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A B S T R A C T

Neuronal oscillations emerge in early human development. These periodic oscillations are thought to rapidly
change in infancy and stabilize during maturity. Given their numerous connections to physiological and
cognitive processes, understanding the trajectory of oscillatory development is important for understanding
healthy human brain development. This understanding is complicated by recent evidence that assessment
of periodic neuronal oscillations is confounded by aperiodic neuronal activity, an inherent feature of
electrophysiological recordings. Recent cross-sectional evidence shows that this aperiodic signal progressively
shifts from childhood through early adulthood, and from early adulthood into later life. None of these studies,
however, have been performed in infants, nor have they been examined longitudinally. Here, we analyzed
longitudinal non-invasive EEG data from 22 typically developing infants, ranging between 38 and 203 days
old. We show that the progressive flattening of the EEG power spectrum begins in very early development,
continuing through the first months of life. These results highlight the importance of separating the periodic
and aperiodic neuronal signals, because the aperiodic signal can bias measurement of neuronal oscillations.
Given the infrequent, bursting nature of oscillations in infants, we recommend using quantitative time domain
approaches that isolate bursts and uncover changes in waveform properties of oscillatory bursts.
1. Introduction

Many drastic changes in brain structure and function occur during
the first year of life. Among those are the rapid changes the com-
plexity and diversity of neurons and neuronal connections (Silbereis
et al., 2016). In early, prenatal neurodevelopment, these changes are
accompanied by a profound shift in cortical electrophysiology, in-
cluding the spontaneous emergence of neuronal oscillations and their
differentiation into multiple frequency bands (Trujillo et al., 2019).

In the context of neuronal oscillations, strong rhythms such as the
visual alpha- and sensorimotor mu-rhythms can be readily observed
with non-invasive electroencephalography (EEG) in adult humans in
the awake state. Large-scale rhythms have been linked to sensory,
motor and cognitive processes (Varela et al., 2001; Buzsáki and Wang,
2012) as well as display differences in pathological states (Hammond
et al., 2007; Uhlhaas and Singer, 2010; Voytek and Knight, 2015). As
they can be recorded non-invasively, they have the potential of being a
candidate for predictive biomarkers (Furman et al., 2020) or informa-
tive about general theories of brain functioning (Buzsáki and Draguhn,
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2004; Klimesch, 2012; Fries, 2005; Canolty and Knight, 2010). Interest-
ingly, these rhythms are not present at birth. These striking differences
spurred interest in studying changes of neuronal oscillations across
development beginning in the earliest days of EEG (Berger, 1933).
Classical cross-sectional and longitudinal studies in infants and children
measured oscillatory frequency and amplitude of alpha-rhythms in the
time domain, showing that oscillatory frequency increases over the
span of childhood, while amplitude decreases (Lindsley, 1938, 1939).
The alpha-rhythm emerges at around 3–4 months, with a frequency
of around 3–4 Hz (Smith, 1938; Lindsley, 1939), increasing to 5.5–
7 Hz at 12 months; the frequency continues to increase over the
course of childhood and adolescence (Henry and Greulich, 1944) before
decreasing later in life (Wang and Busse, 1969).

Eventually these time domain approaches gave way to later studies
that used spectral domain approaches to measure changes across fixed
selected frequency bands in terms of relative or absolute power (Hagne,
1968; Mizuno et al., 1970; Marshall et al., 2002; Saby and Marshall,
2012). However, there are several shortcomings associated with using
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spectral power measures in fixed frequency ranges (Donoghue et al.,
2020; Cole and Voytek, 2019). First, oscillations in infant EEG are
transient, appearing in short bursts. This means that spectral measures
that average across very long time windows, such as are commonly
used, can make very high amplitude oscillatory bursts appear to be
much smaller in amplitude, since they average in data from times
when no oscillations are present (Jones, 2016; Cole and Voytek, 2019).
Because of this, it is unclear whether oscillatory amplitude actually
decreases with development, or whether oscillatory bursts become less
frequent.

