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The tumor immune microenvironment plays a vital role in the metastasis of colorectal
cancer. As one of the most important immune cells, macrophages act as phagocytes,
patrol the surroundings of tissues, and remove invading pathogens and cell debris to
maintain tissue homeostasis. Significantly, macrophages have a characteristic of high
plasticity and can be classified into different subtypes according to the different functions,
which can undergo reciprocal phenotypic switching induced by different types of
molecules and signaling pathways. Macrophages regulate the development and
metastatic potential of colorectal cancer by changing the tumor immune
microenvironment. In tumor tissues, the tumor-associated macrophages usually play a
tumor-promoting role in the tumor immune microenvironment, and they are also
associated with poor prognosis. This paper reviews the mechanisms and stimulating
factors of macrophages in the process of colorectal cancer metastasis and intends to
indicate that targeting macrophages may be a promising strategy in colorectal
cancer treatment.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of
cancer deaths in the world (1). Approximately 50% of CRC patients develop metastatic diseases (2).
CRC has a high probability of metastasis following its diagnosis (3, 4), and metastases especially
involve the liver (5). Cytotoxic drug chemotherapy is usually the first choice for metastatic CRC
(mCRC), but it is accompanied by numerous side effects, and the prognosis is unsatisfactory.
Targeted therapy also currently plays a significant role in the treatment of mCRC, while
chemotherapy combined with targeted therapy for mCRC is the first-line therapy in clinical
treatment (6, 7). Due to the advantages of targeted therapy, such as precision, high efficiency,
significantly less toxicity than chemotherapy, and convenient oral administration (8), targeted
therapy will become a promising treatment approach. The discovery of novel molecular biomarkers
will likely be of great significance for the treatment of mCRC (9, 10). Immune checkpoint inhibitors,
including anti-programmed cell death 1 (PD-1), anti-programmed cell death ligand 1 (PD-L1)
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monoclonal antibodies (MAbs) and CTL-associated antigen 4
(CTLA4) blockade have been confirmed to improve the overall
survival rate of patients in different cancer types (11, 12).

The tumor immune microenvironment (TIME) is complex
and diverse and mainly includes tumor cells, immune cells,
antigens, and cytokines (13). Recently, investigations regarding
the TIME have received great interest. Macrophages are one of
the most important cells in the TIME. Macrophages promote or
inhibit tumor invasion and metastasis through the interaction
between various molecules and signaling pathways (14–16).
Studies have shown that the high immunoactivity defined by
the microsatellite instability (MSI) subtype CRC is associated
with the high degree of infiltration of M1 macrophages (17).
Therefore, molecular targeted therapy directed at the CRC
immune microenvironment is a focal point in the treatment of
tumors; targeting macrophages potentially exerts long-term
effects for the treatment of mCRC.
TUMOR IMMUNE MICROENVIRONMENT

The TIME is formed by the interaction between tumor cells,
tumor-infiltrating immune cells, epithelial cells, fibroblasts,
blood vessels, chemokines, and cytokines (18, 19). In the
TIME, adaptive immune effector T cells (20), and innate
immunity effector cells, macrophages (21), NK cells (22), and
other cells promote the inflammatory response and are involved
in antitumor effects. In contrast to antitumor immunity, tumor-
associated macrophages (TAMs) (23), and myeloid suppressor
cells (MDSCs) (24), and regulatory T cells (Tregs) (25) as
immunosuppressive cells also play an immunomodulatory
effect in tumor immunity, facilitating the metastasis of tumors.
The occurrence and development of tumors are closely
associated with antitumor immune cells in the TIME.
Conversely, immune cells can also be influenced by products
of tumor cells such as cytokines (26) and exosomes (27), and
integrate with signaling pathways by activating immune evasion
mechanisms, which further induce tumor metastasis.

In the TIME associated with CRC, various immune cells
interact with each other to promote or inhibit the growth,
invasion, and metastatic potential of CRC (Figure 1). Dendritic
cells (DCs) activate T cells through the combination of the major
histocompatibility complex (MHC) and T cell receptors (28). NK
cells can kill tumor cells directly through antibody-dependent cell-
mediated cytotoxicity (ADCC) (29), and T cells can kill tumor
cells directly through cytotoxicity (30). Both NK cells and T cells
can kill tumor cells through the Fas/FasL pathway, the perforin-
granzyme pathway (31), and by releasing tumor necrosis factor
(TNF) (32). MDSCs can mediate the development of M2
macrophages and Tregs, which depend on IL-10 (33, 34). T cells
promote tumor immunity by secreting IFN-g (35), while Tregs
inhibit the immune effects of T cells via the PD-1/PD-L1 axis (36).
Macrophages can promote or inhibit tumor immunity by
polarizing into different types and play a critical role in the
tumor microenvironment (TME). Furthermore, mutual
transformation of macrophages regulates the TIME in CRC.
Frontiers in Immunology | www.frontiersin.org 2
THE ROLE OF MACROPHAGES
IN THE METASTASIS OF CRC

Macrophages can differentiate into different subtypes in the
TIME and may play dual roles (37). They produce various
molecules that interact with other immune cells and tumor
cells and further affect the progression in CRC (38). Under the
influence of different cytokines and exosomes, three types of
macrophages can be identified: naive M0, the M1 subtype with
pro-inflammatory effects, and the M2 subtype with
immunosuppressive effects (39, 40), which promote or inhibit
the progression of CRC.

