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Abstract
Foot ulcer is a common complication in diabetic subjects and infection of these wounds contributes to increased rates of
morbidity and mortality. Diabetic foot infections are caused by a multitude of microbes and Staphylococcus aureus, a major
nosocomial and community-associated pathogen, significantly contributes to wound infections as well. Staphylococcus aureus is
also the primary pathogen commonly associated with diabetic foot osteomyelitis and can cause chronic and recurrent bone
infections. The virulence capability of the pathogen and host immune factors can determine the occurrence and progression of S.
aureus infection. Pathogen-related factors include complexity of bacterial structure and functional characteristics that provide
metabolic and adhesive properties to overcome host immune response. Even though, virulence markers and toxins of S. aureus
are broadly similar in different wound models, certain distinguishing features can be observed in diabetic foot infection. Specific
clonal lineages and virulence factors such as TSST-1, leukocidins, enterotoxins, and exfoliatins play a significant role in
determining wound outcomes. In this review, we describe the role of specific virulence determinants and clonal lineages of S.
aureus that influence wound colonization and infection with special reference to diabetic foot infections.
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Introduction

Foot ulcer is a common complication in diabetic subjects
caused due to multitude of underlying risk factors including
neuropathy and vascular insufficiency [1]. These open
wounds favor colonization by microbes which proliferate in
the wound and cause severe infection that can spread to deeper
tissues thereby substantially increasing the risk of hospitaliza-
tion and lower limb amputations [2]. Pathophysiology of dia-
betic foot infection (DFI) is complex and the wound outcome
is determinant on both host factors and microbial factors in-
cluding virulence [3, 4]. Diabetic foot ulcers (DFU) are quite

often colonized by aerobes, anaerobes, and fungi either indi-
vidually or more often as a polymicrobial community.
Staphylococcus aureus, a major colonizer of DFU [5–7], pro-
duces abundant biofilm and thereby inhibits wound healing
and exacerbates wound infection [8, 9].

S. aureus with its emerging new clones causes severe
wound infection, skin and soft tissue infections (SSTI), oste-
omyelitis, and other unusual infections globally. Most often,
S. aureus colonizes on skin or mucosal surfaces of children
and HIV or diabetic patients who are more prone to S. aureus
colonization [10–13]. Hospital-acquired methicillin-resistant
S. aureus (MRSA) strains are largely disseminated in clinical
settings and infect immunosuppressed hosts while
community-associated MRSA strains can cause infections in
healthy children and adults [13, 14]. Infection of mucosal
surface or skin is a consequence of initial exposure eventually
triggering upregulation of virulence genes [15]. S. aureus can
also cause recurrent infections throughout life.

S. aureus is the predominant bacterial isolate reported from
occidental countries in DFI leading to delayed wound healing.
Wound adherence, persistence, and infection is enhanced by
virulence factors including wide variety of enzymes and
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toxins elicited by S. aureus such as protease, lipases, nucle-
ases, hyaluronidases, haemolysins (alpha, beta, gamma, and
delta), and collagenase which make host tissues favorable for
bacterial growth and tissue invasion. Early diagnosis and
proper wound management are critical since spread of S.
aureus to soft tissue and bone can significantly contribute to
amputation of lower extremities [16].

Since DFU is polymicrobial nature, it is essential to con-
sider both the microbiological and clinical features to under-
stand microbial virulence potential of diverse microbes that
cause infection and level of host susceptibility to the microbes
[17, 18]. Each bacterial species differs in its virulence poten-
tial in wound environment, and it is important to evaluate the
intrinsic virulence factors of isolated species to characterize
and distinguish between pathogens that cause infection and
colonizers [19]. In addition, it also helps to avoid misuse of
antibiotics since inappropriate antibiotic usage leads to emer-
gence of multidrug-resistant pathogens, notablyMRSA. Quite
often, differentiation of true infectious pathogens from colo-
nizers is difficult especially in DFU due to the underlying risk
factors of neuropathy and ischemia. In this regard, studies
have been performed focusing on virulence markers and their
association in wound adherence and colonization. In this re-
view, we have focused on S. aureus virulence factors and
clonal complexes commonly associated with skin and wound
pathogenesis and their role in differentiating colonizing and
infecting S. aureus strains in DFI.

