of understanding can inform scientific
practice: as an account of how different explanations can be
integrated (Figure 1B).

Such integration is needed when different explanations of
a single phenomenon use markedly different vocabularies and
concepts. This diversity of explanations is prevalent in several
sciences—including the cognitive sciences. To that end, we
first present different kinds of explanations frequently found
in the cognitive sciences. Whether these different explanations
are complements or competitors to each other raises several
issues that are simultaneously methodological and philosophical.
To address these issues, we then present a novel account of
explanatory integration predicated on the idea that explanations
are integrated to the extent that they collectively promote
understanding. To illustrate the uniqueness of this account, we
contrast our account of integration with a prominent alternative
in the philosophical literature.

Before proceeding, two caveats are in order. First, although
we focus on the cognitive sciences, the account of explanatory
integration proposed here is perfectly general. In principle,
the same account could be used in domains ranging from
particle physics to cultural anthropology. Second, our aim is
simply to show that our account of integration enjoys some
initial plausibility; a more thoroughgoing defense exceeds the
current paper’s scope.

A Variety of Scientific Explanations
Puzzles about explanatory integration arise only if there are
explanations in need of integration, i.e., explanations whose
fit with each other is not immediately obvious. In this
section, we provide examples of four kinds of explanations
found in the cognitive sciences: mechanistic, computational,
topological, and dynamical.
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Mechanistic Explanations
Mechanistic explanations are widespread in the cognitive
sciences (Bechtel and Richardson, 1993; Machamer et al., 2000;
Craver, 2007; Illari and Williamson, 2010; Glennan, 2017;
Craver and Tabery, 2019). Despite extensive discussion in the
philosophical literature, there is no consensus on the proper
characterization of mechanisms or how exactly they figure in
mechanistic explanations.3 For our purposes, we illustrate basic
features of mechanistic explanations by focusing on Glennan’s
(2017, p. 17) minimal conception of mechanisms:

A mechanism for a phenomenon consists of entities (or parts)
whose activities and interactions are organized so as to be
responsible for the phenomenon.

This intentionally broad proposal captures a widely held
consensus among philosophers about conditions that are
necessary for something to be a mechanism. Where they
disagree is about further details, such as the nature and role
of causation, regularities, and levels of analysis involved in
mechanisms. At a minimum, mechanistic explanations account
for the phenomenon to be explained (the explanandum) by
identifying the organized entities, activities, and interactions
responsible for it.

Consider the case of the action potential. A mechanistic
explanation of this phenomenon specifies parts such as voltage-
gated sodium and potassium channels. It describes how activities
of the parts, like influx and efflux of ions through the channels,
underlie the rapid changes in membrane potential. It shows how
these activities are organized such that they are responsible for the
characteristic phases of action potentials. For example, the fact
that depolarization precedes hyperpolarization is explained in
part by the fact that sodium channels open faster than potassium
channels. In short, mechanistic explanations spell out the relevant
physical details.

Importantly, not all theoretical achievements in neuroscience
are mechanistic explanations. As a point of contrast, compare
Hodgkin and Huxley’s (1952) groundbreaking model of the
action potential. With their mathematical model worked out,
they were able to predict properties of action potentials and
neatly summarize empirical data from their voltage clamp
experiments. However, as Hodgkin and Huxley (1952) explicitly
pointed out, their equations lacked a physical basis. There is
some disagreement among philosophers about how we should
interpret the explanatory merits of the model (Levy, 2014; Craver
and Kaplan, 2020; Favela, 2020a), but what is clear is that the
Hodgkin and Huxley model is a major achievement that is not
a mechanistic explanation of the action potential. We return to
issues such as these below.

Computational Explanations
Mechanistic explanations are sometimes contrasted with
other kinds of explanation. In the philosophical literature,
computational explanations are perhaps the most prominent
alternative. Computational explanations are frequently
considered a subset of functional explanations. The latter

3See Craver (2014) for an overview of the latter issue.

explain phenomena by appealing to their function and the
functional organization of their parts (Fodor, 1968; Cummins,
1975, 1983, 2000). Insofar as computational explanations are
distinct from other kinds of functional explanations, it is
because the functions to which they appeal involve information
processing. Hereafter, we focus on computational explanations.

In computational explanations, a phenomenon is explained
in terms of a system performing a computation. A computation
involves the processing of input information according to a
series of specified operations that results in output information.
While many computational explanations describe the object of
computation as having representational content, some challenge
this as a universal constraint on computational explanations
(Piccinini, 2015; Dewhurst, 2018; Fresco and Miłkowski, 2021).
We will use “information” broadly, such that we remain silent
on this issue. Here, “operations” refer to logical or mathematical
manipulations on information such as addition, subtraction,
equation (setting a value equal to something), “AND,” etc. For
example, calculating n! involves taking in input n and calculating
the product of all natural numbers less than or equal to n and then
outputting said product. Thus, we can explain why pressing “5,”
“!,” “=”, in sequence on a calculator results in the display reading
“120”; the calculator computes the factorial.