Antitumor Effects of Macrophages
The classical activated macrophages are defined by the M1
macrophages whose surface markers are CD86, iNOS, and
TNF-a (41–43), M0 macrophages polarize into M1
macrophages under the effect of LPS and IFN-g (44), which are
active against pathogen infection and play a significant function
in immunity. M1 macrophages can inhibit tumor development
by releasing tumor-suppressing molecules, including TNF-a
(45). M1 macrophages also induce tumor cell apoptosis
through phagocytosis (46), ADCC (47), and release of TNF
and nitric oxide (NO) (48). Studies have shown that M1-type
macrophages can promote tumor immunity by recruiting
cytotoxic T cells (49).

Tumor-Promoting Effects of Macrophages
Macrophages in the TIME are often called TAMs; M0
macrophages are mostly polarized into M2 macrophages (50)
following induction by IL-4, IL-10, and IL-13 (51–53). CD163,
CD206 and Arg1 are common surface markers of M2
macrophages (54–56). TAMs are classified as M2 macrophage
activation subtype, which can promote the development of CRC
in the TIME (57). A research showed that TAMs increased
significantly in hepatic metastatic tumors of colorectal cancer
(58). TAMs contribute to angiogenesis (59), promote epithelial–
mesenchymal transition (EMT) of tumor cells (60), and activate
immunosuppression (61), promoting the metastasis of CRC.
Comfortingly there is evidence that macrophages have
plasticity (62, 63), and various stimuli, including drugs or M1
exosomes, can cause macrophages to alter their phenotype and
reprogram M2 toward M1, inhibiting tumor development (64,
65). Therefore, targeting macrophages will be a potential strategy
for the treatment of colorectal cancer metastasis.
SIGNALING PATHWAYS INVOLVING
MACROPHAGES IN CRC METASTASIS

The immune cells in the TIME regulating CRC development are
achieved by the secreted immune molecules and CRC cell-
surface receptors, activating the intracellular signaling
pathways involving macrophages, including Wnt/b-catenin,
NF-kB, PI3K/AKT, JAK/STAT3, MAPK, and TGF-b/Smad
signaling pathways (Figure 2).
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Wnt/b-Catenin Signaling Pathway
The wnt/b-catenin signaling pathway promotes the development
of CRC by regulating the growth, differentiation, and migration
of tumor cells (66). Abnormalities of the wnt signaling, such as
the APC gene mutation, are common in CRC, which can
promote the development of CRC (67). A global transcriptome
immune classification experiment for CRC solid tumors showed
that most patients had APC mutations (68). Activation of the
wnt signaling pathway leads to granulocyte recruitment and
tumor invasion, and abnormal wnt signaling directly alters the
antineoplastic activities of effector T cells, helper T cells, and
Tregs, suppressing tumor immunity (69). In highly proliferative
colorectal tumors, wnt/b-catenin signaling is activated and
abundant b-catenin accumulates in the nucleus, accompanying
the immune cell infiltrates including TAMs (70).

NF-kB Signaling Pathway
Nuclear factor-kB (NF-kB) is a critical molecule underlying the
relationship between inflammation and tumor immunity and is
involved in the growth and development of CRC (71). Various
extracellular factors including proinflammatory cytokines, LPS,
Frontiers in Immunology | www.frontiersin.org 3
and growth factors lead to IkB protein phosphorylation and
ubiquitination and then degradation, freeing NF-kB/Rel
complexes and transferring into the nucleus for transcription,
promoting EMT, angiogenesis, and metastasis (72, 73).

Transcription factors mediated by NF-kB are associated with
MDSC activation (74). NF-kB expression is upregulated in
CD4+TIM-3+ tumor-infiltrating lymphocytes, inducing the
expression of inflammatory factors and T cell failure, which in
turn further facilitates the metastasis of CRC (75). The NF-кB
pathway is activated in P2X7R overexpressed CRC cells,
cytokines increasing leads to the recruitment of TAMs (76).
TAMs can significantly upregulate the vascular endothelial
growth factor-A (VEGF-A) of CRC cells and activate the NF-
kB signaling pathway by secreting IL-6 and IL-8, promoting
CRC metastasis (77). In patients with CRC, high levels of p50-
NF-kB + TAMs at the invasive margin are associated with poor
prognosis following surgical intervention for excision of tumors.
The p50-NF-kB + TAMs participate in the development of CRC
by reducing recruitment and antitumor activity of T cells, which
confirms that the NF-kB pathway is a significant signaling
pathway promoting CRC metastasis (78). However, the role of
FIGURE 1 | The tumor immune microenvironment of colorectal cancer. DC activates T cells through the combination of the MHC and T cell receptors. Tregs inhibit
the immune effects of T cells via the PD-1/PD-L1 axis. Both NK cells and T cells can kill tumor cells through the Fas/FasL pathway, the perforin-granzyme pathway,
and by releasing TNF and IFN-g. MDSCs can mediate the development of M2 macrophages and Tregs, which depends on IL-10, and produce TGF-b to induct
Tregs. M0 macrophages polarize into M1 macrophages under the effect of LPS, IFN-g, and TNF, while polarizing into M2 macrophages following induction by IL-4,
IL-10, and IL-13. M1 macrophages also induce tumor cell apoptosis through phagocytosis, ADCC, and the release of TNF and NO. M2 secretes TGF-b and
contributes to angiogenesis, promotes tumor cell EMT, and induces immunosuppressive microenvironment.
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NF-kB in colorectal cancer remains controversial. A research
found that for macrophages, the activation of NF-kB can
promote M1-polarization, so as to play an antitumor effect (79).

JAK/STAT3 Signaling Pathway
In the TIME, the abnormal activation of the JAK/STAT3
signaling contributes to an immunosuppressive tumor
microenvironment, which promotes tumor growth and
metastasis (80). Studies have indicated that TAMs produce
pro-inflammatory cytokine IL-6 to activate the JAK/STAT3
signaling in CRC cells and lead to epithelial–mesenchymal
transition (EMT) involved in tumor progression (81), which in
turn leads to the CCL2 secreted by CRC cells, to promote
macrophage recruitment, while, inhibition of CCL2 or IL6 can
break this crosstalk (82).