Search strategy and selection criteria

The relevant reference articles were identified through litera-
ture search in PubMed and Web of Science databases and
were restricted to those research articles published between
January 1980 and March 2020. The following descriptors
were used to obtain relevant references: “Staphylococcus
aureus,” “ulcer,” “osteomyelitis,” “infection,” “chronic
wound,” “microbiota,” “virulence,” “toxins,” “molecular
methods,” “clonal complexes,” “bacterial colonization,” “an-
timicrobial resistance,” “adherence,” “colonization,” “genetic
diversity,” “gene expression,” “host factors,” “pathogenesis,”
and “biofilm” in combination with the term “Staphylococcus
aureus” and “diabetic foot” or “diabetic foot osteomyelitis”
and the Boolean operators AND, OR, and NOT, in addition to
truncations. We have included cohort studies, cross-sectional
studies, narrative reviews, and case-control studies. Only full-
text articles published in English language were included. The
first screening included a review of the titles of the studies.
The second screening was based on the abstracts and dupli-
cates and articles which did not meet the eligibility criteria
were excluded. The final dataset included 140 full-text arti-
cles, meeting the inclusion criteria. The identified articles were
reviewed and then classified based on the study objective and

were then collated to understand the role of various S. aureus
virulence markers and clonal complexes in wound infections.

DFU microbiome and altered
physiopathology

Studies have reported the polymicrobial nature of DFU and
the presence of large spectrum of microbes severely limits the
use of traditional culture methods [7]. DFU is commonly col-
onized with aerobic Gram-positive cocci, facultative and ob-
ligate aerobic Gram-negative bacilli, obligate anaerobic bac-
teria [5, 20], and fungi [21]. The widespread occurrence of
pathogenic and multidrug-resistant strains such as MRSA
which express several virulence factors negatively influences
treatment outcomes and leads to chronicity of ulcer. Screening
of specific virulence genes and genotyping by multilocus se-
quence typing approach have shown that S. aureus isolates
frommonomicrobial and polymicrobial wounds differ in their
clonal diversity and carriage of virulence genes [22]. Though
infection in diabetic subjects by definition can include ab-
scesses, necrotizing fasciitis, and osteomyelitis among many
others, infected neuropathic diabetic foot ulcers remain the
major problem [18]. Host factors such as neuropathy drasti-
cally reduce the sensory functions and pain perception causing
ulceration which predisposes these wounds to severe bacterial
infections [18]. Furthermore, it has been observed that early
signs of infection can go undetected due to several underlying
risk factors including reduced immunological functions [23],
and if left untreated, the infection spreads to deeper tissues
including bones. In diabetic subjects, impaired wound healing
due to an increase in acute inflammatory cells, an absence of
cellular growth, and decreased epidermal cell migration have
been observed. In addition, the impaired host responses can
shift the equilibrium from colonizers to pathogenic species
leading to chronic non-healing wound ulcers.

Diabetic foot osteomyelitis

Osteomyelitis is an inflammatory condition resulting from
infection of bone and is commonly missed or underdiagnosed
in patients with underlying diabetic foot ulcer complications.
Reports suggest that 60% of DFUs get infected and 10–15%
of the infected wounds usually develop into osteomyelitis
[24]. S. aureus is the primary pathogen associated with dia-
betic foot osteomyelitis (DFOM) and results in substantial
morbidity and mortality. Studies indicate that S. aureus can
form biofilms on healthy bones and infect both osteoblasts
and osteoclasts while both in vivo and in vitro studies clearly
show that they can also replicate and proliferate inside osteo-
clasts and evade destruction by immune cells [25, 26].
Interestingly, even though antibodies for various S. aureus
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antigens (coagulase, lukD, lukE, fibronectin-binding protein,
etc.) are produced in healthy individuals, S. aureus overcomes
protective immune responses and causes recurrent infections
by producing pathogenic antibodies that can drastically over-
come adaptive immunity [27, 28]. However, genome se-
quencing of two S. aureus strains collected longitudinally
from a chronic osteomyelitis patient showed agrC frameshift
mutations over time resulting in reduced virulence and less
tissue damage [29]. Mass-based proteomics approach in a
murine osteomyelitis model demonstrated that mutations in
exoprotein regulatory protein saeRS and staphylococcal ac-
cessory regulator sarA attenuates virulence by downregulating
virulence factor production and degradation of virulence fac-
tors respectively [30]. Víquez-Molina et al. [31] compared the
prevalence of virulence genes encoding for pvl, etA, etB, and
tsst in S. aureus strains in SSTI and bone infection and found
no significant difference in virulence gene profiles except for
higher prevalence of pvl+ strains in soft tissue infections.
Even though several clonal complexes are associated with
DFU colonization and infection, there are limited studies on
virulence genes and clonal complexes associated with DFOM.
Lattar et al. [32] performed molecular fingerprinting of S.
aureus strains from patients with osteomyelitis by pulsed-
field gel electrophoresis and concluded that loss of capsular
polysaccharide production was the major factor associated
with chronic osteomyelitis. They also showed that higher pro-
portion of cap5 S. aureus isolates were methicillin-resistant S.
aureus (MRSA) and lukS-PV/lukF-PV+ compared with cap8
isolates [32]. Senneville et al. [33] reported bone tropism of
CC398 methicillin-susceptible S. aureus clone and its signif-
icance in DFOM.