More detailed computational explanations of this procedure
are possible. For example, the calculator performs this
computation by storing n and iteratively multiplying the
stored variable by one less than the previous iteration from
n to 1. In this case, the operations being used are equation,
multiplication, and subtraction. The information upon which
those operations are being performed are the inputted value
for n and the stored variable for the value of the factorial
at that iteration.

Topological Explanations
In topological or “network” explanations, a phenomenon is
explained by appeal to graph-theoretic properties. Scientists infer
a network’s structure from data, and then apply various graph-
theoretic algorithms to measure its topological properties.
For instance, clustering coefficients measure degrees of
interconnectedness among nodes in the same neighborhood.
Here, a node’s neighborhood is defined as the set of nodes to which
it is directly connected. An individual node’s local clustering
coefficient is the proportion of edges within its neighborhood
divided by the number of edges that could possibly exist between
the members of its neighborhood. By contrast, a network’s global
clustering coefficient is the ratio of closed triplets to the total
number of triplets in a graph. A triplet of nodes is any three
nodes that are connected by at least two edges. An open triplet is
connected by exactly two edges; a closed triplet, by three. Another
topological property, average (or “characteristic”) path length,
measures the mean number of edges needed to connect any two
nodes in the network.

In their seminal paper, Watts and Strogatz (1998) applied
these concepts to a family of graphs and showed how a network’s
topological structure determines its dynamics. First, regular
graphs have both high global clustering coefficients and high
average path length. By contrast, random graphs have low global
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clustering coefficients and low average path length. Finally, they
introduced a third type of small-world graph with high clustering
coefficient but low average path length.

Highlighting differences between these three types of graphs
yields a powerful explanatory strategy. For example, because
regular networks have larger average path lengths than small-
world networks, things will “diffuse” throughout the former more
slowly than the latter, largely due to the greater number of edges
to be traversed. Similarly, because random networks have smaller
clustering coefficients than small-world networks, things will
also spread throughout the former more slowly than the latter,
largely due to sparse interconnections within neighborhoods
of nodes. Hence, ceteris paribus, propagation/diffusion is faster
in small-world networks. This is because the fewer long-range
connections between highly interconnected neighborhoods of
nodes shorten the distance between neighborhoods of nodes that
are otherwise very distant and enables them to behave as if they
were first neighbors. For example, Watts and Strogatz showed
that the nervous system of Caenorhabditi elegans is a small-world
network, and subsequent researchers argued that this system’s
small-world topology explains its relatively efficient information
propagation (Latora and Marchiori, 2001; Bullmore and Sporns,
2012).

Dynamical Explanations
In dynamical explanations, phenomena are accounted for using
the resources of dynamic systems theory. At root, a system is
dynamical if its state space can be described using differential
equations, paradigmatically of the following form:

ẋ (t) = f
(
x (t) ; p, t

)
Here, x is a vector (often describing the position of the system

of interest), f is a function, t is time, and p is a fixed parameter.
Thus, the equation describes the evolution of a system over time.
In dynamical explanations, these equations are used to show how
values of a quantity at a given time and place would uniquely
determine the phenomenon of interest, which is typically treated
as values of the same quantity at a subsequent time.

For example, consider dynamical explanations of why
bimanual coordination—defined roughly as wagging the index
fingers of both hands at the same time—is done either in- or anti-
phase. Haken et al. (1985) use the following differential equation
to model this phenomenon:

dφ

dt
= −asinφ− 2bsin2φ

Here φ is relative phase, having a value of either 0◦ or 180◦
(representing in- and anti-phase conditions, respectively) and
b/a is the coupling ratio inversely related to the oscillations’
frequency. The explanation rests on the fact that only the in- and
anti-phase oscillations of the index fingers are basins of attraction.

Understanding-Based Integration
Thus far, we have surveyed four different kinds of explanation—
mechanistic, computational, topological, and dynamical.
Moreover, each seems to have some explanatory power for some

phenomena. This raises the question as to how these seemingly
disparate kinds of explanation can be integrated. We propose
a new account of “understanding-based integration” (UBI)
to answer this question. A clear account of understanding is
needed if it is to integrate explanations. To that end, we first
present Khalifa’s (2017) model of understanding. We then
extend this account of understanding to provide a framework for
explanatory integration.

