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Abstract

The paradoxical response of Streptococcus sanguinis to drugs prescribed for dental and clinical practices has complicated

treatment guidelines and raised the need for further investigation. We conducted a high throughput study on concomitant

transcriptome and proteome dynamics in a time course to assess S. sanguinis behaviour under a sub-inhibitory

concentration of ampicillin. Temporal changes at the transcriptome and proteome level were monitored to cover essential

genes and proteins over a physiological map of intricate pathways. Our findings revealed that translation was the functional

category in S. sanguinis that was most enriched in essential proteins. Moreover, essential proteins in this category

demonstrated the greatest conservation across 2774 bacterial proteomes, in comparison to other essential functional

categories like cell wall biosynthesis and energy production. In comparison to non-essential proteins, essential proteins were

less likely to contain ‘degradation-prone’ amino acids at their N-terminal position, suggesting a longer half-life. Despite the

ampicillin-induced stress, the transcriptional up-regulation of amino acid-tRNA synthetases and proteomic elevation of

amino acid biosynthesis enzymes favoured the enriched components of essential proteins revealing ‘proteomic signatures’

that can be used to bridge the genotype–phenotype gap of S. sanguinis under ampicillin stress. Furthermore, we identified a

significant correlation between the levels of mRNA and protein for essential genes and detected essential protein-enriched

pathways differentially regulated through a persistent stress response pattern at late time points. We propose that the

current findings will help characterize a bacterial model to study the dynamics of essential genes and proteins under

clinically relevant stress conditions.

INTRODUCTION

Streptococcus sanguinis SK36 is a Gram-positive, facultative
anaerobic bacterium that is described as a Janus-faced
micro-organism. On one hand, it is an oral commensal that
competes with pathogenic bacteria for colonization of the
oral cavity [1] through the production of bactericidal hydro-
gen peroxide that has been shown to eliminate an etiologic
agent of dental caries, namely Streptococcus mutans [2]. On
the other hand, S. sanguinis has been related to the forma-
tion of biofilms in the oral cavity, also called dental plaque
[3, 4], and has been defined as an opportunistic pathogen
that is among the leading etiologic agents of infective endo-
carditis in patients with heart valve defects [5, 6] and bacter-
emia in neutropenic patients [7]. Understanding bacterial
behaviour during disease necessitates in-depth analysis of
transcriptomic and proteomic profiles under clinically rele-
vant conditions. After sequencing the genome [8] and iden-
tifying the essential genes that are indispensable for survival

of S. sanguinis SK36 in vitro (brain–heart infusion (BHI)
media) [9], the current challenge is to identify the dynamics
of its underlying cellular components, such as mRNA and
proteins, especially the essential ones, in clinically relevant
conditions, to define ‘pathogenesis signatures’ as promising
therapeutic targets.

By colonizing the oral cavity in abundance, S. sanguinis are
exposed to antibiotics which persist at sub-inhibitory con-
centrations for long periods of time, either directly through
antibiotic ingestion by patients or indirectly through
anthropogenic antibiotic usage and consumption of antibi-
otics through animal food products [10, 11]. It was esti-
mated that out of the total antibiotic prescriptions for
clinical purposes, 7 and 10% of total prescriptions are pro-
vided by dentists in the UK [12] and Spain [13], respec-
tively. Ampicillin and amoxicillin are b-lactam antibiotics
that differ only in one hydroxyl group but share the same
spectrum of activity against Gram-positive bacteria, despite
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different intestinal absorption rates [14]. They are consid-
ered the drugs of choice for many dental practices [15] and
are prophylactic drugs for infective endocarditis-susceptible
patients [16, 17]. Misuse and abuse of antibiotics by many
dentists worldwide exacerbate the situation by further
exposing the oral microbiota, including S. sanguinis, to these
drugs [18]. It was shown that almost half of the prescribed
antibiotics are excreted in an active form, which raises ques-
tions about the diluted residual doses and their impact on
bacterial communities in the host [19].

Since 1946, early observations noted the paradoxical behav-
iour of S. sanguinis in response to drugs prescribed prophy-
lactically against infective endocarditis in vitro, where they
were shown to be susceptible, versus in vivo, where they
demonstrated resistance against the same drugs [20]. Many
hypotheses were formulated to explain this observation.
One interpretation attributed this antibacterial resistance
pattern in vivo to the physical barriers that block the access
of antibiotics to the bacteria, such as aggregated platelets
and fibrin on damaged heart valves and biofilm structures
[21]. However, this concept was challenged by findings that
antibiotics can in fact successfully diffuse through biofilms,
weakening the barrier argument of ‘protected niches’ [22].
Another hypothesis to explain the in vivo antibiotic resis-
tance pattern was first described as persistence [23], where
bacteria modulate their metabolism and growth rate to cope
with the environmental stress, such as antibiotics, thus
becoming tolerant to antibiotics [24, 25]. After clearance of
antibiotics, persistent bacteria relapse albeit with an antibi-
otic susceptible profile [26]. This scenario is consistent with
findings for S. sanguinis, where cases of b-lactam resistance
have been rare [27, 28]. Surprisingly, no homologues for the
Escherichia coli persistence elements were identified in the
S. sanguinis proteome, such as the initiation toxin–antitoxin
pair hipA–hipB [29], toxin–antitoxin systems YafQ/DinJ
and MqsR–MqsA [30], the persister formation peptide tisB
[31], bringing us back to the question: how does S. sanguinis
respond to sub-inhibitory concentrations of antibiotics? Put
differently, how does S. sanguinis modulate its genetic regu-
latory network and pathways to thrive in a stressful environ-
ment which happens to be the norm rather than the
exception?