Virulence factors of S. aureus

α-Toxin

In skin infections, α-toxin is considered a key virulence factor
of S. aureus. This pore-forming toxin consisting primarily of
beta sheets is secreted by most of the S. aureus strains as a
water-soluble monomer targeting the red blood cells [34–36].
The gene coding for alpha toxin hla was present in S. aureus
strains in all the grades of wounds in DFU though some dif-
ference was observed between MRSA and methicillin-
susceptible S. aureus (MSSA) strains [37, 38].

Panton-Valentine leukocidin

Panton-Valentine leukocidin (PVL) is a potent cytotoxin that
consists of two chromatographically separate protein compo-
nents, namely LukS-PV (slow) and LukF-PV (fast). The ac-
tive toxin causes lysis of neutrophils by forming a pore on its
membrane and is associated with dermonecrosis, chronic

SSTI [39, 40], recurrent mucocutaneous infections [41], and
necrotizing pneumonia [42]. Further, PVL-carrying strains
can cause chronic SSTI and necrotizing pneumonia in other-
wise healthy individuals (Table 1). Though PVL-encoding
strains are much less prevalent in community with < 10%
MSSA clinical isolates found to encode pvl gene, studies in-
dicate that isolates carrying gene coding for PVL can result in
wound worsening.

Enterotoxins

S. aureus produce several exoproteins including staphylococ-
cal enterotoxins (SEA, SEB, SECn, SED, SEE, SEG, SEH,
and SEI), exfoliative toxins (ETA and ETB), and leukocidin
(Fig. 1). Toxic shock syndrome toxin (TSST-1) and staphylo-
coccal enterotoxins, collectively termed as pyrogenic toxin
superantigens (PTSAgs), are known to play a significant role
in proliferation of T cells irrespective of antigenic specificity.
The majority of S. aureus isolates of DFU produce large num-
ber of SAgs [68], while SAg exotoxins have also been shown
to contribute significantly to other major illnesses [69]. Higher
number of S. aureus strains isolated from wound grades 2–4
of Wagner Classification System was shown to harbor genes
encoding enterotoxins SEA and SEI than strains from grade 1
ulcer [70], making them potent markers to differentiate colo-
nization from infection. Interestingly, S. aureus strains from
DFU share more similarity with strains from atopic dermatitis
and normal vaginal mucosa in their distribution and produc-
tion of more types of SAgs per organism suggesting that DFU
strains originated and were better adapted to skin compared
with mucosae which produce fewer SAgs.

Toxic shock syndrome toxin-1

Toxic shock syndrome toxin-1 (TSST-1), a 22-kD SAg,
causes toxic shock syndrome. Another new member of the
SAg family, SEI-X, is known to cause necrotizing pneumonia
[58]. Both SEI-X and TSST-1 have potential role in DFU
pathogenesis [68]. Even though the carriage of tsst-1 is low
in DFU isolates, they are significantly more abundant in grade
4 ulcer than in DFOM [33].