An Account of Understanding
We highlight two reasons to think that Khalifa’s account
of understanding is especially promising as a basis for
explanatory integration. First, as Khalifa (2019) argues, his
is among the most demanding philosophical accounts of
understanding. Consequently, it serves as a useful ideal to
which scientists should aspire. Second, this ideal is not
utopian. This is especially clear with Khalifa’s requirement that
scientists evaluate their explanations relative to the best available
methods and evidence. Indeed, among philosophical accounts
of understanding, Khalifa’s account is uniquely sensitive to
the centrality of hypothesis testing and experimental design in
advancing scientific understanding (Khalifa, 2017; Khalifa, in
press), and thus makes contact with workaday scientific practices.
In this section, we present its three core principles.

Khalifa’s first central principle is the Explanatory Floor:

Understanding why Y requires possession of a correct explanation
of why Y.

The Explanatory Floor’s underlying intuition is simple. It
seems odd to understand why Y while lacking a correct answer
to the question, “Why Y?” For instance, the person who lacks
a correct answer to the question “Why do apples fall from
trees?” does not understand why apples fall from trees. Since
explanations are answers to why-questions, the Explanatory
Floor appears platitudinous. Below, we provide further details
about correct explanation.

The Explanatory Floor is only one of three principles
comprising Khalifa’s account and imposes only a necessary
condition on understanding. By contrast, the second principle,
the Nexus Principle, describes how understanding can improve:

Understanding why Y improves in proportion to the amount
of correct explanatory information about Y (= Y’s explanatory
nexus) in one’s possession.

To motivate the Nexus Principle, suppose that one person
can correctly identify two causes of a fire, and another person
can only identify one of those causes. Ceteris paribus, the former
understands why the fire occurred better than the latter. Crucially
in what follows, however, “correct explanatory information”
is not limited to correct explanations. The explanatory nexus
also includes the relationships between correct explanations. We
return to these “inter-explanatory relationships” below.

Furthermore, recall our earlier remark that gaps in
understanding arise when one simply has an accurate
representation of an explanation (or explanatory nexus)
without significant cognitive ability. This leads to the last
principle, the Scientific Knowledge Principle:
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Understanding why Y improves as one’s possession of explanatory
information about Y bears greater resemblance to scientific
knowledge of Y ’s explanatory nexus.

Once again, we may motivate this with a simple example.
Consider two agents who possess the same explanatory
information that nevertheless differ in understanding because
of their abilities to relate that information to relevant theories,
models, methods, and observations. The Scientific Knowledge
Principle is intended to capture this idea. Khalifa provides a
detailed account of scientific knowledge of an explanation:

An agent S has scientific knowledge of why Y if and only if there
is some X such that S’s belief that X explains Y is the safe result of
S’s scientific explanatory evaluation (SEEing).

The core notions here are safety and SEEing. Safety is an
epistemological concept that requires an agent’s belief to not
easily have been false given the way in which it was formed
(Pritchard, 2009). SEEing then describes the way a belief in an
explanation should be formed to promote understanding. SEEing
consists of three phases:

1. Considering plausible potential explanations of how/
why Y ;

2. Comparing those explanations using the best available
methods and evidence; and

3. Undertaking commitments to these explanations on the
basis these comparisons. Paradigmatically, commitment
entails that one believes only those plausible potential
explanations that are decisive “winners” at the phase of
comparison.

Thus, scientific knowledge of an explanation is achieved
when one’s commitment to an explanation could not easily have
been false given the way that one considered and compared
that explanation to plausible alternative explanations of the
same phenomenon.

Understanding-Based Integration
With our account of understanding in hand, we now argue
that it provides a fruitful account of how different explanations,
such as the ones discussed above, can be integrated. The Nexus
Principle is the key engine of integration. As noted above, this
principle states that understanding improves in proportion to the
amount of explanatory information possessed. In the cognitive
sciences, a multitude of factors explain a single phenomenon.
According to the Nexus Principle, understanding improves not
only when more of these factors are identified, but when
the “inter-explanatory relationships” between these factors are
also identified.

One “inter-explanatory relationship” is that of relative
goodness. Some explanations are better than others, even if both
are correct. For instance, the presence of oxygen is explanatorily
relevant to any fire’s occurrence. However, oxygen is rarely judged
as the best explanation of a fire. Per the Nexus Principle, grasping
facts such as these enhances one’s understanding. Parallel points
apply in the cognitive sciences. For example, it has been observed
that mental simulations that involve episodic memory engage
the default network significantly more than mental simulations
that involve semantic memory (Parikh et al., 2018). Hence,
episodic memory better explains cases in which the default
network was more active during a mental simulation than does
semantic memory.

However, correct explanations can stand in other relations
than superiority and inferiority. For instance, the aforementioned
explanation involving the default network contributes to a
more encompassing computational explanation of counterfactual
reasoning involving three core stages of counterfactual thought
(Van Hoeck et al., 2015). First, alternative possibilities to
the actual course of events are mentally simulated. Second,
consequences are inferred from these simulations. Third,
adaptive behavior and learning geared toward future planning
and problem-solving occurs. The default network figures
prominently in the explanation of (at least) the first of these
processes (Figure 2).