Essential genes present a promising potential for addressing
a plethora of biological questions. They are the keys for
essential functions and have survived the evolutionary puri-
fying selection by evolving at a slower rate to sustain the
cell’s survival [32, 33]. Their evolutionary robustness is due
to their engagement in multiple functional pathways, in
addition to their evolved capacity to re-wire genetic and
protein networks to compensate for any emerging stress
[34]. In this sense, environmental specificity (stress) pro-
vides the dominant explanation for existence of an essential
gene set. After defining the essential gene set of S. sanguinis,
the current challenge is understanding the coping mecha-
nism of this bacterium with antibiotic stress by highlighting
the behaviour of essential genes in response to this specific

environmental assault, especially when coupled with high-
throughput approaches with global coverage of essential
genes and proteins.

Despite the tremendous advances in sequencing technolo-
gies and the consequent dissection of complete genomes,
our understanding of complex molecular interactions driv-
ing physiological mechanisms within a bacterial cell under
the effect of antibiotics is fragmentary [35]. The main aim
of the current project is to investigate the transcriptomic
and proteomic profiles of essential genes and proteins, using
RNA-sequencing (RNA-seq) and mass spectrometric analy-
sis respectively, under treatment of a sub-inhibitory concen-
tration of a commonly prescribed antibiotic in dental
practices, ampicillin, to elucidate the S. sanguinis stress
response mechanisms on a temporal basis and define ‘path-
ogenesis signatures’ as potential therapeutic targets. By
simultaneously studying the transcript and protein levels of
all essential genes and half of the essential proteins under
stress, our study will help characterize a bacterial model to
better understand the dynamics of essential genes under
clinically relevant stress factors and to assist in designing
evidence-based guidelines for drug prescription in clinical
practice.

METHODS

Bacterial strains, media and growth conditions

S. sanguinis strain SK36 was routinely grown in BHI broth
(BD, San Jose, CA, USA) under micro-aerobic conditions
(7.2%H2, 7.2 % CO2, 79.6%N2 and 6% O2) at 37

�
C as pre-

viously described [36]. For stress response studies, three
replicates of bacterial samples were exposed to the MIC of
ampicillin (0.25 µgml�1), MICx0.5 and MICx0.25 doses at
the mid-exponential growth phase. The MIC value was
reported in the Clinical and Laboratory Standards Institute
document M100-S25 [37]. To collect enough cells for
extraction of mRNA or protein, we added ampicillin at an
OD600 value of 0.6. The two lower concentrations of ampi-
cillin resulted in slight growth defects in comparison to the
untreated samples (Fig. S1, available in the online version of
this article). It was decided that 0.125 µgml�1 was the best
dose as it was the lowest dose that significantly impacted
S. sanguinis growth and it was selected to treat S. sanguinis
cells at the mid-exponential growth phase for 10, 20 or
30min. A triplicate of bacterial samples was left untreated
as a control.

Reagents and buffers

All buffers and solutions were prepared using ultrapure
water and analytical grade reagents. All prepared reagents
were stored at room temperature unless indicated otherwise.
Protease Inhibitor Cocktail Set II (Calbiochem, EMD Milli-
pore, cat. no. 539132) was prepared as a stock solution by
adding to each vial of lyophilized protease inhibitor cocktail
1ml of DMSO followed by 4ml of ultrapure water. The
stock solution was stored at �20

�
C. DL-Dithiothreitol

(Sigma, cat. no. D9779 SIGMA) was prepared as a 1 M stock
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solution and stored at 4
�
C. Incomplete lysis buffer was

prepared as follows: 50mM tris(hydroxymethyl)
aminomethane (Tris) (pH 7.4), 150mM NaCl, SDS 0.1%
(w/v). Immediately before use, 1ml of complete lysis buffer
for each sample was prepared by mixing 100 µl of reconsti-
tuted protease inhibitor solution, 1 µl of 1 M DTT (stock)
and 900 µl incomplete lysis buffer. The complete lysis buffer
was stored on ice.

Data mining from databases

Pathways that contain essential genes were searched as
described by the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. The functional annotation tool
of DAVID Bioinformatics Resources 6.7 [38] was used for
functional enrichment analysis of our gene and protein
dataset. To visualize the maximal number of essential genes
on a single map that encompasses all pathways harbouring
essential genes and integrate the gene expression profiles at
different time points, a network was constructed based on
data acquired from KEGG using the Cytoscape 3.4 software
platform [39]. Physiochemical characteristics (molecular
weight, amino acid length, instability index and hydropathy
values) of S. sanguinis SK36 proteins were determined using
Biopython scripts. Scatter plots for clustering the clusters of
orthologous groups’ (COG) annotations of essential and
non-essential genes were designed using Prism 5 software.
Circos plots were designed to visualize the differential regu-
lation of essential genes and proteins in transcriptomic and
proteomic data, respectively [40].

Transcriptome analysis by RNA-seq

For RNA-seq, 12 replicates of S. sanguinis SK36 samples
were cultured for 16 h in BHI broth at 37

�
C in microaero-

philic conditions. The next day, cells were diluted 100-fold
into 4ml BHI broth and grown in a 37

�
C incubator for 4.5–

5 h until OD600 readings of samples reached 0.6. Except for
one triplicate of S. sanguinis SK36 samples that was saved as
a control, all other samples were grouped into triplicates
where each triplicate was treated with sub-inhibitory con-
centration of ampicillin (0.125 µgml�1) for one time period
(10, 20 or 30min). RNAprotect Bacteria Reagent (cat. no.
76506, Qiagen, CA, USA) was added to each bacterial cul-
ture (nine ampicillin-treated samples and three untreated
samples). Cells were incubated for 5min at room tempera-
ture, centrifuged and the pellet stored at �80

�
C. Cell lysates

were collected using RNeasy mini kit (cat. no. 74106, Qia-
gen, CA, USA) and bead milling conducted with 2ml Lysing
matrix B beads in the Fast Prep 24 for 45 s at level 6. All
samples were DNA-depleted using DNase I RNase-Free
DNase Set (cat. no. 79254, Qiagen, CA, USA). Total RNA
concentrations were measured using a NanoDrop 2000 UV-
Vis Spectrophotometer (Thermo fisher, DE, USA) with
accepted thresholds for absorbance ratios 260/280 and 260/
230 of 2.0 and 2–2.2 respectively. For depletion of ribosomal
RNA, all samples were treated with Illumina Ribo-zero
Magnetic Kit for Bacteria (cat. no. MRZB12424, Roche,
USA) and the rRNA-depleted samples were purified using
Qiagen RNeasy MinElute Cleanup Kit (cat. no. 74204,