Epidermal cell differentiation factor

The epidermal differentiation factor (EDIN) and EDIN-like
factors are a family of exotoxins that specifically inhibit host
protein RhoA [59], which negatively impacts host tissue by
favoring bacterial dissemination and hindering complement-
mediated phagocytosis. Recent findings hypothesize the role
of EDIN in disseminating between tissues by hematogenous
route through intracellular tunnel formation in endothelial
cells named macroapertures [60, 71]. Edin-positive strains
were found to be more prevalent in moderate-to-severe grade
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DFUs than in low-grade infection. These strains were also
associated with agrI cluster and virulence markers including
genes coding for hemolysin, the egc cluster of enterotoxins,
lukDE, intracellular adhesion proteins (icaA, icaC, and icaD),
cap5, MSCRAMM (clfA, clfB, fib, ebpS, and fnbA), and anti-
biotic resistance (tet and fosB). Edin-positive isolates grouped
to four major clonal complexes, a singleton closely associated
with CC8 (edin-A), a singleton belonging to ST152-MSSA
(edin-B), CC80-MRSA (edin-B), and mostly CC25/28MSSA
(edin-A). It is also reported that grade 1 ulcer infected with
edin-positive strains led to poor wound outcome [72]. While
CC25/CC28-MSSA and CC80-MRSA were significantly
higher in edin-positive isolates, none of them grouped to col-
onizing strains of CC5/CC8 [72]. Association of edin-positive
strains with other virulence markers in DFU has also been
reported. Thus, EDIN coding genes can be considered potent
markers to categorize S. aureus strains as colonizers or infec-
tious as well as reliable predictors of the wound outcome.

Accessory gene regulator

S. aureus pathogenicity is enhanced by quorum sensing (QS)
mechanisms. Virulence factors essential for causing SSTI are
regulated by accessory gene regulator (agr). Expression of

several virulence determinants is known to be affected by
the inhibitory activity of agr groups representing a form of
bacterial interference [73]. A recent study reported that strains
carrying agr were more pathogenic than those without [74].

Arginine catabolic mobile element

Arginine catabolic mobile element (ACME), a genetic island
consisting of clusters of genes, confers S. aureus the ability to
colonize skin. ACME is horizontally transferred from S.
epidermidis, a skin commensal [75], and encodes multiple
genes, among which arc (arginine deiminase system) and
opp-3 (a ABC transporter) are vital in enhanced colonization.
The arginine deiminase catabolizes L-arginine and by elevat-
ing skin’s pH makes it more amenable for microbial coloni-
zation [76]. Opp-3 enhances eukaryotic cell adhesion, peptide
nutrient uptake, and resistance to antimicrobial peptides,
thereby promoting the ability of bacteria to thrive on human
skin. Thus, the acquisition of the mobile element has a poten-
tial role in disruption of skin barrier and bacterial invasion.
Studies with S. aureus USA300 strain highlight the impor-
tance of ACME locus in enhancing pathogenicity and clonal
dissemination. Even though, ACME has a potent role in suc-
cess of USA300, its deletion has shown contradictory effect

Table 1 S. aureus virulence factors involved in wound progression

Virulence factors Function Role in infection References

MSCRAMMs

Bone sialoprotein-binding
protein (isoform of SdrE)
(Bbp)

Adhesion to extracellular matrix, bone and joint tissue, fibrinogen Osteomyelitis [43, 44]

Cap5 and Cap8 Inhibits interaction between C3b, immunoglobulin and receptors;
targets phagocytes; promotes virulence in Caenorhabditis elegans

Mastitis, cystic fibrosis,
endocarditis

[45]

Collagen adhesin (Cna) Collagen-binding adhesin mediates binding to cartilage/ collagen-rich
tissue, blocks complement activation

Osteomyelitis, septic arthritis,
keratitis

[46–49]

Fibronectin-binding proteins
A (FnBPA) and B
(FnBPB)

FnBPA binds to fibrinogen and elastin; FnBPB binds to fibronectin;
adhesion to ECM

Endocarditis, implant orthopaedic
infections, osteomyelits,
arthritis

[46, 48,
50]

Iron-regulated surface
determinant protein H
(IsdH)

Haem uptake and iron acquisition into bacterial cytoplasm SSTI [51]

Serine–aspartate
repeat-containing protein
D (SdrD)

Binds desquamated epithelial cells; nasal colonization Bone infection [52–55]

SdrE Binds complement factor H; evades immune response; degrades C3b SSTI [56]