FIGURE 2 | Computational and mechanistic explanations involved in counterfactual reasoning. Mental simulation (gray box) both contributes to the computational
explanation of counterfactual reasoning (black box) and is mechanistically explained by the activation of the default network.
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FIGURE 3 | Different inter-explanatory relationships. Letters at the head of an arrow denote phenomena to be explained; those at the tail, factors that do the
explaining. Thus, X1 explains X2 and X2 explains Y in (A); X1 and X2 independently explain Y in (B). X1 explains both X2 and Y, and X2 also explains Y in (C); X3
explains both X1 and X2, which in turn each explain Y in (D).

As this example illustrates, grasping the relationships
between different kinds of explanations can advance scientists’
understanding. In Figure 2, a computational account of mental
simulation explains certain aspects of counterfactual reasoning,
but mental simulation is then explained mechanistically: the
default network consists of parts (e.g., ventral medial prefrontal
cortex and posterior cingulate cortex) whose activities and
interactions (anatomical connections) are organized so as to be
responsible for various phenomena related to mental simulations.
Quite plausibly, scientific understanding increases when the
relationship between these two explanations is discovered.

Importantly, this is but an instance of an indefinite number
of other structures consisting of inter-explanatory relationships
(see Figure 3 for examples). In all of these structures, we
assume that for all i, Xi is a correct explanation of its respective
explanandum. Intuitively, a person who could not distinguish
these different explanatory structures would not understand
Y as well as someone who did. For instance, a person who
knew that X1 only explains Y through X2 in Figure 3A, or
that X1 and X2 are independent of each other in Figure 3B,
or that X3 is a common explanation or “deep determinant”
of both X1 and X2 in Figure 3D, etc. seems to have a
better understanding than a person who did not grasp these
relationships. Undoubtedly, explanations can stand in other
relationships that figure in the nexus.

Thus, the Nexus Principle provides useful guidelines for how
different kinds of explanations should be integrated. Moreover,
we have already seen that different kinds of explanations can
stand in fruitful inter-explanatory relationships, and that these
relationships enhance our understanding. In some cases, we

may find that one and the same phenomenon is explained
both mechanistically and non-mechanistically, but one of these
explanations will be better than another. As noted above,
“better than” and “worse than” are also inter-explanatory
relationships. So, the Nexus Principle implies that knowing
the relative strengths and weaknesses of different explanations
enhances understanding.

The Scientific Knowledge Principle also plays a role in UBI.
Suppose that X1 and X2 are competing explanations of Y. SEEing
would largely be achieved when, through empirical testing, X1
was found to explain significantly more of Y ’s variance than
X2. This gives scientists grounds for thinking X1 better explains
Y than X2 and thereby bolsters their understanding of Y.
Importantly, SEEing is also how scientists discover other inter-
explanatory relationships. An example is the aforementioned
study that identified the inter-explanatory relationships between
episodic memory, semantic memory, the default network, and
mental simulation (Parikh et al., 2018).

Mechanism-Based Integration
Aside from UBI, several other philosophical accounts of
explanatory integration in the cognitive sciences are available
(Kaplan, 2017; Miłkowski and Hohol, 2020). We provide some
preliminary comparisons with the most prominent of these
accounts, which we call mechanism-based integration (MBI).
According to strong MBI, all models in the cognitive sciences
are explanatory only insofar as they provide information about
mechanistic explanations. In response, several critics of MBI—
whom we call pluralists—have provided examples of putatively
non-mechanistic explanations (see Table 2). When presented
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with putatively non-mechanistic explanations, e.g., of the
computational, topological, and dynamical varieties, mechanists
(i.e., MBI’s proponents) have two strategies available. First, the
negative strategy argues that closer scrutiny of the relevant
sciences reveals the putatively non-mechanistic explanation to
be no explanation at all (Kaplan, 2011; Kaplan and Craver,
2011). The assimilation strategy argues that closer analysis of
the relevant sciences reveals the putatively non-mechanistic
explanation to be a mechanistic explanation, often of an
elliptical nature (Piccinini, 2006, 2015; Piccinini and Craver,
2011; Zednik, 2011; Miłkowski, 2013; Povich, 2015; Hochstein,
2016). Mechanists inclined toward strong MBI frequently use the
negative and assimilation strategies in a divide-and-conquer-like
manner: the negative strategy applies to some putatively non-
mechanistic explanations and the assimilation strategy applies
to the rest. However, more prevalent is a modest form of MBI
that simply applies these strategies to some putatively non-
mechanistic explanations.