Qiagen, CA, USA). RNA concentrations were measured in
rRNA-depleted samples using NanoDrop 2000 UV-Vis
Spectrophotometer with cutoff values for RNA concentra-
tion of 10 ng µl�1. Actinomycin D (cat. no. A1410-2MG,
Sigma-Aldrich, MO, USA) was used for RNA fragmentation
and RNA libraries were prepared with NEBNext Ultra
Directional RNA Library Prep Kit NEB (cat. no. E7420L,
New England Biolabs, MA, USA) and NEBNext Multiplex
Oligos for Illumina Index Primers Set 1 and set 2 (cat. nos
E7335L and E7500L respectively, New England Biolabs,
MA, USA). The final cDNA products were purified with
AMPure XP Beads (cat. no. A63880, Beckman Coulter, CA,
USA) and band sizes were checked by gel electrophoresis.
The quality of the constructed cDNA library was deter-
mined using Agilent Bioanalyzer-High Sensitivity DNA
Chip and Ribosome Integrity Numbers (RIN) were deter-
mined for all samples with a cutoff value of 10. Library
sequencing was performed by the Nucleic Acids Research
Facilities at Virginia Commonwealth University using Illu-
mina HiSeq2000. Reads obtained from sequencing were
aligned against the S. sanguinis SK36 genome using Rock-
hopper v. 2.03 software [41] and counts of transcripts along
with statistical calculations were provided. Transcriptome
profiles were analysed for enriched pathways and function-
ally related genes using DAVID v. 6.8 Beta [42].

Gene expression data

The RNA-seq data was deposited in the Gene Expression
Omnibus database (www.ncbi.nlm.nih.gov/geo/) under the
accession number GSE97218 for ampicillin-treated samples
and untreated samples.

Measurement of essential protein conservation
patterns

A bioinformatics approach was developed to measure the
conservation ratio of every experimentally detected essential
protein in S. sanguinis SK36. In brief, we extracted the
amino acid sequences of all proteins from 2774 bacterial
species deposited in the National Center for Biotechnology
Information (NCBI) database. We designed a program
based on a reciprocal hit approach to detect orthologues of
every S. sanguinis SK36 essential protein (as a query) against
all bacterial proteins (as a subject), and vice versa, using
Basic Local Alignment Search Tool (BlastP). We accepted
an orthologue as a significant match when any sequence
alignment had the following cutoff values: minimal
sequence identity of 50% and E value �1e�5.

Examination of stressed growth in vitro

Overnight cultures of S. sanguinis SK36 were diluted
100-fold in BHI and grown for 4 h in microaerophilic con-
ditions, and then diluted 20-fold into microplate wells con-
taining fresh BHI and treated with a sub-inhibitory
concentration of ampicillin at mid-log phase (OD600=0.6).
Each sample was tested in triplicate. Growth rates were
determined by measuring the OD600 using a Synergy H1
Hybrid Reactor microplate reader (BioTek, VT, USA) every
5min under aerobic conditions for 12 h of untreated and
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ampicillin-treated triplicate samples. The experiment was
performed in triplicate.

Protein extraction and quantification

Protein samples were prepared from bacterial lysates as fol-
lows: overnight cultures of S. sanguinis SK36 were diluted
100-fold into 50ml BHI for 5 h of growth under micro-aer-
obic conditions to achieve an OD600 reading of 0.6. A tripli-
cate of bacterial samples was left untreated as a control,
while other triplicates were treated with ampicillin for 10,
20 or 30min (the same procedure as transcriptomic-pro-
filed samples but different sample preparation). Cyto-
plasmic proteins were extracted as described previously
[43]. All bacterial cells were centrifuged at 4

�
C for 10min at

2200 g, washed twice with cold PBS, and mixed with lysis
buffer (50mM Tris-HCl, 150mM NaCl, 1% SDS, 1mM
dithiothreitol) supplemented with protease inhibitor cock-
tail (Sigma P8430). After 30min on ice, the pellets were
bead homogenized using a Fast Prep 24 for 40 s at level 4.5
twice. Soluble proteins were recovered from the supernatant
after centrifugation at 4

�
C for 15min at 10 000 g. Soluble

proteins were quantitated using a Pierce BCA Protein Assay
kit (cat, no. 23227, IL, USA).

Sample preparation for quantitative mass
spectrometry

Proteins were acetone-precipitated and incubated for 1 h at
�20

�
C. After centrifugation for 10min at 13 000 g, the pro-

tein pellet was re-suspended in 100 µl RapiGest SF working
solution and vortexed thoroughly to dissolve the protein
pellet. Samples were reduced with 4 µl of 10mM dithiothrei-
tol in 0.1 M ammonium bicarbonate at room temperature
for 30min, then the samples were alkylated with 4 µl 50mM
iodoacetamide in 0.1 M ammonium bicarbonate at room
temperature for 30min. Finally, samples were digested with
1 µg trypsin overnight and then quenched with 5% (v/v)
glacial acetic acid.

Label-free protein analysis by mass spectrometry

Samples were analysed by a Waters Synapt G2Si mass spec-
trometer system with a nanospray ion source interfaced to a
Waters M-Class C18 reversed-phase capillary column. MSE

scout runs were performed on each sample with spiked
internal standards to determine the amount of protein on
the column. The injection volume was adjusted to achieve
200 ng protein on the column for each analysis using ion
mobility separation. Each sample was run in triplicate using
this technique.