Bone sialoprotein-binding
protein (isoform of SdrE)

SD-rich fibrinogen-binding, bone sialoprotein-binding protein Osteomyelitis, arthritis [57]

Toxins/superantigens

Epidermal cell
differentiation inhibitor
(Edin)

Inhibits actin cytoskeleton of epithelial and endothelial barrier;
formation of large transcellular tunnels; targets host Rho proteins;
inhibits complement-mediated phagocytosis

Bacteremia [58–61]

LukDE Kills leukocytes and macrophages via chemokine receptors Dermonecrosis [62, 63]

PVL Targets complement receptors C5aR and C5L2, apoptosis of
neutrophils, necrosis

Necrotizing pneumonia,
SSTI, furunculosis

[42,
64–67]
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on competitive fitness in skin infection models [77, 78].
ACME speG and ACME arc genes mediate enhanced synthe-
sis of polyamines in skin and cause clearance of S. aureus in
murine skin abscess model [79]. Survival of USA300 in acidic
environment is mediated by genes encoded by arc operon [79]
and biofilm formation is enhanced by ACME speG-mediated
polyamine tolerance [80] by upregulating genes involved in
biofilm production and by increased adhesion properties,
thereby favoring skin colonization, persistence, and
transmission.

Microbial surface components recognizing adhesive
matrix molecules

Infection of a host commences with the pathogen binding to
host surface components (fibrinogen, fibronectin, and epi-
dermal keratinocytes). A family of staphylococcal cell
wall-anchored adhesins, called MSCRAMMs (microbial
surface components recognizing adhesive matrix mole-
cules), plays a significant role in aiding attachment of S.
aureus virulence proteins to bone matrix and collagen [81].
In osteoblasts, MSCRAMMs play a significant role by
allowing bone invasion and formation of metabolically

inactive small-colony variants, which exhibit significant
phenotypic and metabolic differences from regular S. aureus
isolates [82–85]. However, these S. aureus variants are rela-
tively antibiotic resistant and hinder the treatment efficacy
[86, 87]. Fibronectin-binding proteins (FnBPs) are the major
staphylococcal adhesins which help in colonization of hu-
man airway epithelial cells and fibroblasts and thereby es-
tablish staphylococcal infection [88]. S. aureus FnBPs also
play a critical role in orthopaedic implant-associated infec-
tions, osteomyelitis, and arthritis [82].

Phenol-soluble modulins

Phenol-soluble modulins (PSMs) also play significant role in
S. aureus skin infection [89]. PSMs are pore-forming toxins
made up of a family of seven amphipathic α-helical peptides.
Most of the S. aureus strains secrete PSMs [14] that provide
them capacity to lyse human neutrophils, monocytes, erythro-
cytes, and osteoblasts [89] increasing tissue toxicity. Most
pathogenic strains of staphylococci elicit different PSMβ pep-
tides (PSMβ1 and 2), PSMα peptides (PSMα1–4), and a δ-
toxin, thus contributing to staphylococcal pathogenesis and
virulence [89]. PSMs themselves exhibit selective

Fig. 1 Schematic diagram illustrating major S. aureus factors associated
with DFI and DFOM. (Adapted from Kong et al. [13]). ACME, arginine
catabolic mobile element; agr, accessory gene regulator; Bbp, bone
sialoprotein-binding protein; CC, clonal complexes; Cna, collagen
adhesin; FnBP, fibronectin-binding protein; MSCRAMMs, microbial
surface components recognizing adhesive matrix molecules; PMT

complex, PSM transporter complex; PSM, phenol-soluble modulins;
PVL, Panton-Valentine leukocidin; SAgs, super antigens; sarA, staphy-
lococcal accessory regulator; sae, response regulator; SdrD, serine–
aspartate repeat-containing protein D; SEs, staphylococcal enterotoxins;
SspA, staphylococcal serine protease; SspB, cysteine protease; TSST-1,
toxic shock syndrome toxin-1
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antimicrobial function and PSM-inspired peptides are report-
ed to have considerable bactericidal activity against
multidrug-resistant bacteria [90].