Modest MBI diverges from pluralism on a case-by-case basis.
Such cases consist of an explanation where the negative or
assimilation strategy seems apt but stands in tension with other
considerations that suggest the model is both explanatory and
non-mechanistic. On this latter front, several pluralists argue
that computational, topological, and dynamical explanations’
formal and mathematical properties are not merely abstract
representations of mechanisms (Weiskopf, 2011; Serban, 2015;
Rusanen and Lappi, 2016; Egan, 2017; Lange, 2017; Chirimuuta,
2018; Darrason, 2018; Huneman, 2018; van Rooij and Baggio,
2021). Others argue that these explanations cannot (Chemero,
2009; Silberstein and Chemero, 2013; Rathkopf, 2018) or need
not (Shapiro, 2019) be decomposed into mechanistic components
or that they cannot be intervened upon in the same way that
mechanisms are intervened upon (Woodward, 2013; Meyer,
2020; Ross, 2020). Some argue that these putatively non-
mechanistic explanations are non-mechanistic because they
apply to several different kinds of systems that have markedly
different mechanistic structures (Chirimuuta, 2014; Ross, 2015).
Pluralist challenges specific to different kinds of explanations can
also be found (e.g., Kostić, 2018; Kostić and Khalifa, 2022)4.

In what follows, we will show how UBI is deserving of further
consideration because it suggests several plausible alternatives
to the assimilation and negative strategies. As such, it contrasts
with both strong and modest MBI. While we are partial to
pluralism, our discussion here is only meant to point to different
ways in which mechanists and pluralists can explore the issues
that divide them. Future research would determine whether UBI
outperforms MBI.

Assimilation Strategy
According to mechanists’ assimilation strategy, many putatively
non-mechanistic explanations are in fact elliptical mechanistic
explanations or “mechanism sketches” (Piccinini and Craver,
2011; Zednik, 2011; Miłkowski, 2013; Piccinini, 2015; Povich,
2015, in press). Thus, when deploying the assimilation strategy,

4Kostić, D., and Khalifa, K. (2022). Decoupling Topological Explanation from
Mechanisms.

mechanists take computational, topological, and dynamical
models to fall short of a (complete) mechanistic explanation,
but to nevertheless provide important information about
such mechanistic explanations. Mechanists have proposed two
ways that putatively non-mechanistic explanations can provide
mechanistic information, and thereby serve as mechanism
sketches. First, putatively non-mechanistic explanations can
be heuristics for discovering mechanistic explanations. Second,
putatively non-mechanistic explanations can constrain the space
of acceptable mechanistic explanations.

An alternative interpretation is possible. The fact that non-
mechanistic models assist in the identification of mechanistic
explanations does not entail that the former is a species of the
latter. Consequently, putatively non-mechanistic explanations
can play these two roles with respect to mechanistic explanations
without being mere mechanism sketches. In other words,
“genuinely” non-mechanistic explanations can guide or constrain
the discovery of mechanistic explanations. Earlier explanatory
pluralists (McCauley, 1986, 1996) already anticipated precursors
to this idea, but did not tie it explicitly as a response to mechanists’
assimilation strategy.

Moreover, this fits comfortably with our account of SEEing
and hence with UBI. Heuristics of discovery are naturally seen as
advancing SEEing’s first stage of considering plausible potential
explanations. Similarly, since the goal of SEEing is to identify
correct explanations and their relationships, it is a consequence
of UBI that different kinds of explanations of the related
phenomena constrain each other. For instance, suppose that we
have two computational explanations of the same phenomenon,
and that the key difference between them is that only the first
of these is probable given the best mechanistic explanations
of that phenomenon. Then that counts as a reason to treat
the first computational explanation as better than the second.
Hence, SEEing entails mechanistic explanations can constrain
computational explanations.

More generally, UBI can capture the same key inter-
explanatory relationships that mechanists prize without
assimilating putatively non-mechanistic explanations to
mechanistic explanation. Indeed, like many mechanists,
UBI suggests that not only do putatively non-mechanistic
explanations guide and constrain the discovery of mechanistic
explanations, but that the converse is also true. (The next
section provides an example of this.) Parity of reasoning entails
that mechanistic explanations should thereby be relegated to
mere “computational, topological, and dynamical sketches”
in these cases, but mechanists must resist this conclusion on
pain of contradiction. Since UBI captures these important
inter-explanatory relationships without broaching the more
controversial question of assimilation, it need not determine
which models are mere sketches of adequate explanations. Future
research would evaluate whether this is a virtue or a vice.

Negative Strategy
Mechanists’ assimilation strategy becomes more plausible than
the UBI-inspired alternative if there are good grounds for
thinking that the criteria that pluralists use to establish
putatively non-mechanistic explanations as genuine explanations
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TABLE 2 | Putatively non-mechanistic explanations discussed by philosophers.