For proper spectral processing and database searching con-
ditions, the peak list-generating software and search engine
included at Progenesis QI for Proteomics software package
v.2.0 (Non-Linear Dynamics, Liverpool, UK) were used.
The UNIPROT protein databank with specific annotations
for S. sanguinis SK36 was used, and the search conditions
for the relative quantification of proteins were based on
the following criteria: the maximum number of allowed
missed cleavages by trypsin was set to 1; fixed modifications
by carbamidomethyl (C), variable oxidation (M) were

allowed. The refining of peptide identifications deleted all
peptides with a score <5, mass <400 ppm and mass
error <15 ppm, as calculated by the Progenesis QIP soft-
ware. Statistical analyses were performed with the quantita-
tive measurements of at least two peptides per protein, four
fragments per peptide, ten fragments per protein, according
to the standard Progenesis QIP processing capability. The
mass spectrometry proteomics data have been deposited in
the ProteomeXchange Consortium [44] via the PRIDE part-
ner repository [45] with the dataset identifier PXD006479.

Statistical analysis

Chi-square analysis was used for the measurement of statis-
tical significance between the amino acid composition in
essential and non-essential proteins. The SEM was used for
the depiction of proteins’ conservation within a functional
category. This parameter defines the relationship between
the dispersion of individual observations around the popu-
lation mean (the SD) for a given sample size. For proteomic
analysis, we used Progenesis QI software with advanced sta-
tistical tools, such as ANOVA, P-value cutoff of 0.05 and
Q-value cutoff of 0.01 (for false discovery rate) for peptide
identification and multivariate statistics for protein meas-
urements. For transcriptomic analysis, we used the Rock-
hopper v. 2.03 software which is based on a negative
binomial distribution as its statistical model with a P-value
cutoff of 0.05 and Q-value cutoff of 0.01 (using the Benja-
mini–Hochberg procedure).

RESULTS

Functional categorization and conservation of
S. sanguinis SK36 essential proteins

Using a single gene knockout technique, we previously iden-
tified 218 essential genes in S. sanguinis cultured in BHI
medium [44]. Based on GenBank COG functional catego-
ries, we found that S. sanguinis essential genes are unevenly
distributed in functional categories (Table 1), biased
towards translation (33.2 % of total essential genes), replica-
tion and repair (10.7%), lipid metabolism (9%) and cell
wall/membrane/envelope biogenesis (7.6%). If classified by
a specific COG functional category, lipid metabolism (20
essential genes vs 20 non-essential genes) and translation
(74 essential genes vs 79 non-essential genes) have nearly
an equal number of essential and non-essential genes. With
203 (COG category: R) and 184 (COG category: S) non-
essential genes defined as hypothetical genes, the functional
category most enriched with non-essential genes is ‘General
functional prediction only’ (11.7% of non-essential genes).

To further identify the pleiotropic functions of S. sanguinis
essential genes, we measured the number of pathways in
which every essential gene is involved, as described by the
KEGG database (Fig. 1a). Although the majority of essential
genes (115 genes) were shown to be involved in only one
pathway, many may possess additional ‘moonlighting’ func-
tions that are yet to be experimentally defined. Of special
emphasis are many components of the genetic processing
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machinery (ribosomal components of 50S and 30S subunits,
threonyl-tRNA synthetase, alanyl-tRNA synthetase and
leucyl-tRNA synthetase), which have been established as
pleiotropic players in many model species [46, 47]. Another
major factor to consider is the absence of ‘genetic pathways’
in the KEGG database, which alternatively puts more focus
on metabolic pathways.

Furthermore, we investigated the conservation of S. sanguinis
essential and non-essential proteins across 2774 proteomes
from bacteria with completely sequenced genomes deposited
in the NCBI (Fig. 1b, c). We used scatter plots to display the
conservation patterns of essential proteins through detecting
their orthologues among 2774 bacterial species (Fig. 1b). All
COG groups of essential proteins were conserved among
more than 1000 species, so we intuitively considered 2000
species as a threshold. Similarly, for COG groups of non-
essential proteins, all COG groups were conserved among less
than 2000 bacterial species. The intuitive approach was to
consider 1000 species as a threshold. It was obvious that the
essential proteins identified in S. sanguinis are highly con-
served among bacterial proteomes, albeit at different rates.
Conservation was shown to be related to COG-based catego-
rization: essential proteins belonging to ten COG groups (E,
F, G, H, J, K, M, O, Q, T) showed the highest mean conserva-
tion values (conserved in more than 2000 species), with trans-
lation (COG group: J) and transcription (COG group: K)
being top-ranked functional categories on the conservation
list. The remaining essential proteins belonging to COG

groups: C, D, I, L, P, R, S and U, showed mean conservation
values between 1000 and 2000 species. In contrast, S. sangui-
nis non-essential proteins were shown to be less conserved
than essential proteins among bacterial proteomes (Fig. 1c),
with the most conserved non-essential genes belonging to
eight COG groups (C, D, E, F, H, J, L, O) and displaying
mean conservation values between 1000–2000 species, and
the rest belonging to COG groups with mean conservation
values below 1000 species. All in all, as functionally catego-
rized groups, non-essential proteins displayed low mean con-
servation values, with their orthologues recovered in less than
2000 species, while S. sanguinis essential proteins showed
remarkably high mean conservation values, with the vast
majority of their orthologues detected in more than half of
the investigated bacterial species.

General overview of the transcriptome analysis

RNA-seq analysis conducted on a temporal basis revealed
the impact of gene regulation on a global basis. Considering
the doubling time of S. sanguinis being around 20min, and
assuming a slight growth delay after ampicillin treatment,
we decided to collect cells for RNA or protein extraction at
early (T10), mid (T20) and late phases (T30) post-treatment
with sub-inhibitory concentration of ampicillin (Fig. 2a, b,
Table S1). Functional enrichment analysis (Table 2) of dif-
ferentially regulated genes was conducted using the func-
tional annotation tool of DAVID Bioinformatics Resources
6.7. ‘Phosphotransferase system’ was the functional category
most enriched (22 non-essential genes) among the total

Table 1. Functional categorization of essential and non-essential genes based on COG annotations