Extracellular adherence protein

Extracellular adherence protein (Eap), a 45–70-kDa protein
that binds to several proteins including fibronectin, is report-
ed to be a significant marker of impaired wound healing in
mouse model [91, 92]. Eap inhibits neovascularization by
hindering the inflammatory cell response near the wound
area. Studies indicate that Eap interferes in ICAM-1 (inter-
cellular adhesion molecule-1)-dependent leukocyte-
endothelium interactions restricting host leukocyte recruit-
ment, thereby aiding in persistence of S. aureus in a hostile
milieu in chronic wounds [93]. In contrast, Eap does not play
a major role in virulence of S. aureus in skin wound infection
models as well as systemic infection models, since Eap does
not contribute to bacterial adherence to proteins other than
ICAM-1 [93]. However, Eap does contribute to enhanced
adhesion and internalization of staphylococci by
keratinocytes in a FnBP-independent manner. Eap secreted
by S. aureus also significantly contributes to the internaliza-
tion of other pathogenic bacteria in the wound microenviron-
ment [94].

Biofilm factors

Biofilm production is an important strategy adopted by bac-
teria to colonize and infect skin tissues [95]. Though bacteria
can be found in planktonic form in chronic wounds, they are
most likely observed to form polymicrobial communities in
biofilm matrix [96]. The presence of biofilms in non-healing
wounds contributes significantly in hindering the effective-
ness of antimicrobial agents and in overcoming host immu-
nity. Bioactive compounds from biofilm communities of S.
aureus and Pseudomonas aeruginosa have been shown to
impair migration and proliferation of keratinocytes in chron-
ic skin wounds and chronic tympanic membrane perforations
[97]. In vitro studies also have shown that biofilm-
conditioned media (BCM) from these two bacteria could
inhibit cell proliferation while BCM derived from S. aureus
was shown to reduce cell migration in keratinocytes and
fibroblast cells in wound scratch assays [98]. Proteomic anal-
ysis of these media revealed several proteins linked to de-
layed wound healing including alpha hemolysin and epider-
mal cell differentiation inhibitor [97]. In other studies, loss of
HEK cell viability by S. aureus BCM has been reported [98,
99]. HEKa cells treated with BCM showed upregulation of
CXCL2, IL-8, DUSP1, and ATF3 genes which play a major
role in inflammation and apoptosis [99].

Clonal complexes

Staphylococci isolated from DFU have been found to be ge-
netically diverse, resistant to many antibiotics and harbor sev-
eral virulence determinants [100]. Using multilocus sequence
typing, strains of S. aureus could be grouped into clonal line-
ages and the major clonal lineages in humans were found to
belong to clonal complex (CC)1, CC5, CC8, CC9, CC12,
CC15, CC22, CC30, CC45, and CC51 [101]. In DFU, CC5
methicillin-sensitive S. aureus (CC5-MSSA), CC8-MSSA,
and CC15-MSSA were considered to be colonizing strains
with a favorable outcome while CC45-MSSA strains were
shown to cause severe infections [37, 72, 102]. In addition,
CC45 and CC30 were also considered as causative clones of
severe invasive infections [103, 104]. It is believed that DFU
showing worsening outcome do not colonize with CC5/CC8-
MSSA strains and clonality of these strains during admission
and follow-up visit remain unchanged. CC25/CC28-MSSA
and CC80-MRSA strains are also considered as infecting
strains in DFU as these CCs were found significantly higher
in edin-positive strains (Table 2), edin gene being a predictive
risk marker for worsening ulcer [72]. Even though clonal lin-
eages found associated with humans and animals generally are
different, livestock-associated CC398 (LA-CC398] strain, as-
sociated with pigs, has emerged as a major human pathogen
causing severe infections [129–131], ventilator-associated
pneumonia [132], and wound infections [133]. CC398 is sig-
nificantly associated with diabetic foot osteomyelitis (DFOM)
strains and helps to differentiate DFOM from SSTI—two ma-
jor complications of DFU—both of which are known to carry
CC45-MSSA [33]. CC398 is distinct with the presence of
hemolysins, genes that code for intracellular adhesion pro-
teins, cap5, and MSCRAMM genes including bbp, clfA and
clfB [33], pvl [134], and multiple classes of antimicrobial re-
sistance genes [135] showing potent virulence in SSTI infec-
tions in humans.