Furthermore, an oscillation whose frequency is less stable can also
manifest as a lower amplitude rhythm when measured using tradi-
tional spectral approaches. Given the differential role that oscillatory
bursts play compared to tonic rhythms in neural processing and cogni-
tion (Feingold et al., 2015; Lundqvist et al., 2016; Peterson and Voytek,
2017), it is important to clearly elucidate the nature of how these
rhythms change with early development.

Another shortcoming of traditional spectral analysis approaches
is that EEG activity consists of mixed periodic and aperiodic sig-
nals (Donoghue et al., 2020). Aperiodic activity manifests in the 1/f-like
structure of the signal, and is the dominating type of activity when
oscillatory bursts are absent. Because of this, even when no oscillation
is present, spectral analyses will show power within a frequency band
driven entirely by the aperiodic signal, and not by any oscillatory
activity. Thus, without explicitly measuring and controlling for the
aperiodic signal, one cannot say with certainty whether the band-
specific power changes seen in development are driven by changes in
oscillatory bursts, the aperiodic signal, or both. This is especially impor-
tant given the emerging evidence that the aperiodic exponent exhibits
strong changes both across aging (up to 70 years old) (Voytek et al.,
2015) and across childhood (from 4 to 12 years old) (He et al., 2019).
However, these studies are limited by the fact that they are cross-
sectional and do not account for the bursty nature of oscillations, which
can also change across development and distort spectral estimates of
neuronal oscillations (Cuevas et al., 2014), especially given substantial
variability across individuals.

Fransson et al. (2013) have shown that an aperiodic component
with 1/f-structure can be identified in EEG as well as in fMRI in
newborns. But as of yet, no study has explicitly examined longitudinal
changes in aperiodic activity and oscillatory bursts across development,
which results in a lack of clarity regarding which features are truly
changing with development: the aperiodic signal, and/or oscillatory
burst amplitude and oscillatory frequency. Therefore, here we aim
to show explicit quantification of aperiodic and periodic processes in
infant EEG using openly available tools and methodological consid-
erations specific to infant data. For this, we re-analyzed open data
from Xiao et al. (2018), consisting of longitudinal EEG measurements
of infants in the first seven months of life. We assess changes in the
aperiodic component, as well as changes in oscillatory bursts by quanti-
fying waveform features in the time domain, segmenting the signal into
individual cycles (Cole and Voytek, 2019; Schaworonkow and Nikulin,
2019). This method only manifests one of several possible methods for
investigating non-stationary EEG signals in a time-resolved manner, but
places a specific emphasis on quantifying the waveform of each cycle
within the bursts. Other time–frequency approaches are able to resolve
transient bursts by preserving the time axis as well as the spectral
axis. This is accomplished by for instance using a short-time Fourier
transform on segments of the signal multiplied with a window function.
More adaptive methods, such as the wavelet transform, can be used
for optimizing resolution for each frequency band. These methods have
been successful in assessing the EEG frequency content in anesthesia in
infants (Cornelissen et al., 2015; Agrawal et al., 2019) or for investigat-
ing time-locked events, such as auditory evoked responses (Kaminska
et al., 2018; Kushnerenko et al., 2002). Here, we opted for the cycle-
based approach because we were primarily interested in the momentary
2

dynamics of oscillations in a specific frequency band, without temporal
integration over windows. In addition, the cycle-by-cycle approach may
offer additional insights into the underlying physiological generators
of the asymmetric oscillations that can be missed when assuming a
sinusoidal basis (Cole and Voytek, 2017).