COG Description EG* % Total genes Non-EG* % Total genes

C Energy production and conversion 10 4.5 60 3.5

D Cell cycle control and mitosis 7 3.1 16 0.9

E Amino acid metabolism and transport 2 0.9 191 11.0

F Nucleotide metabolism and transport 9 4.0 69 4.0

G Carbohydrate metabolism and transport 13 5.8 156 9.0

H Coenzyme metabolism 12 5.4 76 4.4

I Lipid metabolism 20 9.0 20 1.1

J Translation 74 33.2 79 4.6

K Transcription 5 2.2 150 8.7

L Replication and repair 24 10.7 87 5.0

M Cell wall/membrane/envelop biogenesis 17 7.6 100 5.8

O Post-translational modification, protein turnover, chaperone functions 6 2.7 56 3.2

P Inorganic ion transport and metabolism 3 1.3 88 5.0

P Inorganic ion transport and metabolism 3 1.3 88 5.0

Q Secondary structure 3 1.3 23 1.3

R General functional prediction only 11 4.9 203 11.7

T Signal transduction 1 0.4 55 3.2

U Intracellular trafficking and secretion 6 2.7 35 2.0

N Cell motility, secretion and vesicular transport 0 0.0 16 0.9

S Function unknown 0 0.0 184 10.6

V Defense mechanisms 0 0.0 65 3.7

*Some genes are assigned in multiple COG categories.
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up-regulated genes at T10 (total genes: 736 genes), T20 (total
genes: 722 genes) and T30 (total genes: 652 genes). ‘Hydro-
gen ion transport’ and ‘signal transduction through two-
component system’ (eight genes each) were enriched among
up-regulated genes at T10 and T20 only. The enriched func-
tional classes among up-regulated genes point towards
modulating gene expression in a direction that potentiates
an early stress response mechanism based on sensing the
environmental cues, reducing internal proton buildup and
importing energy resources.

‘Ribosomal biogenesis’ was the functional category most

enriched (31, 19 and 25 genes) among the total down-regu-

lated genes at T10 (total genes: 611), T20 (total genes: 445)

and T30 (total genes: 644 genes), respectively. ‘Peptidoglycan

biosynthesis’ was enriched among down-regulated genes at
T10 (nine genes) and T20 (seven genes) only, ‘DNA replica-
tion’ at T20 (seven genes) and ‘fatty acid metabolism’ at T30

(eight genes). The enriched functional classes among down-
regulated genes demonstrate a global transcriptional incli-
nation towards slowing cell growth as the bacteria acclimate
to the antibiotic (Table 2).

Global overview of the proteome analysis

Our proteomic study identified a total (essential and non-
essential) of 269 proteins at T10, 268 proteins at T20 and 202

Fig. 1. Bioinformatics analysis of functional categories and conserva-

tion of essential proteins. (a) Involvement of essential genes in S. san-

guinis physiological pathways is shown in this bar chart. The number

of essential genes (y-axis and number at the top of every chart bar)

involved in the number of KEGG pathways (x-axis) is shown. Conserva-

tion of S. sanguinis essential (b) and non-essential (c) proteins across

2774 bacterial proteomes in relation to their COG annotations. Every

dot on the scatter plots represents an (b) essential or (c) non-essential

S. sanguinis protein. Proteins were clustered based on their functional

categories as described by their COG annotations. Conservation of

S. sanguinis proteins was determined by orthologues in 2774 bacterial

proteomes. The average number of detected orthologues for every

S. sanguinis protein in each COG category can be inferred from the

y-axis projection of the mean (central horizontal bar) and the SEM

(vertical bar).

Fig. 2. Differential expression of essential genes in antibiotic-treated

S. sanguinis cells. (a) Circos plot representing the differential mRNA

expression of essential genes at T10, T20, T30 indicative of 10, 20 and

30min respectively post-treatment with a sub-inhibitory dose of ampi-

cillin in comparison to T0 (untreated cells) in S. sanguinis SK36 strains.

Green bars indicate a statistically significant up-regulation of gene

transcription; red bars indicate a statistically significant down-regula-

tion of gene transcription. Functional clustering was based on COG

annotation, and further grouped into three essential functions as fol-

lows: G (green) for genetic information processing; C (blue) for cell

wall biosynthesis; E (red) for energy production. (b) Bar chart showing

the counts of up-regulated (green) and down-regulated (red) expres-

sion of essential genes at three time points.
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proteins at T30 with at least two unique peptides per protein.
Almost half of the S. sanguinis essential proteins were
detected at each of the three time points (Fig. 3, Table S1).
A functional annotation analysis of these detected proteins
using DAVID Gene Functional Annotation Clustering tool
identified the following top over-represented functional
groups among the up-regulated proteins: at T10, ‘phosphor-
ylation’; at T20, ‘ribosomal biogenesis’; at T30, ‘purine nucle-
oside-binding’. Top over-represented functional groups
among the down-regulated proteins at all time points were
‘ribosomal biogenesis’, ‘glycolysis’ and ‘aminoacyl-tRNA
biosynthesis’ (Table 2). The 9.5-fold up-regulation of RelA
enzyme, a major (p)ppGpp synthase [48, 49], at T20 suggests
the orchestration of a stress response that impacts growth
and persistence under stressful conditions by controlling
sugar metabolism, ribosomal biogenesis and cell wall
biosynthesis.

Pathway-dependent interpretation of
transcriptomic and proteomic profiles of essential
genes and proteins

Ribosomal biogenesis

Ribosomes are the main energy consumers in the cell [50].
At T10, most essential genes encoding ribosomal proteins
(28 genes) showed significant reduction in transcript level
that extended to T30 (Fig. 2a, Table S1), except for
nine genes: rpsN (SSA_2391), rplP (SSA_0114), rpsQ
(SSA_0116), rplN (SSA_117), rplE (SSA_0119), rpsH
(SSA_0120), rplF (SSA_0122), rplR (SSA_0123) and rpsE
(SSA_0124). Proteomic findings showed the reduction in 29
ribosomal protein levels at all the time points, showing con-
currence with their reduced transcription. Five ribosomal

proteins (SSA_1105, SSA_0110, SSA_1104, SSA_1265,
SSA_0113) were up-regulated only at T20, and two ribo-
somal proteins (SSA_0108, SSA_0117) were up-regulated
only at T30.