On the other hand, IL-6 can upregulate other inflammatory
factors such as CCL2 and CCL5, and then recruit macrophages
(83, 84). Furtherly, the recruited macrophages in turn secret IL-6
to activate JAK2/STAT3 signaling, promoting tumor metastasis
(85). CCL2 significantly increases the number of MDSCs and
M2-like TAMs mediated by STAT3, suppresses T cells, and
promotes immune evasion in CRC (86). All the above studies
have shown that CRC cells and TAMs influence each other to
promote tumor development.
Frontiers in Immunology | www.frontiersin.org 4
Phosphatidylinositol 3 Kinase/AKT
Signaling Pathway
The phosphatidylinositol 3 kinase (PI3K)/AKT signaling pathway
is one of the most activated pathways in human cancer (87, 88),
which can regulate the immunosuppressive microenvironment,
promoting immune cell exhaustion and inhibiting antitumor
activity (89). PD-1/PD-L1 blockade can rescue depleted CD8+ T
cells via the PI3K/Akt/mTOR signaling pathway (90). Tumor cells
overexpressing T cell immunoglobulin mucin-4 (TIM-4) activate
PI3K/AKT/mTOR signal transduction and recruit TAMs,
promoting proliferation and tumor matrix remodeling in CRC
(91). Some exosomes carrying miRNAs (miR-25-3p, miR-130b-
3p, miR-425-5p) derived from CRC cells regulate PTEN by
activating PI3K/Akt signaling to induce M2-like TAM
polarization, and in turn, TAMs promote CRC metastasis by
enhancing EMT and secreting vascular endothelial growth factor
(VEGF) (92). In addition, inhibition of AKT can effectively
limit the differentiation of T cells and enhance antitumor effects
in vivo (93).

MAPK Signaling Pathway
The mitogen-activated protein kinase (MAPK) signaling
pathway is one of the most important bridges for converting
extracellular signals to intracellular responses (94). As the key
FIGURE 2 | Signaling pathways implicated in macrophages in CRC metastasis. Wnt/b-catenin signaling is activated in highly proliferative CRC accompanied by the
TAM infiltrates. TAMs upregulate the VEGF-A of CRC cells and activate the NF-kB signaling pathway by secreting IL-6 and IL-8. TAMs produce IL-6 to activate the
JAK/STAT3 signaling in CRC cells and lead to the EMT, which in turn lead to the CCL2/5 secreted by CRC cells, to promote macrophage recruitment. Some
exosomes carrying miRNAs derived from CRC cells regulate PTEN, by activating the PI3K/Akt signaling to induce M2-like TAM polarization, and in turn, TAMs
promote CRC metastasis by enhancing EMT and secreting VEGF. The abnormal activation of the MAPK signaling pathway can induce tumor cell proliferation and
participates in the development and metastasis of CRC. TAMs facilitate the EMT program involved in the CRC metastatic process via TGF-b/Smad signaling.
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pathway participating in cell proliferation, the abnormal
activation of the MAPK signaling pathway can induce tumor
cell proliferation and participate in the development and
metastasis of CRC (95, 96). The homeoprotein Six1 is
associated with poor prognosis in CRC (97). Six1
overexpression promotes CRC growth and metastasis by
stimulating angiogenesis and recruiting TAMs, accompanied
by MAPK activation in CRC cells (98). In addition, a study
demonstrated that TAMs interact with CRC cells inducing EMT
in CRC cells by activating the MAPK pathway in TAMs, and
then promoting the metastasis of CRC (77). The crosstalk in
TAMs and CRC cells reveals the significant role of TAMs in the
development of CRC, which provides a powerful argument for
targeting TAMs in CRC treatment.

TGF-b/Smad Signaling Pathway
In tumor stroma, M2-polarized TAMs secrete transforming
growth factor-beta (TGF-b) via the miR-34a/VEGF axis and
promote invasion and metastasis of CRC (99). There are also
some studies that found that in vitro, cytokines induced M2
macrophages to produce TGF-b1 via the VEGF/VEGFR2
signaling pathway (57). TAMs facilitate the EMT program
involved in the CRC metastatic process via TGF-b/Smad2,3–4/
Snail signaling (100, 101). A multicolor histology analysis
indicated that patients with poor clinical outcomes may also
have infiltration of T cells in tumor tissues, but always with high
TGF-b expression and high TAM density (102), which reveals
the critical role of TAMs in CRC metastasis.

Generally, in the immune microenvironment, TGF-b and IL-
6 are required for the development of Th-17 cells which produce
IL-17 (103). The production of IL-17 is positively correlated with
distant colon tumorigenesis (104). However, different from the
local tumor immune response, studies have found that in non-
tumor tissues of cancer patients, the increase of Th-17 cells and
IL-17 can enhance M1 polarization while inhibiting M2
polarization (105), which indicates the complex role of TGFb
in human immunity.
MOLECULES RELATED TO
MACROPHAGES IN CRC METASTASIS

Molecular targeted therapy is a promising method for CRC
therapy, especially in mCRC. Macrophages play a pivotal role
in the metastatic niche, and many molecules, including IL-4, IL-
10, and IL-13, can promote macrophages to polarize into M2. In
turn, M2 can secrete IL-6, IL-8, and other inflammatory factors
to promote the proliferation and metastasis of cancer cells.
Therefore, macrophages act as important mediators of the
development of CRC. Targeting macrophages may provide a
new strategy for the treatment of CRC. All molecules related to
targeting macrophages are listed in Table 1.