We find that the aperiodic exponent exhibits strong changes during
infancy, with a marked decrease across the investigated age range
of the first month to the seventh month of life. This decrease in
spectral exponent is equivalent to a ‘‘flattening’’ of the power spectrum
as seen in aging (Voytek et al., 2015), which has previously been
linked to an alteration in the relative contributions of excitatory and
inhibitory currents contributing to the field potentials from which EEG
activity arises (Gao et al., 2017). In addition, we quantified bursts over
occipital and sensorimotor regions. While we confirm previous work
showing that oscillatory frequency increases with development, we
find no significant change in alpha-amplitude. This suggests that prior
observations of decreasing alpha-amplitude with development may be
at least partially driven by the oscillation frequency changes.

While these results are specific to early development, we argue
more generally that the complexity of neural oscillations – including
their bursty nature – as well as the often overlooked aperiodic sig-
nal, all need to be taken into consideration when assessing spectral
measures of neural oscillations. Specifically, we propose an analysis
approach that quantifies the aperiodic component and uses burst detec-
tion algorithms. Such a combined approach may yield improved clarity
regarding the relationship between oscillatory and aperiodic activity to
perceptual, cognitive, and motor development in infancy.

2. Materials and methods

2.1. Experimental recordings

We reanalyzed an openly available EEG dataset (Xiao et al., 2018;
Hooyman et al., 2018). Here, we give a brief summary of the experi-
mental methods, with full details given in the original publications.

2.1.1. Participants
The study protocol was approved by the institutional review board

of the University of Southern California. Written consent was obtained
prior to the experiment from the parent or legal guardian. The dataset
was collected from 22 typically developing infants (10 male, 12 fe-
male), stemming from full-term births, with 1–6 recordings per infant
and a one month interval between sessions, with the minimum and
maximum age present in this dataset of 38 and 203 days, respectively.
Participants exclusion criteria were: (1) complications during birth (2)
any known visual, orthopedic or neurological impairment (3) below 5th
percentile Bayley Scales of Infant Development (Bayley, 2005) score
at the age of testing. 71 sessions of approximately 5 min length were
acquired in total. One session was excluded from analysis because only
35 seconds of data was contained in the associated file.

2.1.2. Experimental design and EEG recording setup
The experimental session consisted of four types of blocks:

(1) baseline recording where the infant was presented with a glowing
globe toy (40–60 s) (2) reaching trial: were a toy was placed in
front of the infant, with encouragement to reach for it (20 seconds)
(3) non-reaching trial: toy was removed (20 seconds). Reaching and
non-reaching trials were repeated five times. (4) baseline recording.
Since behavioral annotations were not contained in the dataset, we did
not differentiate between conditions and analyzed the recording as a
continuous trace. Scalp EEG was recorded from a 32 channel BioSemi
active electrode cap (Amsterdam, The Netherlands), with channels
arranged in the international 10–20 system. The data was available

with a sample rate of 512 Hz.
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2.2. Data analysis

Data analysis was performed with python using MNE v.0.20.4
(Gramfort et al., 2013), and R (R Core Team, 2017) for calculating
linear mixed models using the lme4 library (Bates et al., 2015). The
analysis code needed to reproduce the analysis and figures is provided
here: http://github.com/nschawor/eeg-infants-exponent.

2.2.1. Preprocessing
First, channels were manually rejected using visual inspection to

exclude outlier channels according to excessive noise level and dis-
placement; time segments showing movement artifacts were manually
rejected and were not considered for time domain analyses. After that,
independent component analysis was performed (FastICA on 2–40 Hz
band-pass filtered data, principal component analysis was used as a
pre-whitening step to first retain components that explain 95% of the
data variance which were subsequently passed on to the independent
component algorithm. In one session, the threshold needed to be ad-
justed to 99% to return more than one component, because of very
strong noise common to all electrodes). Strong muscle noise and move-
ment artifact components were identified manually with aid of spatial
topographies, frequency spectra and component time courses. These
components were then projected out (mean and standard deviation of
number of rejected components: 1.15 ± 1.13). In general, because the
separation between noise and signal ICA components in infant EEG
data is less distinct than in adults (Noreika et al., 2020), we rejected
components conservatively. The data was re-referenced to a common
average reference.