Explanans Explanandum Scientific example Philosophical work discussing example

Computational explanations

Difference of Gaussians Stereoscopic vision Rodieck, 1965; Marr, 1982 Shagrir, 2010; Kaplan, 2011; Kaplan and
Craver, 2011*; Bechtel and Shagrir, 2015;
Rusanen and Lappi, 2016; Egan, 2017;
Shapiro, 2019

Exhaustive search Recall (memory) Sternberg, 1969 Shapiro, 2017, 2019

Gain field encoding Hand–eye coordination Zipser and Andersen, 1988; Pouget
and Sejnowski, 1997; Pouget et al.,
2002; Shadmehr and Wise, 2005

Shagrir, 2006*; Kaplan, 2011*; Serban, 2015;
Rusanen and Lappi, 2016; Egan, 2017

Geon composition Object recognition Hummel and Biederman, 1992 Weiskopf, 2011; Buckner, 2015*;
Povich, 2015*

Hybrid computation Efficiency of brain Sarpeshkar, 1998 Chirimuuta, 2018

Inhibitory feedback Normalization Carandini and Heeger, 2012 Chirimuuta, 2014; Serban, 2015

Internal integration Eye movement Seung et al., 2000 Egan, 2017

Line attractor of choice axis, stimuli’s
selection vector

Context-dependent decision
making

Mante et al., 2013 Chirimuuta, 2018

Mapping non-coplanar points to unique
rigid configuration

Three-dimensional visual
structure of moving objects

Ullman, 1979 Shagrir and Bechtel, 2014*; Egan, 2017

Optimization of spatial and spectral
information recovery (Gabor function)

V1 receptive fields Daugman, 1985 Chirimuuta, 2014, 2018

Similarity of stimulus to stored
exemplars

Categorization Love et al., 2004; Kruschke, 2008 Weiskopf, 2011; Buckner, 2015*;
Povich, 2015*

Topological explanations

Closeness centrality Speech and tonal processing Mišić et al., 2018 Kostić, 2020

Mean connectivity Ictogenicity Helling et al., 2019 Kostić and Khalifa, 2021

Motif frequency Functional connectivity Adachi et al., 2011 Kostić and Khalifa, 2021, 2022 (see text
footnote 4)

Navigation efficiency, diffusion efficiency Efficiency of neuronal
communication

Seguin et al., 2019 Kostić, 2020

Network communicability Cognitive control Gu et al., 2015 Kostić, 2020

Small-worldness Information propagation Watts and Strogatz, 1998 Kostić and Khalifa, 2022 (see text footnote 4)

Dynamical explanations

Coupling of eye and bodily movements Onset of motor control Kelso et al., 1998;
Shenoy et al., 2013

Chemero and Silberstein, 2008;
Vernazzani, 2019*; Favela, 2020b

Coupling ratio Bimanual coordination
(relative phase)

Haken et al., 1985 Chemero, 2000, 2001; Kaplan and Craver,
2011*; Stepp et al., 2011; Zednik, 2011*; Lamb
and Chemero, 2014; Golonka and Wilson,
2019*; Meyer, 2020

Strength of memory trace, salience of
target, waiting time, stance

Infant reaching (A-not-B error) Thelen et al., 2001 Zednik, 2011*; Gervais, 2015; Verdejo, 2015;
Venturelli, 2016; van Eck, 2018*; Meyer, 2020;
Povich, in press*

Potassium and sodium ion flows Neural excitability Hodgkin and Huxley, 1952;
FitzHugh, 1961; Nagumo et al.,
1962

Craver and Kaplan, 2011*; Kaplan and Bechtel,
2011*; Kaplan and Craver, 2011*; Ross, 2015;
Hochstein, 2017*; Favela, 2020a,b

The explanans (first column) is the factor that explains. The explanandum (second column) is the phenomenon to be explained. An asterisk indicates that the author takes
the explanation to be mechanistic.

are insufficient. This is the crux of the mechanists’ negative
strategy. As with the assimilation strategy, we suggest that UBI
provides a suggestive foil to the negative strategy.

The negative strategy’s key move is to identify a set of
non-explanatory models that pluralists’ criteria would wrongly
label as explanatory. Two kinds of non-explanatory models—
how-possibly and phenomenological models—exemplify this
mechanist argument. How-possibly models describe factors that
could but do not actually produce the phenomenon to be
explained. For instance, most explanations begin as conjectures

or untested hypotheses. Those that turn out to be false will
be how-possibly explanations. Phenomenological models, which
accurately describe or predict the target phenomenon without
explaining it, provide a second basis for the negative strategy.
Paradigmatically, phenomenological models correctly represent
non-explanatory correlations between two or more variables.
Mechanists claim that pluralist criteria of explanation will
wrongly classify some how-possibly and some phenomenological
models as correct explanations. By contrast, since models that
accurately represent mechanisms are “how-actually models,”
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i.e., models that cite explanatory factors responsible for
the phenomenon of interest, MBI appears well-positioned
to distinguish correct explanations from how-possibly and
phenomenological models.