Non-Coding RNA
Studies have demonstrated that non-coding RNAmolecules play a
pivotal role in the polarization process of TAMs. The
Frontiers in Immunology | www.frontiersin.org 5
overexpression of the long non-coding RNA (LncRNA) RPPH1
has been associated with advanced tumor-node-metastasis (TNM)
stages and poor prognosis (106). Exosomes derived from CRC
cells transport RPPH1 into macrophages and mediate M2-like
polarization to promote CRC cell proliferation and metastasis
(107). The lncRNA HLA-F-AS1 regulates the expression of
profilin 1(PFN1) in CRC-derived EVs by inhibiting miR-375,
and then, in turn, mediates the M2 phenotype polarization of
macrophages (108), promoting the CRC metastasis.

Several miRNAs including miR-25-3p, miR-425-5p, and
miR-130b-3p induce macrophage M2 polarization by
activating the CXCL12/CXCR4 axis in CRC metastasis (92).
The tumor-derived exocrine miR-934 can promote CRC liver
metastasis by regulating the interaction between CRC cells and
TAMs (110). In addition, exosomes carrying miRNA-106b-5p
promote the M2-like polarization of macrophages and induce
the EMT in CRC cells, which is implicated in the crosstalk
between tumor cells and TAMs (131). Brahma-related gene-1
(BRG1) is the core subunit of switch/sucrose nonfermentable
(SWI/SNF) family complexes (132). M2-macrophages-derived
exosomes carry miR-155-5p and miR-21-5p to CRC cells and
combine with the BRG1 coding sequence to downregulate the
expression of BRG1, promoting the metastasis of CRC (109).

Thus, we can achieve the effect of blocking M2-like
polarization or of blocking tumor from promoting secretion
from TAMs by inhibiting the above non-coding RNA, thereby
controlling the tumor-promoting effect of macrophages in the
tumor microenvironment of CRC.

Cytokines
Many cytokines are involved in the polarization of TAMs, some
of them active in downstream signaling pathways to promote
CRC metastasis. Studies have revealed that complex chemokine
networks can affect cancer progression via the recruitment and
activation of TAMs. The increased expression of CCL17 in DCs
and M2-like TAMs in tumors induces an immunosuppressive
environment; CCL17 expression has been used as a marker for
M2-like immunosuppressive macrophage polarization (133).
CCL5, secreted by TAMs, inhibits T-cell-mediated killing of
CRC cells and promotes immune escape by stabilizing PD-L1
(113). In addition, CRC cells secrete VEGF-A and then stimulate
TAMs to produce CXCL1 in primary tumors. The increased
release of CXCL1 transfer to the liver via blood circulation
recruits CXCR2-expressing MDSCs to form a pre-metastatic
niche, promoting liver metastasis (114).

In addition, sST2, a soluble isoform of the IL-33 receptor
(ST2), suppresses angiogenesis, macrophage infiltration, and
macrophage M2 polarization induced by IL-33 (111). M2-
polarized TAMs secrete TGF-b (100), which regulates the miR-
34a/VEGF axis to facilitate CRC cell proliferation and invasion
(99). Wnt5a is highly expressed in TAMs and can induce M2
polarization by regulating the secretion of IL-10, which is
mediated by the CaMKII-ERK1/2-STAT3 pathway (117).
Furthermore, Wnt5a+TAMs promote CRC development which
also depends on CCL2 secretion mediated by the CaMKII-ERK
pathway (112).
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Therefore, we can regulate the immunosuppressive
microenvironment by inhibiting the cytokine-induced
macrophage M2-like polarization, decrease the recruitment of
immunosuppressive cells, and enhance tumor immunity for
CRC metastasis.

Macrophage-Related Metabolites
Many metabolites are also related to the metastasis of CRC.
These factors are involved in tumor progression and offer a new
Frontiers in Immunology | www.frontiersin.org 6
direction for mCRC treatment. A small leucine-rich
proteoglycan lumican (LUM) regulates macrophage
polarization in colorectal adenocarcinoma and induces
immune escape in the microenvironment of CRC (118). TAMs
play an important role in tumor invasion and can migrate with
tumor cells during the process of tumor metastasis. TAMs
exhibit a heterogeneous expression of the hydrolase domain
containing the triglyceride hydrolytic activator 5 (ABHD5)
which is expressed in low-level in migratory TAMs and
TABLE 1 | Molecules related to TAMs in CRC metastasis.

Molecules Types Expression in
mCRC

Mechanism Effects in
CRC

References

lncRNA
RPPH1

Non-coding RNA Up Mediates the polarization of M2 Promote (106, 107)

lncRNA HLA-
F-AS1

Non-coding RNA Up Mediates the polarization of M2 Promote (108)

miR-21-5p Non-coding RNA Up Derived by M2-macrophages, downregulates the expression of BRG1 Promote (109)
miR-25-3p Non-coding RNA Up Activates CXCL12/CXCR4 axis, induces M2 polarization Promote (92)
miR-130b-3p Non-coding RNA Up Activates CXCL12/CXCR4 axis, induces M2 polarization Promote (92)
miR-155-5p Non-coding RNA Up Derived by M2-macrophages, downregulates the expression of BRG1 Promote (109)
miR-425-5p Non-coding RNA Up Activates CXCL12/CXCR4 axis, induces M2 polarization Promote (92)
miR-934 Non-coding RNA Up Promotes CRC liver metastasis by regulating the interaction between CRC

cells and TAMs
Promote (110)

sST2 Cytokine receptor Down Suppresses IL-33-induced angiogenesis, macrophage infiltration and
polarization