2.2.2. Calculation of aperiodic exponents
The spectral parameterization method and toolbox of Donoghue

et al. (2020) (version 1.0.0) was employed for calculation of aperiodic
exponents. In this approach, the power spectrum is modeled as a
combination of aperiodic and oscillatory components, which allows
distinguishing between oscillatory and aperiodic contributions to the
spectrum. The power spectral density 𝑃 (𝑓 ) for each frequency 𝑓 is
expressed as:

𝑃 (𝑓 ) = 𝐿(𝑓 ) +
∑

𝑛
𝐺𝑛(𝑓 ). (1)

ith the aperiodic contribution 𝐿(𝑓 ) expressed as:

(𝑓 ) = 𝑏 − log[𝑓𝜒 ], (2)

ith a constant offset 𝑏 and the aperiodic exponent 𝜒 . When the
ower spectrum is plotted on a log–log axis, the aperiodic exponent
corresponds to the slope of a line, see Fig. 1B.
Each oscillatory contribution 𝐺𝑛(𝑓 ) is modeled as a Gaussian peak:

𝑛(𝑓 ) = 𝑎𝑛 exp

[

−
(𝑓 − 𝜇𝑛)2

2𝜎2𝑛

]

, (3)

ith 𝑎𝑛 as the amplitude, 𝜇𝑛 as the center frequency and 𝜎𝑛 as the
andwidth of each component. The number of oscillatory components
s determined from the data, with the option to set a maximum number
f components as a parameter. The general model assumption here is
hat oscillatory and aperiodic processes are distinct and separable.

Following steps were executed to arrive at the aperiodic exponent
easure.

1. For each session, data was split into 10 second segments.
2. For each segment, the power spectrum was computed using the

multitaper method (using 1 Hz bandwidth, resulting in 9 discrete
prolate spheroidal sequence tapers).

3. The aperiodic exponent was estimated from the power spectrum
of each segment. All exponents from model fits satisfying a
minimum 𝑅2 value of 0.95 were kept for further analysis.
3

4. The mean exponent across segments was calculated, obtaining
one value per channel for each session.

A challenge in analyzing this dataset is the presence of many
artifacts stemming from gross motor movements as well as a high level
of muscle noise. As the presence of artifacts influences power spectral
estimates, the aperiodic exponent was evaluated across segments of
data to increase the stability of the estimate by averaging. The length
of segments of 10 seconds was chosen to balance off a long enough
segment length for reliable estimation of the power spectrum while
obtaining a sufficient number of segments to identify non-stationary
outliers. Common average referenced signals were used for exponent
calculation because the aperiodic signal is not known to have a locally
confined spatial origin, as is the case of neuronal oscillations, which
have known generators in sensorimotor and occipital cortices (Crone
et al., 1998; Hari et al., 1997). We therefore opted for a reference that
is not regionally biased, in the case of aperiodic exponent.

Settings for the spectral parameterization algorithm were: peak
width limits: (0.5, 12.0); maximum number of peaks: 5; minimum peak
amplitude exceeding the aperiodic fit: 0.0; peak threshold: 2.0; and
aperiodic mode: ‘fixed’. Here, we only take into account the aperiodic
component from the power spectrum, discarding estimated peaks. The
presence of a high level of muscle noise manifests in the spectral
domain as an increased level of >10 Hz power levels. We therefore
parameterized the spectra in the frequency range 1–10 Hz to reduce
contamination of exponent model fit by an increase in muscle noise.
See Fig. S1 for sensitivity of aperiodic exponent results on selected
model parameter settings, demonstrating stability across a range of
parameters.