However, UBI can distinguish correct explanations from how-
possibly and phenomenological models. Moreover, it can do so in
two distinct ways that do not appeal to mechanisms. First, it can
do so on what we call structural grounds, i.e., by identifying non-
mechanistic criteria of explanation that are sufficient for funding
the distinction. It can also defuse the negative strategy on what we
call procedural grounds, i.e., by showing that the procedures and
methods that promote understanding also distinguish correct
explanations from these non-explanatory models.

Structural Defenses
We suggest that the following provides a structural defense
against the negative strategy:

If X correctly explains Y, then the following are true:

(1) Accuracy Condition: X is an accurate representation, and
(2) Counterfactual Condition: Had the objects, processes, etc.

represented by X been different, then Y would have been
different.

These are only necessary conditions for correct explanations.
They are also sufficient for distinguishing correct explanations
from how-possibly and phenomenological models but are likely
insufficient for distinguishing correct explanations from every
other kind of non-explanatory model. Identifying these other
models is a useful avenue for future iterations of the negative
strategy and responses thereto.

Situating this within UBI, these conditions are naturally
seen as elaborating the Explanatory Floor, which claims that
understanding a phenomenon requires possession of a correct
explanation. Crucially, mechanists and pluralists alike widely
accept these as requirements on correct explanations, though
we discuss some exceptions below. Reasons for their widespread
acceptance becomes clear with a simple example. Consider
a case in which it is hypothesized that taking a certain
medication (X) explains recovery from an illness (Y). If it were
discovered that patients had not taken the medication, then this
hypothesis would violate the accuracy condition. Intuitively, it
would not be a correct explanation, but it would be a how-
possibly model.

More generally, how-possibly models are correct explanations
modulo satisfaction of the accuracy condition. Consequently,
pluralists can easily preserve this distinction without appealing
to mechanisms; accuracy is sufficient. Just as mechanisms can
be either accurately or inaccurately represented, so too can
computations, topological structures, and system dynamics be
either accurately or inaccurately represented. Similarly, just as
inaccurate mechanistic models can be how-possibly models
but cannot be correct explanations, so too can inaccurate
computational, topological, and dynamical models be how-
possibly models but cannot be how-actually models.

Analogously, the counterfactual condition preserves the
distinction between correct explanations and phenomenological
models. Suppose that our hypothesis about recovery is

confounded by the fact that patients’ recovery occurred 2 weeks
after the first symptoms, and that this is the typical recovery time
for anyone with the illness in question, regardless of whether they
take medication. Barring extenuating circumstances, e.g., that
the patients are immunocompromised, these facts would seem to
cast doubt upon the claim that the medication made a difference
to their recovery. In other words, they cast doubt on the following
counterfactual: had a patient not taken the medication, then that
patient would not have recovered when she did. Consequently,
the hypothesis about the medication explaining recovery violates
the counterfactual condition. Moreover, the hypothesis does
not appear to be correct, but would nevertheless describe the
patients’ situation, i.e., it would be a phenomenological model.

More generally, phenomenological models are correct
explanations modulo satisfaction of the counterfactual condition.
Just as a mechanistic model may accurately identify interacting
parts of a system that correlate with but do not explain its
behavior, a non-mechanistic model may accurately identify
computational processes, topological structures, and dynamical
properties of a system that correlate with but do not explain
its behavior. In both cases, the counterfactual condition
accounts for the models’ explanatory shortcomings; no appeal to
mechanisms is needed.

Procedural Defenses
Admittedly, structural defenses against the negative strategy are
not unique to UBI; other pluralists who are agnostic about UBI
have invoked them in different ways. By contrast, our second
procedural defense against the negative strategy is part and
parcel to UBI. Procedural defenses show that the procedures
that promote understanding also distinguish correct explanations
from how-possibly and phenomenological models.

The Scientific Knowledge Principle characterizes the key
procedures that simultaneously promote understanding and
distinguish correct explanations from these non-explanatory
models. Recall that SEEing consists of three stages: considering
plausible potential explanations of a phenomenon, comparing
them using the best available methods, and forming commitments
to explanatory models based on these comparisons. This provides
a procedural defense against the negative strategy. How-possibly
and phenomenological models will only be acceptable in the first
stage of SEEing: prior to their deficiencies being discovered, they
frequently deserve consideration as possible explanations of a
phenomenon. By contrast, correct explanations must “survive”
the remaining stages of SEEing: they must pass certain empirical
tests at the stage of comparison such that they are acceptable
at the stage of commitment. Indeed, it is often through SEEing
that scientists come to distinguish correct explanations from
how-possibly and phenomenological models.