Inhibit (111)

CCL2 Cytokines Up Promotes the recruitment of macrophages Promote (82, 86, 98,
112)

CCL5 Cytokines Up Promotes the recruitment of macrophages Promote (83, 113)
CCL17 Cytokines Up Upregulates in M2-like TAMs, induces an immunosuppressive environment Promote (111)
CXCL1 Cytokines Up Secreted by TAMs, forms a pre-metastatic niche, promotes liver metastasis Promote (114)
TGF-b Cytokines Up Secreted by TAMs, facilitates EMT in CRC Promote (101)
VEGF Cytokines Up Augments the recruitment of TAMs Promote (98, 99, 115,

116)
CSF-1 Cytokines Up Augments the recruitment of TAMs Promote (98)
IL-1b Cytokines Up Regulates the crosstalk between TAMs and CRC cells Promote (115, 116)
IL-6 Cytokines Up Upregulates CCL2 and CCL5, and then recruits TAMs Promote (81)
IL-10 Cytokines Up Induces the M2 polarization Promote (117)
LUM Metabolites Up Regulates macrophage polarization Promote (118)
ABHD5 Metabolites Down Low-level expressed in migratory TAMs, upregulates the MMPs Promote (119)
PRL-3 Phosphatases Up Activates the MAPK pathway in TAMs to promote EMT Promote (77, 120,

121)
Shp2 Phosphatases Up Promotes the maturation of TAMs Promote (122)
KRS proteases Up Induces M2 polarization of macrophages Promote (122)
CTSK proteases Up Induces M2 polarization of macrophages Promote (123)
Gas6 protein Up Induces M2 polarization of macrophages Promote (122)
NLRC4 Inflammasome Up Regulates the crosstalk between TAMs and CRC cells Promote (116)
NLRP3 Inflammasome Up Regulates the crosstalk between TAMs and CRC cells Promote (115)
Wnt5a Secreted protein Up Activates macrophages polarization Promote (112, 117)
S100A8 Calcium- and zinc-

binding protein
Up Activates the NF-kB pathway in macrophages Promote (124)

GRP78 Glucose regulated
protein

Up Upregulates by TAMs, promotes STAT3 phosphorylation Promote (125)

P2X7R Purine receptor Up Leads to the recruitment of TAMs via NF-kB pathway Promote (76, 126)
LAYN Hyaluronan receptor Up Activates macrophages polarization and associates with poor prognosis of

patients
Promote (127)

COX-2 Cyclooxygenase Up Promotes the differentiation of M2 macrophages and reduces the
expansion of M1 macrophages

Promote (128)

PGE2 Prostaglandin E2 Up Promotes the differentiation of M2 macrophages and reduces the
expansion of M1 macrophages

Promote (128, 129)

IDO Indoleamine 2,3-
dioxygenase 1

Up Promotes Tregs and M2 macrophages cooperative effects, leads to
immunosuppression

Promote (130)

KYN Kynurenine Up Promotes Tregs and M2 macrophages cooperative effects, leads to
immunosuppression via AHR axis

Promote (130)
July 2021 |
 Volume 12 |
 Article 685978

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Macrophages for mCRC Treatment
upregulate matrix metalloproteinases (MMPs) involved in CRC
metastasis (119). According to the above, we consider that the
regulation of Lum or ABHD5 can target TAMs to prevent the
metastasis of CRC.

Phosphatases and Proteases
During the metastasis of CRC, phosphatases and proteases play
an important role. It has been found that the protein tyrosine
phosphatase-3 (PRL-3) (120) increases CCL26 secretion to
stimulate TAM infiltration (121) and activates the MAPK
pathway in TAMs, ultimately initiating EMT. On the other
hand, PRL-3 can directly induce angiogenesis via NF-kB
signaling (77). Tyrosine phosphatase 2 (Shp2), which contains
two homologous domains of Src, is a non-receptor tyrosine
phosphatase encoded by the PTPN11 gene and is positively
correlated with tumor metastasis. Studies have shown that
Shp2 promotes the maturation of TAMs by activating RAS,
and it is associated with PD-1 signaling in T cells (134). KRAS-
positive CRC cells secrete cytokines, including growth arrest-
specific 6 (Gas6) and cause M2 macrophages polarization and
infiltration. In addition, CAFs are activated by communication
between CRC cells and TAMs, which remodels the environment
of CRC metastasis for cancer cell dissemination (122, 135).
Cathepsin K (CTSK) is a lysosomal cysteine protease, which is
implicated in signal transduction in cancer cells. CTSK, secreted
by CRC cells, induces the polarization of M2 macrophages and
mediates the interaction between the gut microbiota imbalance
and CRC metastasis, and CTSK overexpression in CRC predicts
advanced progression and poor prognosis (123). Thus, it can be
seen that the downregulation of these enzymes can block the
interaction between TAMs and CRC cells and then inhibit the
development of CRC.

Other Biomolecules
Many other biomolecules are also involved in TAM-mediated
CRC metastasis. Both nucleotide-binding oligomerization
domain (NOD)-like receptor C4 (NLRC4) and NOD-like
receptor family pyrin domain containing 3 (NLRP3) are the
main components of the inflammasome, which can increase
TAM infiltration and IL-1b production, and promote CRC
metastasis by regulating the crosstalk between TAMs and CRC
cells (115, 116).