Amino acid biosynthesis

To better understand the transcriptomic and proteomic bias
in protein biosynthesis, as demonstrated through up-regula-
tion of amino acid-tRNA synthetases and amino acid
biosynthetic enzymes, we measured the amino acid compo-
sition of essential and non-essential proteins at the pre-
dicted mature N-terminal position (amino acid number
two; Fig. 4a, Tables 2 and 3). We postulated that essential
proteins are less likely to contain ‘degradation-prone’ amino
acids at their N-terminal position [51], due to their need to
persist longer than non-essential proteins in the cell to
secure execution of essential functions. In other words, we
expected essential proteins to possess less of the following
amino acids at the predicted mature N-terminal position:
tyrosine, tryptophan, leucine, phenylalanine, lysine and
arginine. We found that essential proteins do contain less of
these amino acids at this position (21.5%) than the non-
essential proteins (39%) (Fig. 4b, Table S4), suggesting a
longer half-life for essential proteins.

We further investigated the total amino acid composition of
essential (Table S5) and non-essential proteins (Table S6),
looking for potential bias in amino acid composition
(Fig. 5). We detected a significantly higher contribution of
alanine, glutamate, arginine and valine to the composition
of essential proteins than to the non-essential ones. Lysine
and tyrosine were the only amino acids contributing signifi-
cantly more to the composition of non-essential proteins

Table 2. Functional enrichment and clustering of significantly up- and down-regulated genes and proteins in ampicillin-stressed cells

mRNA measurements Protein measurements

Time Regulation Functional category P-value Time Regulation Functional category P-value

T10 Up-regulated Phosphotransferase system 9.85E-05 T10 Up-regulated Phosphorylation 7.1E-02

Hydrogen ion transport 1.4E-02 Down-regulated Ribosomal biogenesis 2.70E-30

Signal transduction 2.2E-02 Glycolysis 1.20E-06

Down-regulated Ribosomal biogenesis 2.82E-06 Aminoacyl-tRNA
biosynthesis

4.60E-05

Peptidoglycan biosynthesis 1.25E-04 Protein folding 22E-04

GTP-binding 8.8E-03 T20 Up-regulated Ribosomal biogenesis 8.90E-05

T20 Up-regulated Phosphotransferase system 4.84E-04 Down-regulated Ribosomal biogenesis 9.50E-24

Signal transduction 2.02E-02 Glycolysis 1.00E-05

Hydrogen ion transport 4.33E-02 Aminoacyl-tRNA
biosynthesis

1.30E-05

Down-regulated Ribosomal biogenesis 7.05E-04 Protein folding 1.40E-04

Peptidoglycan biosynthesis 1.8E-03 Oxidoreductase activity 3.4E-02

DNA replication 1.04E-02 T30 Up-regulated Purine nucleoside-binding 9.62E-02

Aminoacyl-tRNA
biosynthesis

4.84E-02 Down-regulated Ribosomal biogenesis 1.80E-29

T30 Up-regulated Phosphotransferase system 8.39E-06 Glycolysis 1.50E-07

Metal-binding 4.4E-02 Aminoacyl-tRNA
biosynthesis

9.30E-05

Down-regulated Ribosomal biogenesis 3.2E-03 Cell division 1.01E-02

Fatty acid biosynthesis 3.7E-03 RNA polymerase 1.42E-02

ATP-binding 1.07E-02 Translational elongation 3.49E-02
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than to the essential ones. It was interesting to note that
although arginine and lysine, degradation-prone amino
acids, are enriched more in the essential proteins than in the
non-essential ones, they were less localized at the N-termi-
nal position in essential proteins (arg: 0.9 %; lys: 3.6 %) than
in the non-essential proteins (arg: 4. 7%; lys: 6.1 %). This
reflects a delicate selection of amino acids for the structural
composition of essential proteins in a way to govern protein
longevity and persistence of essential functions.

Dissecting the amino acid composition of essential proteins
(Fig. 5) provided clues about the biased transcriptomic
up-regulation of genes encoding specific amino acid-tRNA

synthetases: alanine-tRNA synthetase (SSA_0756), glycine-
tRNA synthetase (SSA_1879), methionine-tRNA synthetase
(SSA_1848), prolyl-tRNA synthetase (SSA_2069), isoleucyl-
tRNA synthetase (SSA_0661), threonyl-tRNA synthetase
(SSA_1571) and valine-tRNA synthetase (SSA_1819). Given
the fact that alanine, glycine, methionine and valine have
higher abundance in the composition of essential proteins
than the non-essential proteins, this may be a factor con-
tributing to the transcription bias of these amino acid-tRNA
synthetases.

Unfortunately, we did not detect the protein levels of these
enzymes within our proteome data, and therefore the link
between expression of an amino acid-tRNA synthetase and
its respective up-regulation in the essential proteome could
not be confirmed.

Previously, we have shown that enzymes involved in amino
acid biosynthesis would be essential if chemically defined
medium was used instead of the nutritionally enriched BHI
medium [9]. We investigated the biosynthesis pathways of all
amino acids using the KEGG maps and identified a transcrip-
tomic and proteomic down-regulation of most amino acid
biosynthesis enzymes. Two exceptions from the proteomic
data at T10 were noted: first, the strategically positioned IlvE
enzyme (SSA_1225; E.C. 2.6.1.42) at the rate-determining
step of the biosynthetic pathways for valine (Fig. S2) was ele-
vated 3.5-fold. Second, the GlnA enzyme (SSA_0307) respon-
sible for interconversion between glutamate and glutamine
was up-regulated threefold. Interestingly, valine and gluta-
mate are more abundant among the essential proteome than
among the non-essential one, and this may be a contributor
to their biosynthesis at times of energy scarcity.