For statistical evaluation, a linear mixed effects model was fit to
the aperiodic exponents with participant as a random effect and age
as a fixed effect for each channel independently. We extracted the
corresponding t-values and parameter estimates for the fixed effect.
Significance was assessed with a hierarchical bootstrapping approach:
the exponent values were permuted across sessions within a participant
and the first session was placed at an age drawn with replacement from
the empirical distribution of age at the first session, with subsequent
sessions retaining their original inter-session intervals (since the exper-
imental sessions were not conducted exactly one month apart). 5000
bootstrapping iterations were performed, fitting a linear mixed model
to the permuted exponent values and generating a null distribution
of parameter estimates. p-values were computed as: (1 + number
times the parameter estimate from non-permuted data exceeds the null
distribution)/(1 + number of bootstrap iterations). Bonferroni 𝑝-value
adjustment was applied to correct for multiple comparisons across 32
channels.

2.2.3. Calculation of waveform features
To complement the spectral analyses that average over time, we

also conducted analyses wherein the EEG time series are segmented
into individual cycles to look at nonsinusoidal, asymmetric features
of momentary voltage dynamics in the frequency band of interest.
This approach looks for cycles with a predefined specific frequency
of interest, in our case the alpha frequency for infants in the range
of 3—7 Hz with the frequency range defined by previous literature.
Waveform features of interest here are the cycle frequency (the inverse
of the period, measuring the duration of each cycle), the amplitude of
cycles, peak–trough asymmetry (measuring asymmetry in duty cycle),
and rise-decay asymmetry (measuring asymmetry in rise and decay
times).

Following steps were executed to arrive at average burst features
for each dataset:

1. To extract the signals of interest, we used a Laplacian spatial
filter, where from the activity of one center electrode, four
surrounding electrodes were subtracted (see inset of Fig. 4A and
Fig. 4B for used electrodes).

http://github.com/nschawor/eeg-infants-exponent
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2. A narrow band-pass filter (finite impulse response filter, 3–7 Hz)
was used to extract time points of zero-crossings of putative
oscillatory bursts. The zero-crossing time points are used to
segment the signal into individual cycles. Cycles that were part
of artefactual segments as marked in the preprocessing step were
discarded.

3. With the aid of zero-crossings, cycle features were determined
on broad-band filtered (1–45 Hz) data.

4. All cycles that pass predefined criteria regarding amplitude and
period consistency as well as relative amplitude extent were
classified as bursts (see below for parameter settings).

5. Mean waveform features across burst cycles (voltage amplitude,
cycle frequency, peak–trough and rise-decay asymmetry) were
computed for each session.

The bycycle toolbox (Cole and Voytek, 2019) (version 0.1.3) was
sed for detecting and quantifying burst features in the time domain
steps 2–4). This approach allows for analysis of momentary voltage
eflections of oscillatory burst waveform features, without temporal in-
egration. More details about the benefits of this approach are outlined
n Cole and Voytek (2019).

The rationale for using a Laplacian filter is to extract more local
ignals, less influenced by volume conduction, while maintaining com-
utational simplicity, as recommended by Cuevas et al. (2014). We
sed three spatial derivations, centered over left and right sensorimotor
lectrodes as well as over central posterior electrodes.

Spatial patterns were calculated with aid of the covariance matrix
cross channels (Haufe et al., 2014). Spatial patterns provide a way
o estimate the spatial origin of a signal that is extracted with a
pecified spatial filter without the requirement to build a biophysical
ead model. We used the covariance matrix of the band-pass filtered
ignal in the 3–7 Hz frequency range in order to specifically assess the
rigin of activity in the infant alpha-frequency band.

In accordance with previous literature, we chose 3–7 Hz as the filter
ange for zero-crossing determination, as this is the frequency range
here alpha-rhythm type oscillatory bursts start to gradually emerge

n infants. We used the following parameter settings for determining
ursts which were consistent across sessions: minimum of three present
ycles, amplitude fraction threshold: 0.5 (discarding cycles with am-
litudes smaller than the median amplitude), amplitude consistency
hreshold: 0.5 (discarding cycles where the difference between rise and
ecay voltage values within one cycle was greater than the median
ifference), period consistency threshold: 0.5 (discarding cycles where
he difference between a cycle period and the period of neighboring
ycles was greater than the median), monotonicity threshold: 0.5 (dis-
arding cycles where the fraction of instantaneous voltage changes
etween consecutive samples that are positive during rise and negative
uring the decay phase was smaller than 0.5). Even though these
riteria are manually selected, they were used for all sessions and all
ubjects, and thus allow for within subjects comparisons across age.
ee Fig. S2/S3/S4 for sensitivity of burst-related results on selected
odel parameter settings, demonstrating stability across a range of
arameters.