The P2X purine receptor 7 (P2X7R) expressed in tumors leads
to the recruitment of TAMs via the NF-kB pathway, which
facilitates the angiogenesis and the progression of CRC (76, 126).
Tumor cells characterized by the overexpression of homologous
protein Six1 can raise the recruitment of TAMs by increasing the
expression of CSF-1, CCL2, CCL5, and VEGF, promoting CRC
metastasis (98). S100 calcium-binding protein A8 (S100A8) can
activate NF-kB signaling inmacrophages and upregulate IL-1b and
TNF-a in TME and augment the migration of CRC cells (124).
LAYN, a cell surface hyaluronan (HA) receptor, may be used as a
prognostic biomarker for CRC, and it is associated with immune
infiltration including TAMs (127). Complement 5a expressed in
CRC cells activates macrophage polarization, which in turn
facilitates CRC liver metastasis via the NF-kB pathway (136).
Frontiers in Immunology | www.frontiersin.org 7
M2-like macrophages have been reported to upregulate the
expression of the glucose-regulated protein of 78 kDa (GRP78)
in tumor cells, promoting STAT3 phosphorylation, leading to
the downstream inflammatory factors including IL-1b and TNF-
a upregulation, which facilitates tumor progression (137).

COX-1 and COX-2 are two isozymes of cyclooxygenase
(COX). COX-2 has been found in high levels in CRC (125).
Studies have confirmed that COX-2 is a promoting factor for
liver metastasis of CRC, and it can convert arachidonic acid into
prostaglandin E2 (PGE2) (138, 139). TAMs are the main source
of COX-2 in intestinal tumors; PGE2-bound EP4 promotes the
differentiation of immunosuppressive M2 macrophages and
reduces the expansion of immunostimulatory M1 macrophages
(128). PGE2 also enhances the tumor infiltration of M2
macrophages and promotes the development and metastasis of
CRC (129).

In addition, Indoleamine 2,3-dioxygenase 1 (IDO) suppresses
T cell immunity by catabolizing tryptophan into kynurenine
(KYN) and promotes CD8+ T cell exhaustion (140). In IDO-
expressing tumors, Tregs cooperate with M2-like macrophages,
promoting immune suppression via Kyn-aryl hydrocarbon
receptor (AHR) axis (130). Studies have shown that in tumor
tissues, the levels of IDO1 and its catabolite KYN are higher in
late stages (stages III and IV) than in early stages (stages I and II)
of CRC patients (141). Also, IDO was found to be negatively
correlated with the survival rate of patients (142).

From the above data, we infer that by interfering with these
molecules in TIME, we can directly or indirectly block the
crosstalk between TAMs and CRC cells and then inhibit the
progression of the tumor.
CLINICAL DEVELOPMENT OF TARGETED
THERAPY IN CRC METASTASIS

In recent years, the development and applications of clinical
targeted drugs have been increasing. In the treatment of CRC
metastasis, targeted drugs that have entered clinical application
stage or clinical trials include bevacizumab, ramucirumab,
cetuximab, panitumumab, trastuzumab, regorafenib, lapatinib,
erlotinib, napabucasin, sym004, and pimasertib (Table 2).

TAMs are one of the causes of tumor angiogenesis and tumor
immune escape mechanisms, and targeted treatment of
macrophages represents a new challenge and may become a
novel strategy for cancer therapy. In the TME, the antiangiogenic
drugs bevacizumab and ramucirumab can bind to human VEGF
and block its biological activity (143–145); cetuximab and
panitumumab bind to the epidermal growth factor receptor
(EGFR), repolarize TAMs from M2-like to M1-like
phenotypes, recruit myeloid effector cells such as M1
macrophages and PMN for tumor cell killing by ADCC (147–
149), and inhibit angiogenesis and vascular endothelial
permeability (162–164), and thus block M2 cell infiltration in
the inflammatory environment and impede tumor development
(165–167). HER2 is positively expressed in CRC, and some
studies have shown that trastuzumab and lapatinib, drugs
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targeting HER2, can inhibit tumor formation by increasing
macrophage levels and phagocytosis, and by increasing the
infiltration of immune cells, it exerts a therapeutic effect on
CRC metastasis (83, 146, 150, 151).

Besides the mentioned monoclonal antibodies above, there are
several targeted drugs proposed for the treatment of mCRC.
Regorafenib, a multi-kinase inhibitor, not only plays an anti-
angiogenesis role by inhibiting VEGF but also induces M2 to
M1 TAM polarization (152–154). Erlotinib can inhibit the
phosphorylation of intracellular tyrosine kinases associated with
EGFR, reducing the content of TAMs (155–157). Napabucasin
inhibits the STAT3, which is associated with tumor stemness. Due
to the increasing evidence supporting the overexpression of
STAT3 in CRC cells, it can be inferred that napabucasin may
reduce the STAT3-mediated TAM infi l t rat ion and
chemoresistance (158, 159). Furthermore, as previously
mentioned, in the TIME, the activation of the MAPK pathway
in CRC cells can promote the recruitment of TAMs. Pimasertib, a
drug targeting MAPK, has also been shown to be effective in phase
I clinical treatment of mCRC (161). Sym004, a dual-antibody
mixture targeting non-overlapping EGFR epitopes, can inhibit the
infiltration of macrophages in TIME, thus providing a good
therapeutic approach for mCRC (160, 166). All the above-
mentioned pre-clinical and clinical-stage drugs are implicated in
macrophage, which suggests that the development of macrophage-
targeted drugs have long-term clinical significance.
CLINICAL TRIAL DRUGS TARGETING
TAMS IN METASTATIC CRC

There are drugs targeting macrophages to treat mCRC in clinical
trials, either as a single therapy or in combination with
chemotherapy or immunotherapy (Table 3). Studies have
shown that the expression of PD-1 by TAMS can inhibit the
Frontiers in Immunology | www.frontiersin.org 8
phagocytosis of macrophages against tumors and tumor
immunity (173). Also, macrophage colony-stimulating factor 1
(CSF-1) plays an important role in macrophage differentiation
and angiogenesis (174). In the clinical research on the treatment
of mCRC, there are many studies on the anti-CSF-1 receptor
(CSF-1R) and anti-PD-1/PD-L1 targeted drugs. RG7155
(emactuzumab) is a humanized mAb that binds to CSF1R and
blocks its dimerization. In mouse models of CRC, RG7155
treatment reduces the infiltrated TAMs and increase CD8
(+)/CD4(+) T cell ratio (168). Pexidartinib and Durvalumab
are anti-CSF1R and anti-PD-L1 drugs respectively. Recently,
clinical studies are evaluating the safety and activity of their
combination in patients with advanced/metastatic CRC and
clinically active pancreatic cancer (169).