Glycolysis

Glycolysis represents a fundamental source of energy produc-
tion and supplier of products for many anabolic pathways. A
significant transcriptional up-regulation of essential genes
involved in conversion of UDP-glucose to 3-phospho-D-glyc-
erate (SSA_2169, SSA_2183, SSA_0302) was observed,
with the remaining three enzymes leading to pyruvate pro-
duction being transcriptionally down-regulated (SSA_0688,
SSA_0886, SSA_0848) across all three time points (Fig. 6a).
However, proteomic findings revealed down-regulation of
eight glycolytic enzymes across all time points, except for
SSA_0688 which showed a slight protein increase at T20

(Fig. 6b). At T10 and T30, all proteins involved in glycolysis
were down-regulated.

Cell wall biosynthesis

Terpenoid, peptidoglycan, amino sugar, glycerophospholipid
and phosphatidyl glycerol biosynthesis pathways converge to
produce the cell wall in S. sanguinis (Fig. S3). Transcriptomic
data across the three time points demonstrated a general
down-regulation of most essential genes encompassed in the
amino sugar, phosphatidyl glycerol, glycerophospholipid and
peptidoglycan biosynthetic pathways, with minor exceptions.
Four genes involved in the terpenoid pathway (SSA_0334,
SSA_0335, SSA_0336, SSA_0337) were transcriptionally

Fig. 3. Differential expression of essential proteins in antibiotic-

treated S. sanguinis SK36 cells. (a) Circos plot representing the differ-

ential expression of essential proteins at T10, T20, T30, indicative of 10,

20 and 30min respectively post-treatment with a sub-inhibitory dose

of ampicillin in comparison to T0 (untreated cells) in S. sanguinis SK36

samples. (b) Bar chart showing the counts of up-regulated (green) and

down-regulated (red) expression of essential proteins at three time

points.
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up-regulated at all three time points, although the enzyme of
rate-limiting reaction (SSA_2073) in the pathway was signifi-
cantly down-regulated. Proteomic findings showed complete
down-regulation of proteins belonging to the peptidoglycan,
amino sugar and glycerophospholipid biosynthesis. Unfortu-
nately, no proteins of the terpenoid biosynthesis pathway
were detected.

Nucleic acid biosynthesis

Transcriptomic analysis of genes involved in the pentose
phosphate pathway, RNA biosynthesis and DNA biosynthe-
sis showed a general down-regulation. TetR (SSA_0927)
was shown to be elevated 11.8-fold at T30. TetR repressors
have been linked to antibiotic resistance [52, 53]. The
impact of these transcriptional regulators on RNA polymer-
ase activity under stress warrants further investigation.

Correlation between transcriptome and proteome

We calculated the correlation between the mRNA and pro-

tein levels of every gene and protein, respectively, which dis-

played statistically significant expression (Table 3). The

mRNA/protein correlation was significantly higher (P-value:

0.0047) among the essential genes/proteins than among

their non-essential counterparts (P-value: 0.0678), and this

correlation increased with time in essential and non-

essential categories. This may be explained by the chrono-
logical frame of events where transcription precedes transla-
tion and protein synthesis. In addition, a bacterial mRNA
on average has a half-life less than 10min [54] while pro-
teins enjoy more longevity, although dependent on post-
translational modifications, protein folding and degradation
machinery [55]. At T10, correlation was observed in essential
gene ratios only (in comparison to T0). It is noteworthy to
emphasize that with essential gene ratios, the mRNA/pro-
tein correlation percentage was never less than 50% at any
of the three time points, while the opposite scenario hap-
pened during T10 with the non-essential genes. Moreover,
the essential gene correlation percentages at T20 and T30

were much greater than 50%, peaking at T30, unlike the
non-essential genes at T20 and T30 where the percentages
were lower.

DISCUSSION

This is the first study to address concomitantly in a high
throughput approach the transcriptomic and proteomic
dynamics of essential genes and proteins on a temporal
basis in S. sanguinis under ampicillin-induced stress. The
complex response of S. sanguinis to antibiotic stress is indis-
pensable for survival through adaptive transcription and

Fig. 4. Determination of amino acids at the N-terminal positions in essential and non-essential proteins. (a) The localization of every

amino acid in the predicted mature N-terminal position for essential and non-essential S. sanguinis proteins was counted and averaged

using python scripts. For every amino acid, the difference between the composition percentage in essential versus non-essential pro-

teins was tested for statistical significance. The six amino acids enclosed in a red square are the degradation-prone amino acids. EG,

proteins encoded by essential genes; non EG, proteins encoded by non-essential genes. (b) Percentage of essential and non-essential

proteins that possess a degradation-prone amino acid at their N-terminal position. *P-value<0.05; **P-value<0.001.

Table 3. Correlation analysis between mRNA and proteins in ampicillin-stressed cells at three time points

Count (%) of correlated mRNA/protein T10/T0 T20/T0 T30/T0 P-value**

Correlated essential mRNA/protein expressions* 111 (50%) 131 (59%) 117 (66%) 0.0047

Non-correlated essential mRNA/protein expressions 111 (50%) 90 (41%) 60 (34%)

Correlated non-essential mRNA/protein expressions 59 (43%) 73 (53%) 60 (57%) 0.0678

Non-correlated non-essential mRNA/protein expressions 79 (57%) 66 (47%) 45 (43%)

*All expression values of mRNAs and proteins at different time points were normalized to untreated S. sanguinis SK36 samples.

**P-value<0.05was considered significant.
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protein synthesis, necessitating the use of a systems biology
approach through RNA-seq and mass spectrometry to
examine the dynamics of mRNA levels and the protein
inventory at different time points. Combining transcrip-
tomic and proteomic analysis under the same cultivation
conditions and same time points we aimed to correlate our
protein abundance findings with their corresponding tran-
scriptional profiles, to define ‘pathogenesis profiles’ as novel
therapeutic targets.