Analog to the aperiodic component analysis, we then fit a linear
ixed model with participant as a random effect and age as the fixed

ffect separately for each waveform feature and for each of the three
aplacian signals and assessed significance via hierarchical bootstrap-
ing. Bonferroni 𝑝-value correction was applied to correct for multiple

comparisons across the three Laplacian channels. To compare differ-
ences in oscillation frequency across channels, we estimated a common
model with data from all three channels with an additional intercept
for the factor channel and compared channel-specific intercepts against
channel-specific intercepts of a null model (5000 bootstrap iterations),
where waveform-features were pooled and then randomly assigned to
a channel.
4

3. Results

3.1. Aperiodic exponent decreases with age

The aperiodic exponent was computed for each channel for each
session for each participant, the process is illustrated in Fig. 1. The
number of analyzed segments per subject (after data cleaning and
excluding suboptimal model fits) per session was: 39.54 ± 6.57 (mean
± standard deviation), comprising approximately 94.0% ± 4.3% of the
original available data. Example topographies for a single subject across
sessions can be seen in the bottom row, showing gradual decrease of
aperiodic exponent values. The grand average shown in Fig. 2A shows
decreased exponent values for sensorimotor channels in contrast to pos-
terior and anterior channels. The exponent decreased with age across
the investigated age range for occipital–parietal channels. This was
quantified in terms of a negative coefficient of the linear mixed model
for the fixed effect age which is shown for each channel in Fig. 2B.
The decreasing exponent values across sessions for each participant are
shown in Fig. 2C for channel PO3.

3.2. Changes across age in oscillatory bursts frequency

We assessed oscillatory bursts in the 3–7 Hz frequency range from
Laplacian filtered signals from sensorimotor and occipital regions, see
Fig. 3 for example traces for a single subject. The number of detected
bursts per session was: 63.50 ± 54.19 (mean ± standard deviation).
After burst detection, the mean cycle features were computed for each
session and each channel. A linear mixed model showed a significant
relationship between mean oscillation frequency and age: oscillation
frequency significantly increases with age, for sensorimotor as well
as posterior channels (see Fig. 4A, Fig. 4B and 4C), consistent with
previous literature. In this dataset, oscillation frequency of posterior
bursts did not differ significantly from frequency of sensorimotor bursts
(see Fig. 4D, comparison of intercepts of electrodes of linear mixed
model fitted with common slope for age-effect slope, bootstrapped 𝑝-
alue > 0.05). We find no significant effect of burst amplitude and
ge within the investigated age range, as well as other investigated
aveform features (see Table 1).