Association between presence of certain virulence genes
and DFU outcome is reported in many studies. For instance,
difference in the size of abscess formation in rabbit skin ab-
scess model was attributed to different clonal lineages [136].
Different outcomes with difference in abscess diameter rang-
ing from 5 to 7 cm (USA300, USA500, and ST80) and from 2
to 4 cm (USA400, USA1000, ST72, USA100) and almost
complete absence of abscess (USA200, USA1100) were man-
ifested by different S. aureus clonal lineages. Abscess size
caused by USA300 was found to be comparable with that
caused by USA100, USA200, USA400, USA1100, and
ST72 strains and different from those carrying USA500,
USA1000, and ST80 strains. Interestingly, though abscess
formation by Panton-Valentine leukocidin (PVL)-positive
USA300 and PVL-negative USA500 was comparable, the
role of PVL in skin infection is thought to be limited in nature.
Furthermore, neutrophil lysis activity of USA300 was shown
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to be significantly higher than that of other strains, and was
suggested to be a major determinant of MRSA skin infection
pathogenesis [136]. USA300 strains showed correlation be-
tween the expression of psmα, hla, and agr (with the excep-
tion of lukS-PV) and cause abscess, release cytokine, and lyse

neutrophils lysis, whereas α-toxin and N-formylated PSMα3
peptide correlated with neutrophil lysis. Though the role of
different S. aureus clonal lineages from blood stream infec-
tions is available, detailed studies on clonal types on DFI and
their role in wound outcome are relatively less explored.

Table 2 Clonal lineages and associated virulence markers of S. aureus in skin and wound infection

Source of sample Major virulent factors/major findings Prevalent genotype Reference

SSTI pvl ST152, ST121, ST5, ST15, ST1, ST8, and ST88 [105]

SSTI, surgery infection, bone
and joint infection, and
others

CapH5, capJ5, capK5 CC5, CC8, CC97 [106]
capH8, capI8, capJ8, and capK8 CC45

egc cluster CC5, CC45

Absence of fnbB ST228-I

Cna ST239-III and ST45-IV

SSTI hla ST239 [107]

Impetigo eta CC15, CC9, and ST88 (CC88) [108]
eta, etb ST121

Wound, urine, semen egc CC5, CC25, CC30, CC45, CC121 [109]
etd CC25, CC80

edinB CC25, CC80, CC152

Wounds, nares, blood, sputum,
urine, and others

egc cluster CC5, CC22, CC30, and CC228 [110]
sed, sej, ser CC8

Tst1 CC5, CC30

Wound and respiratory
samples

PVL ST80-MRSA-IVc [111]

Bone and joint infections ACME CC8-MSSA [112]
EtD, edinB CC25, CC80

capH8, capI8, capJ8, capK8 CC7, CC12, CC15, CC30, CC45, CC59, ST80,
CC88, ST96, CC101, CC121, ST239 and
ST426

cna CC12, CC22, CC30, CC45, CC96, CC121,
ST239, and ST426

sasG (S.aureus surface protein G) CC5, CC8, CC15, CC22, ST49, CC59, ST80,
CC88, and ST96

Invasive infections Egc CC5, CC25, CC30, and CC45 [113]
Tst CC30

Etd CC25

Invasive infections Tst--1 CC30/CC39 [114]

SSTI, respiratory tract
infections, osteomyelitis

Hla, psmα, RNAIII ST59 [115]
sasX (cell wall-anchored protein) ST239-MRSA-SCCmecIII-t037

Nasal swabs Increased biofilm production at 0%, 0.1%,
and 0.25% glucose concentrations

CC8 [116]

Higher mortality rate; PSMα3 peptide variant with
reduced immune-stimulatory and cytolytic activity

CC30 [117, 118]

Osteo-articular infection CC22 [119]

Community settings agr-I CC59 [120]

Community settings PVL ST1153-MSSA [121]

Community,
multiple clinical settings

pvl ST1, ST5, ST8, ST22, ST30, ST80, ST772,
ST452, ST59, ST93, CC121, and ST154

[122–125]

pvl negative ST239 [124]

Hospital settings Tn6072 ST239 [126]

Hospitalized patients at risk of
MRSA carriage

cna CC1, 12, 22, 30, 45, 51, and 239 [127]
TSST-1 CC30

Multiple clinical samples High level of Hla production CC1, CC5, CC8, CC15, or CC96 [128]
Complete absence of Hla production CC22, CC30, CC45, CC479, CC705
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ST22 (CC22) is reported as a common type in DFU infec-
tions and all ST22 strains were shown to be positive for viru-
lence factors clfa and agr I. Several less frequent clones have
also been reported suggesting that diabetic patients can be an
important route for dissemination of clones between hospital
and community settings [100]. Sotto et al. [37] reported that
foot ulcers with S. aureus strains of CC5 and CC8 showed
favorable wound outcome and hypothesized that S. aureus of
CC5/CC8 clones as colonizing and others as infecting clones.