Crucially, consideration is most effective when it does
not prejudge what makes something genuinely explanatory.
This minimizes the possibility of missing out on a fruitful
hypothesis. Consequently, both mechanistic and non-
mechanistic explanations should be included at this initial
stage of SEEing. However, our procedural defense supports
pluralism only if some computational, topological, or dynamical
explanations are acceptable in light of rigorous explanatory
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comparisons. As we see it, this is a strength of our procedural
defense, for it uses the empirical resources of our best science to
adjudicate debates between mechanists and pluralists that often
appear intractable from the philosophical armchair.

Nevertheless, we can point to an important kind of
explanatory comparison—which we call control-and-contrast—
that deserves greater philosophical and scientific attention when
considering explanatory integration in the cognitive sciences.
Control-and-contrast proceeds as follows. Let X1 and X2 be two
potential explanations of Y under consideration. Next, run two
controlled experiments: one in which the explanatory factors in
X1 are absent but those in X2 are present and the second in
which the explanatory factors in X1 are present but those in
X2 are absent. If Y is only present in the first experiment, then
the pair of experiments suggests that X2 is a better explanation
of Y than X1. Conversely, if Y is only present in the second
experiment, the pair of experiments suggests that X1 is a better
explanation of Y than X2. If Y is present in both experiments, the
experiments are inconclusive. If Y is absent in both experiments,
then the experiments suggest that the combination of X1 and
X2 better explains Y than either X1 or X2 does in isolation.
Since we suggest that both mechanistic and non-mechanistic
explanations should be considered and thereby play the roles of
X1 and X2, we also suggest that which of these different kinds
of explanations is correct for a given phenomenon Y should
frequently be determined by control-and-contrast.

In some cases, scientists are only interested in controlling-and-
contrasting explanations of the same kind. However, even in these
cases, the controls are often best described in terms of other kinds
of explanation. For instance, as discussed above, the default mode
network mechanistically explains mental simulations involved in
episodic memory. By contrast, when mental simulations involve
semantic memory, inferior temporal and lateral occipital regions
play a more pronounced role (Parikh et al., 2018). Both episodic
and semantic memory are functional or computational concepts
that can figure as controls in different experiments designed to
discover which of these mechanisms explains a particular kind of
mental simulation. Less common is controlling-and-contrasting
explanations of different kinds. Perhaps this is a lacuna in current
research. Alternatively, it may turn out that different kinds of
explanation rarely compete and are more amenable to integration
in the ways outlined above.

The procedural defense complements the structural defense in
two ways. First, not all pluralists accept the accuracy condition.
Their motivations for this are twofold. First, given that science
is a fallible enterprise, our best explanations today are likely to
be refuted. Second, many explanations invoke idealizations, i.e.,
known inaccuracies that nevertheless enhance understanding.
The procedural defense does not require the accuracy condition
but can still preserve the distinction between correct explanations
and non-explanatory models. Instead, the procedural defense
only requires that correct explanations be acceptable on the basis
of the best available scientific methods and evidence.

Second, tests such as control-and-contrast regiment the
subjunctive conditionals that characterize the counterfactual
condition. In evaluating counterfactuals, it is notoriously difficult
to identify what must be held constant, what can freely vary

without altering the truth-value of the conditional, and what must
vary in order to determine the truth-value of the conditional.
Our account of explanatory evaluation points to important
constraints on this process. Suppose that we are considering
two potential explanations Xi and Xj of some phenomenon Y.
To compare these models, we will be especially interested in
counterfactuals such as, “Had the value of Xi been different (but
the value of Xj had remained the same), then the value of Y would
have been different,” and also, “Had the value of Xi been different
(but the value of Xj had remained the same), then the value of
Y would have been the same.” These are precisely the kinds of
counterfactuals that will be empirically supported or refuted by
control-and-contrast.

CONCLUSION

Fruitful connections between the philosophy and science of
understanding can be forged. In a naturalized epistemology
of understanding, philosophical claims about various forms
of explanatory and counterfactual reasoning are empirically
constrained by scientific tests and explanations. By contrast,
in UBI, the philosophy of understanding contributes to the
science of understanding by providing broad methodological
prescriptions as to how diverse explanations can be woven
together. Specifically, UBI includes identification of inter-
explanatory relationships, consideration of different kinds
of explanations, and evaluation of these explanations using
methods such as control-and-contrast. As our suggestions
have been of a preliminary character, we hope that future
collaborations between philosophers and scientists will advance
our understanding of understanding.
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