. Discussion

The aim of this article is to illustrate robust ways of assessing
periodic activity in the spectral domain and periodic activity in the
ime domain for EEG recordings taken during the first months of life.
n contrast to adult EEG, sustained oscillations are mostly absent in
his data, as indicated by few to no peaks in infant power spectra
nd corroborated by time-domain analyses, which show that oscillatory
ursts occur rarely. We show that aperiodic activity attenuates in
he examined developmental interval. The underlying processes that
rive this attenuation are not yet clear and need to be studied further
n conjunction with structural changes that occur within this time
rame, e.g. changes in myelination, brain volume or cortical thick-
ess (Gilmore et al., 2007; Holland et al., 2014), as well as changes in
ognitive development. By relating changes in aperiodic exponent to
tructural and functional measurements it may become possible to dis-
inguish different contributions to the exponent measure. For instance,
n the currently used dataset, the data was acquired during a reaching
ask, where differences in task engagement could also be responsible
or driving the decrease across age, with older infants being more
ngaged. This relates to findings in adults where it has been shown that
he aperiodic exponent decreases from baseline period values when a
isual task is performed (Podvalny et al., 2015). To quantify this, longer
ecordings would be of use, where within-participant comparisons can
e made, by contrasting periods of different levels of engagement,
s determined by behavioral annotations or markers of vigilance as
etermined from measurements of pupil size. In addition, modeling
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Fig. 1. Example exponent calculation procedure and topographies for one subject. (A) Infant 32-channel EEG data of approximately was cut into segments of 10 seconds
length, with the first six segments shown here. (B) The power spectrum was calculated for each channel and each segment, shown is the power spectrum for the black trace.
A linear slope was fit to the frequency range 1–10 Hz (red line). (C) The aperiodic exponents for segments which had a model fit of 𝑅2 > 0.95 were retained and the mean
across segments was calculated (orange line). (D) The calculation was performed for each session, error bar shows standard deviation across segments. (E) Example topographies
of aperiodic exponents for one subject for all sessions, showing gradual decrease in exponent values. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 2. Spectral analysis: aperiodic exponent decreases with age in infants. (A) Grand average spatial topography of aperiodic exponent values averaged across all sessions.
(B) The exponent decreases significantly with age over posterior channels. Shown is the 𝑡-value from the linear mixed model for the fixed effect age. Circles mark channels with
a corresponding Bonferroni corrected 𝑝-value <0.01. N=70 sessions. (C) Aperiodic exponent values for the channel PO3. Each line corresponds to one participant. N=70 sessions,
Bonferroni corrected 𝑝-value = 0.0064. The solid green line is the population level model prediction, with shaded areas representing the 95% confidence interval of the prediction.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Linear mixed model estimates for fixed effect age on average burst features for three Laplacian channels.

burst feature C3 – t-value C3 – p-value C4 – t-value C4 – p-value Pz – t-value Pz – p-value

frequency 3.219631 0.00240a 4.097415 0.00240a 3.176145 0.009598a

peak–trough asymmetry 1.084038 1.00000 0.850820 1.00000 1.094204 1.000000
rise-decay asymmetry 0.873353 1.00000 −0.449706 1.00000 0.420949 1.000000
amplitude voltage 0.620464 1.00000 1.926013 0.10078 −1.672853 0.451110

ap-values are obtained by hierarchical bootstrapping. Bonferroni multiple comparison 𝑝-value correction across
channels and features was applied. N=70 sessions.
work (Chaudhuri et al., 2018) suggests that different frequency ranges
of the power spectrum are distinctly modulated by changing the level of
common input, or by changing the connectivity within the neural net-
work model. Studying these different ranges together is, for instance,
5