In addition, granulocyte-macrophage colony stimulating
factor (GM-CSF) can enhance the function of macrophages
and other immune cells and improve the antitumor and anti-
infective immunity of the body (175). GM-CSF is widely used in
clinical research. A clinical trial demonstrated the safety and
feasibility of the GM-CSF colon cancer vaccine administered to
patients with mCRC and recommended that it is necessary to
further study the efficacy and antitumor immunity of this vaccine
(176, 177). JX-594 is recombinant vaccinia granulosa cell-
macrophage colony stimulating factor (RAC VAC GM-CSF). It
has been proved that intravenous infusion of Pexa-Vec (JX-594)
is a safe and well-tolerated drug (170). At present, a phase 2 study
of Pexa-Vec combined with irinotecan in patients with mCRC is
TABLE 2 | Targeted drugs of the treatment in mCRC.

Targeted
drugs

Types Target Mechanism Association with macrophage References

Bevacizumab Human monoclonal IgG1 antibody VEGF Inhibits angiogenesis of tumor Inhibits the infiltration of TAMs (143–146)
Ramucirumab Human monoclonal IgG1 antibody VEGF Inhibits angiogenesis of tumor Inhibits the infiltration of TAMs (144, 145)
Cetuximab Human monoclonal IgG1 antibody EGFR Inhibits angiogenesis and vascular

endothelial permeability
Repolarizes TAMs from M2-like to M1-like
phenotypes

(147–149)

Panitumumab Human monoclonal IgG2 antibody EGFR Inhibits angiogenesis and vascular
endothelial permeability

Recruits myeloid effector cells such as M1
macrophages and PMN for tumor cell killing by
ADCC

(47, 148)

Trastuzumab Human monoclonal IgG antibody HER2 Blocks the growth of cancer cells Increases macrophage levels and phagocytosis (146, 150)
Lapatinib Human monoclonal IgG antibody HER2 Blocks the growth of cancer cells Reduces the content of TAMs in TIME (150, 151)
Regorafenib Multi-kinase inhibitor VEGF Inhibits angiogenesis of tumor Reduces the content of TAMs, increase M1

polarization of macrophages
(152–154)

Erlotinib EGFR tyrosine kinase inhibitor EGFR Blocks tumor growth by inhibiting
the activity of tyrosine kinase

Reduces the content of TAMs, increases M1
polarization of macrophages

(155–157)

Napabucasin Inhibitor of STAT3 STAT3 Inhibits tumor metastasis and
recurrence

Reduces the polarization and infiltration of M2 (158, 159)

Sym004 Anti-EGFR Antibody Mixture EGFR Inhibits tumor growth and
metastasis

Reduces the polarization and infiltration of M2 (160)

Pimasertib MEK inhibitor MAPK Inhibits the development and
metastasis of CRC

Reduces the polarization and infiltration of M2 (161)
July 2021 | Volume 12 | A
TABLE 3 | Current clinical trial drugs targeting TAMs in mCRC treatment.

Drug Target Inhibitor type References

RG7155 CSF-1R mAb (168)
Pexidartinib CSF-1R Small molecule (169)
JX-594 GM-CSFR Small molecule (170)
GVAX GM-CSFR Allogeneic colon cancer cell vaccine (171, 172)
Durvalumab PD-L1 mAb (169)
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currently under way (178). Drugs targeting epigenomes include
DNA methyltransferase 1 inhibitor (DNMTi) and histone
deacetylase inhibitor (HDACi). The trial of the second
generation DNMTi guadecitabine combined with colon vaccine
(GVAX) secreting GM-CSF in the treatment of advanced CRC
showed that the treatment was well tolerated and had no
accidental toxicity, but it is closely related to the order of
administration sequence (171, 172). These drugs, which have
entered into clinical trials, show the potential of targeting
macrophages in the treatment of CRC metastasis.
DISCUSSION