Drawing a correlation between mRNA and protein levels
sheds light on the biological intricacies of transcription,
translation, mRNA stability and protein degradation [54,
56], drawing a framework for gene/protein regulation that
can be therapeutically targeted. Although bacteria lack the
complex regulatory mechanisms harnessed by eukaryotic
systems, such as poly-ubiquitination and proteasomes, it
has been shown that bacteria have lower mRNA/protein
correlations [57–59] in comparison to eukaryotes [60, 61].
Interestingly, using the functional pathways approach, it
was shown that kinases, cell cycle genes, signalling and met-
abolic proteins display the highest mRNA/protein correla-
tions in the yeast Schizosaccharomyces pombe [62]. We
hypothesized that since these proteins are conducting essen-
tial functions, it is worth testing the essential mRNA/protein
correlation in our bacterial model under stress, which from
an evolutionary perspective, shapes the essential genome.
Moreover, codon usage has been linked to higher mRNA/
protein correlation [57]. Since highly expressed genes,
including essential genes, have optimized their codon usage
for a high sustainable expression [63, 64], added to the
observed high conservation rates across species and high
structural stability (low instability index below 40)
(Table S1) of essential proteins, we expected these factors to
enhance the essential mRNA/protein ratios. Our findings
support this rationale by essential genes exhibiting better
mRNA/protein ratios than non-essential genes at all time
point measurements (Table 3), and it improved with time as
the bacteria adjusted to the antibiotic shock. The correlation
was not perfect for many reasons. First, the proteome was
not completely measured and less than half of the essential

proteins were covered due to the low sensitivity of the mass
spectrometry used and the protein extraction protocol was
focused on cytoplasmic proteins. Second, recent findings in
E. coli stressed the role of mRNA secondary structure, more
than codon usage, in modulating gene expression [65].
Third, the set of essential genes identified from S. sanguinis
cultured in BHI may vary from that of ampicillin-treated
S. sanguinis. Finally, the moonlighting behaviour of essential
genes complicates analysis of their differential behaviour,
such as the glycolytic enzymes enolase [66] and pyruvate
oxidase [67, 68]. Further investigation is needed for a better
understanding of this biological equation.

Adopting the pathway-dependent approach (Fig. S3) facili-
tated the task of delineating the topological distribution of
essential genes and proteins. The temporal factor integrated
into our experimental design highlighted the chronological
cascade of events, where genes exhibited an immediate
stress response against ampicillin at T10 through adaptive
regulation and mRNA expression, while protein changes at
T20 and T30 demonstrated the time lag between tran-
scription and adaptive production of translated proteins as
bacterial cells were undergoing replication. Bioinformatic
analyses suggested that the immediate transcriptomic
responses correlate with short-lived transcripts while the
‘slower’ protein responses correlate with a more persistent
and conserved response, as exemplified through findings in
yeast [69] and Caenorhabditis elegans [70]. Comparing con-
servation of S. sanguinis essential proteins involved in tran-
scription versus translation, we have shown that translation
is more enriched in essential and conserved proteins than
transcription. Moreover, the measured stress response
essential proteins, especially the ones involved in transla-
tion, demonstrated to a large degree a high conservation
rate across species and low instability index (Table S1). This
further highlighted the reliability of translation-related
essential proteins as ‘proteomic signatures’ that dictate the
cell’s physiology and even the energy status, especially since
it was shown earlier that translation proteins consume more
than 70% of the cellular ATP pool [50]. In addition to their
major role in protein synthesis, ribosomes have been impli-
cated in pleiotropic functions, ranging from antibiotic adap-
tation [71] to fatty acid biosynthesis [72], in which we
postulate these exceptionally up-regulated ribosomal pro-
teins may be involved. Whether the pattern of differentially
expressed S. sanguinis proteins during the stress response is
conserved across other bacterial species is currently unclear.
Such a biological question is worth further investigation,
because if the conservation of essential proteins projects as a
conserved regulation of stress responses across diverse bac-
terial species, then essential proteins’ dynamics under stress
will provide a wealth of proteomic signatures that may serve
as potential therapeutic targets.

Upon exposure to a sub-inhibitory concentration of ampicil-

lin, transition to slow growth was observed (Fig. S1) accom-
panied by extensive reprogramming of gene expression
across all major essential pathways, including glycolysis,

Fig. 5. Amino acid composition of essential and non-essential proteins

in S. sanguinis. Amino acid sequences were extracted from the NCBI

database. Amino acid composition of essential and non-essential pro-

teins was averaged from individual protein compositions.
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purine and pyrimidine synthesis, cell wall biosynthesis, tran-

scription and translation. Although we did not conduct any

metabolomic experiments, we postulate that amino acids are

in demand differentially based on their abundance in essen-

tial proteins, with cysteine as the least abundant constituent

and leucine, alanine and valine the most. Essential genes tend

to favour the less ‘degradation-prone’ amino acids as demon-

strated by the N-rule as this enhances their persistence. This

may explain in part the up-regulation of biosynthetic

enzymes for isoleucine and valine (branched amino acids),

glutamine and glutamate, where the stressed cells seem not to

rely solely on the recycling of degraded proteins nor peptide

import through ABC transporters to satisfy their need for
building blocks of essential proteome. The need for branched
amino acids has also been demonstrated in acid-stressed
Streptococcus mutans [73] and Streptococcus suis isolated
from porcine cerebrospinal fluid [74], showing promise for
establishing a potential ‘stress proteomic signature’ based on
amino acid composition of the essential proteome.

Taken together, this work is the first global study that moni-
tors time-dependent changes of essential genes and proteins
encountering antibiotic stress. Our study also emphasizes
crucial switches for the adaptation of metabolic, cell wall
biosynthesis and genetic information processing pathways.

Fig. 6. Glycolysis pathway map showing differential expression of (a) essential genes and (b) essential proteins in S. sanguinis exposed

to a sub-inhibitory dose of ampicillin for 20min. The genes/proteins (circles) are size and colour-coded based on an intensity spectrum

where a large green circle indicates up-regulation, a small red circle indicates down-regulation and a blank circle shows no significant

detection. Non-essential genes/proteins are labelled with ‘P’ after gene/protein name.
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