made possible by using a combined fMRI and EEG setup, as in Fransson
et al. (2013), who assessed aperiodic exponents in newborns with both
techniques. Such a combined setup would also be useful for examining
the relationship between structural changes and aperiodic exponent,
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Fig. 3. Example burst spatial patterns and time series for one subject. (A) Spatial patterns for the three Laplacian filtered channels, which activity was used to perform burst
detection, showing a focus over the areas of interest. (B) Example traces for each channel with detected burst cycles highlighted. (C) After burst detection, cycle features such as
oscillation frequency and (D) amplitude were computed and then averaged (orange) across each session. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Time domain analysis: oscillation frequency increases with age in infants. (A) Oscillation frequency increases with age for sensorimotor bursts. Topography shows
spatial pattern for Laplacian C3 channel. N=70 sessions, multiple comparison corrected 𝑝-value = 0.0024, obtained by hierarchical bootstrapping. The solid green line is the
population level model prediction, with shaded areas representing the 95% confidence interval of the prediction. (B) Analog to (A), but for sensorimotor bursts as extracted with a
Laplacian C4 channel, multiple comparison corrected 𝑝-value = 0.0024. (C) Analog to (A), but for posterior bursts as extracted with a Laplacian Pz channel, multiple comparison
corrected 𝑝-value = 0.009598. (D) Mean oscillation frequency for sensorimotor C3 and C4 channels as well as posterior Pz channel increases with age. Solid lines are the population
level model predictions, with shaded areas representing the 95% confidence interval of the prediction. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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such as changes in neuronal density or connectivity maturation pat-
terns (Barkovich et al., 1988; Lenroot and Giedd, 2006), especially
in the posterior regions that showed the largest decrease in aperiodic
exponent in our study. Notably, the topographical distribution also
resembles aperiodic exponent relations seen between younger and older
adults (Voytek et al., 2015), where the largest effects were also ob-
served in posterior regions. Another significant physiological change
that occurs from the preterm period is the decrease in spontaneous ac-
tivity transient events in the frequency range of 0.1–0.5 Hz as measured
in DC-coupled EEG recordings, which will influence power spectra
in low frequency range. These have been linked to development of
inhibitory GABAergic currents (Vanhatalo et al., 2005). It would be of
interest to study the decrease in SAT events with more DC-coupled EEG
recordings from within the first three months of life, with increased
number of participants to provide a refined view on the relationship of
inhibition/excitation-balance measures and aperiodic exponents, which
has been examined previously in Gao et al. (2017). Changes in exponent
will be reflected in measures of relative power, because normalizing
absolute power values will not be sufficient to correct for that. This is
because changes in relative power do not necessarily reflect oscillatory
dynamics, but can also indicate changes in aperiodic exponent. Care has
to be taken to assure that spectral measures used in a study capture the
corresponding physiological aspects the researcher intends to measure.

Additionally, we investigated oscillatory bursts in the frequency
range of 3–7 Hz using a quantitative method for extracting cycle-
by-cycle waveform features for oscillations. This approach allows us
to describe changes in waveform features for posterior and sensori-
motor bursts. We argue that in the context of oscillation ontogeny,
infant data is better suited for time domain analysis as opposed to
purely spectral analysis approaches, because of the transient nature
of oscillatory bursts. Oscillatory bursts will not necessarily show up
in the frequency spectrum computed over long time windows because
oscillatory peaks will be eclipsed by the aperiodic component if they
occur infrequently (Jones, 2016). Early studies in oscillation changes
in development and aging relied on visual inspection and subjective
ratings of regularity of rhythms (Lindsley, 1938), but this can be
measured by a quantitative assessment of oscillatory bursts, evaluating
each cycle in terms of its waveform features.

A limitation of this study is that the functional modulation of oscil-
latory bursts was not taken into account. While we observed changes in
oscillatory frequency with a topographical distribution attributable to
visual or sensorimotor rhythms, because of lack in behavior annotation
it was not possible to assess rhythm desynchronization with respect to
behavior (Stroganova et al., 1999; Bell and Wolfe, 2008), which would
be interesting for future studies. Additionally, recordings only had a
length of approximately five minutes. During such a short period, the
sampled behavior could be very different between sessions, because
infant behavior can only be experimentally controlled to a certain
degree, making it challenging to assess changes in EEG activity over
sessions with this type of data. It would be desirable to run this type
of analysis on a larger dataset with longer recordings and behavioral
annotations, as this would be informative regarding to which degree the
changes in aperiodic exponent are driven by momentarily fluctuations
in attention and vigilance, or by structural changes occurring over a
longer time frame.

To summarize, here we highlight the importance of separating the
periodic and aperiodic neuronal signals in electrophysiological record-
ings. We show that aperiodic activity changes to a large degree in the
first year of life. In spectral analyses, this type of activity can bias
the measurement of oscillatory activity. Given the infrequent, bursting
nature of oscillations in infants, we recommend using quantitative
time domain approaches that isolate bursts and uncover changes in
7

waveform properties of oscillatory bursts.
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