Distinguishing colonization from infection
in DFU

The Infectious Diseases Society of America and International
Working Group on the Diabetic Foot together have
established specific clinical criteria to distinguish different
grades of DFI severity [137, 138]. According to this classifi-
cation, grade 1 wound is considered colonized wound while
grade 2 or more is considered infection. Sotto et al. [37]
screened S. aureus isolates from DFU of varying grades from
1 to 4 for various virulence genes and identified several toxins
including leukocidins, enterotoxins, exfoliatins, and toxic
shock syndrome toxin and reported that strains from grade 1
foot ulcer to have low prevalence of virulence genes. Further,
they extended their study [70] to assess clonality and carriage
of 31 highly prevalent virulence-associated genes to predict
the wound outcome. Among the 31 genes screened, 10 genes
(sea, seb, sec, sei, sej, hlb, hlg, hlgv, cap5, and lukE) were
found to be significantly associated with strains from grade 2–
4 ulcers, whereas cap8 gene was associated with strains from
grade 1 ulcers. None of the isolates from worsening wounds
belonged to CC5 and CC8 indicating links between clonality
and wound healing. However, no significant difference was
found between infected and uninfected ulcers with regard to
genes coding for PVL and exfoliatins [37]. But contrasting
observation was found with reference to association of
exfoliatins in different grades of DFU. Exfoliatin genes were
found to be more likely in strains isolated from grade 4 ulcer
compared with lower grades. In addition, their serotype distri-
bution also varied with eta and etb being found very rarely
(1.3%) or absent in most samples while etd (3.7%) was found
in higher frequency. However, grade 1 ulcers harboring S.
aureus strains carrying etd gene showed worsening wound
outcome [72]. Post et al. [139] showed important differences
in the presence of eta and etb gene in diabetic foot infection
(eta, 13%; etb, 17%) and osteomyelitis (eta, 22% and etb,
absent). One of the limitations found was the study was con-
ducted solely on S. aureus isolates of monomicrobial wound
type, while DFU is predominantly polymicrobial in nature.

Using a Caenorhabditis elegans model, Sotto et al. [70]
showed that the pathogenicity of S. aureus strains in DFU
grades higher than 2 were significantly more than in grade 1.

Pathogenicity was assessed by the survival time of the nema-
tode upon ingestion of S. aureus which was represented by
LT50 and LT100 (time required to kill 50% and 100% of nem-
atodes, respectively). Isolates from ulcer grades 2–4 showed
LT50 < 2 days, whereas LT50 was > 3 days for isolates from
grade 1 ulcer. LT50 of strains obtained from healing wounds
was higher at the time of entry as well as follow-up while
strains from non-healing ulcers had lower values. Messad
et al. [140] identified genetic elements associated with pro-
phage in S. aureus genome to promote colonization.

Conclusion

DFUs are extremely vulnerable to bacterial infections that can
result in lower limb amputations and even death. Though from a
clinician’s perspective, it is important to differentiate coloniza-
tion from infection, it might prove cumbersome in DFU due to
the underlying effects of neuropathy and/or ischemia. The
polymicrobial community in DFI further contributes to syner-
gistic interaction betweenwound pathogens and induces various
virulence traits andmodulates host immunity and overall wound
deterioration. Prompt recognition of worsening ulcers using pre-
dictive molecular markers will hence considerably help in
preventing lower limb amputations. Distribution of isolates into
different clonal complexes allows comparison between coloniz-
ing and infecting strains as well as determining the origin and
clonality of the strains infecting wound ulcers. Detection of
specific virulence encoding genes along with clonality in differ-
ent grades will help us in identifying S. aureus strains that could
cause severe negative wound outcome in DFI and also to avoid
misuse of antibiotic therapy in uninfected wounds.
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