Clinical studies have shown that patients with mCRC have short
survival time and poor prognosis, which indicate that inhibiting
the metastasis of CRC is the critical point to treatment (179).
With the effective application of immune checkpoint inhibitors
in the treatment of melanoma, the prospects of immunotherapy
for the treatment of other cancer types, including CRC, have
been gradually proposed. The inhibition of immune checkpoints
can enhance the tumor immune response and inhibit tumor
development. PD-1 and TIM-3 are two significant
immunosuppressive molecules, which have a crucial effect on
immune escape and tumor development (180). PD-1 exists on
the surface of T lymphocytes and is bound by its ligand PD-L1
expressed on Tregs or tumor cells, causing the reduction of
tumor immunity (181–183). PD-L1 expression is a suitable
prognostic biomarker to predict the survival of patients with
CRC. In stage I–III CRC patients, the upregulated expression of
TIM-3 and PD-1 may predict poor prognosis (180).
Furthermore, there are significant differences in expression
between metastatic and primary tumors. PD-1 expression in
tumor-infiltrating lymphocytes is a strong prognostic indicator
for CRC patients following pulmonary resection for CRC
metastasis (182). In addition, lymphocyte activation gene 3
(LAG3) is also an immune checkpoint protein (184). Blocking
LAG3 can enhance tumor-infiltrating T cell response in patients
with mismatch-repair proficient liver metastasis of CRC (185),
which might be a newfound immunotherapy target for CRC liver
metastasis. CTLA-4 expressed by T cells can also inhibit the
activity of CD8+ T cells and tumor immunity. All the above-
mentioned proteins are important immune checkpoints, which
can suppress T effector cell proliferation and consequently
inhibit tumor immunity (186). Clinically, PD-1 inhibitors are
effective in mCRC with mismatch repair defects and high
microsatellite instability (dMMR-MSI-H), which provides a
rat ionale for the deve lopment and appl icat ion of
immunotherapy in mCRC (187). As one of the most abundant
immune cell types in the TIME, TAMs have fundamental
significance for their development as potential targets in tumor
therapy. Studies have shown that the phagocytic ability of PD-1+
TAMs is decreased, thus PD-1 inhibitors also play a critical role
in the targeted therapy of TAMs (173).

In TIME, some molecules, as cellular receptors, can directly
target TAMs by inhibiting the development of CRC through
Frontiers in Immunology | www.frontiersin.org 9
their inhibitors. Some molecules, such as cytokines or non-
coding RNA, that activate tumor-related signal pathways can
promote the immunosuppression of TIME, increase the
recruitment and infiltration of immunosuppressive cells,
promote EMT and tumor angiogenesis, and indirectly promote
the CRC metastasis through the crosstalk between macrophages
and tumor cells. Also some molecules, as cell products, can
induce the polarization of M2 macrophages and predict a poor
prognosis in patients.

Researchers have identified a number of factors that regulate
macrophages, and we have classified and summarized their
findings. According to Table 1, we can regulate or block the
molecules that interfere with TAM infiltration or M2-like
polarization, so that their depletion and reprogramming can
then inhibit CRC metastasis. At present, there are few studies on
direct targeting of macrophages. With the rise of nanometer
technology and its application in tumor treatment (188), we
hypothesize that we can use the existing nanomaterial-targeting
technology to identify the unique surface markers that directly
and specifically bind to TAMs and to remove or block their
synergistic invasion of CRC cells; however, this technology needs
to be further investigated by researchers. Inhibitors or gene
knockout methods can be used in in vivo and in vitro
experiments to regulate related molecules, directly or indirectly
inhibit the tumor-promoting effect of TAMs, and then induce
targeted macrophages to interfere with the process of
CRC metastasis.

At present, there are still numerous challenges for the
development of macrophages as molecular targeted therapy for
tumors. Most biomarkers associated with macrophages play an
indirect role, but their effects are not completely clear. Furtherly,
TAM-associated molecular targets and their therapeutic effects
on CRC still require verification using experimental models.
Tumor treatment that relates to macrophages has entered clinical
application and the associated immunotherapeutic and targeted
therapy has shown the effective potential to inhibit tumor
metastasis, but its clinical application is still very limited and
requires further exploration before its therapeutic benefits are
expanded as an intervention for tumor metastasis.

Although targeted drug therapy has achieved a certain degree
of therapeutic efficacy, these agents are not effective for all
patients. Besides, prolonged treatment with targeted drugs may
also result in drug resistance. Studies have shown that TAMs are
associated with drug resistance to bevacizumab, and TAMs
secrete IL-8 which induces drug resistance to lapatinib by
activating EGFR signaling (189). In a phase III clinical trial,
the addition of cetuximab to mCRC patients who were treated
with chemotherapy combined with bevacizumab activated M2
macrophages and reduced the progression-free survival rate
(190). Thus, targeted drugs require further experimental
evaluation despite their potential benefits for the treatment
of cancers.

Targeted drug therapy is also limited by the degree of toxicity
during treatment. Adverse effects mainly include skin toxicity
and gastrointestinal reactions. Thus, the control of side effects is
also a key point to be considered in the development of targeted
July 2021 | Volume 12 | Article 685978
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drugs. Furthermore, exploration of therapeutic doses should also
consider the maximal doses tolerated based on the condition of
the patients in order to achieve the best therapeutic outcome and
simultaneously to improve their quality of life during treatment.
Therefore, before targeted drugs are fully applied in clinical
practice, well-organized clinical trials are needed to fully
elucidate the advantages of the approach and to determine
ways to avoid side effects as much as possible. If these
strategies can be applied to the human body after
improvement, they can be used as supplementary strategies for
routine treatment, which could prolong survival time and
improve life quality of patients with advanced CRC.

In conclusion, CRC metastasis is a complex process
associated with the interaction between tumor cells and their
metastatic niche. In this paper, we described the feedback loop
between CRC cells and TAMs in TIME during metastasis. As the
main immune cells in the TIME, macrophages play a pivotal
impact in the development of mCRC. Macrophages may exert
tumoricidal effects as the M1 subtype and participate in tumor
immunity. Conversely, macrophages also inhibit inflammatory
reaction as in the M2 subtype and facilitate the development of
mCRC. In the TIME of CRC, TAMs interact with cytokines, cell
metabolites, and signaling pathways to regulate the TME of CRC.
Frontiers in Immunology | www.frontiersin.org 10
We summarized the biomolecular markers associated with
macrophage activity in the mCRC TIME and provided an
outline of the rationale for the development of novel molecular
targeted therapy for mCRC. Accordingly, targeting TAMs is a
promising strategy for CRC metastasis immunotherapy.
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