
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Automatic detection of false annotations via binary property 
clustering
Noam Kaplan*1 and Michal Linial1,2

Address: 1Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel and 2Department of Computer 
Science and Engineering, University of Washington, Seattle, WA, USA

Email: Noam Kaplan* - kaplann@cc.huji.ac.il; Michal Linial - michall@cc.huji.ac.il

* Corresponding author    

Abstract
Background: Computational protein annotation methods occasionally introduce errors. False-
positive (FP) errors are annotations that are mistakenly associated with a protein. Such false
annotations introduce errors that may spread into databases through similarity with other
proteins. Generally, methods used to minimize the chance for FPs result in decreased sensitivity or
low throughput. We present a novel protein-clustering method that enables automatic separation
of FP from true hits. The method quantifies the biological similarity between pairs of proteins by
examining each protein's annotations, and then proceeds by clustering sets of proteins that
received similar annotation into biological groups.

Results: Using a test set of all PROSITE signatures that are marked as FPs, we show that the
method successfully separates FPs in 69% of the 327 test cases supplied by PROSITE. Furthermore,
we constructed an extensive random FP simulation test and show a high degree of success in
detecting FP, indicating that the method is not specifically tuned for PROSITE and performs well
on larger scales. We also suggest some means of predicting in which cases this approach would be
successful.

Conclusion: Automatic detection of FPs may greatly facilitate the manual validation process and
increase annotation sensitivity. With the increasing number of automatic annotations, the tendency
of biological properties to be clustered, once a biological similarity measure is introduced, may
become exceedingly helpful in the development of such automatic methods.

Background
Computational protein annotation is a major goal of bio-
informatics and annotation methods are widely used. A
wide variety of annotation methods exist, many of which
rely on some kind of scoring. Typically, when testing
whether a protein should be given a certain annotation, a
score threshold is set, and proteins that score higher than
the threshold are given the annotation. Obviously, some
annotation mistakes may occur. Such mistakes can be

divided into false positives (FPs) and false negatives
(FNs). FPs (or false hits) are annotations that were mistak-
enly assigned to a protein (type I error). FNs (or misses)
are annotations that should have been assigned to a pro-
tein but were not (type II error). Adjustment of score
thresholds allows tradeoff between these two types of mis-
takes. FPs annotations are considered to be of graver con-
sequence than FNs. This is partially due to the fact that
introduction of a false positive annotation into a protein
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database may cause other proteins to become incorrectly
annotated on the basis of sequence similarity [1,2]. A sys-
tematic evaluation of the source of false annotations that
already contaminated current databases was reported [3].
Several automatic systems such as PEDANT [4] and
GeneQuiz [5] were introduced with the goal of matching
the performance of human experts. Still, over interpreta-
tion, FN errors, typographic mistakes and the domain-
based transitivity pitfall [6] limit the use of such fully
automatic systems for inferring protein function.

Due to the importance of minimizing the amount of false
annotations and maintaining highly reliable protein data-
bases, three methods are generally used to avoid false
annotations. The first method is manual validation of the
annotation of each protein, which creates a serious bottle-
neck in the addition of new proteins and annotations to
the database. The second method is using high score
thresholds, thus lowering the rate of FPs but also increas-
ing the rate of FNs (resulting in a loss of sensitivity). The
third method is requirement for hits from different detec-
tion methods, eliminating advantages that are unique to
some methods. Thus it would be beneficial to develop
means by which FP annotations could be detected auto-
matically, allowing both high throughput and high
sensitivity.

Here we present such a method that uses clustering of pro-
tein functional groups to separate true positives (TPs)
from FPs automatically. Our method is based on the fol-
lowing notions: (a) protein annotations represent biolog-
ical properties; (b) protein functional groups share
specific combinations of biological properties, essentially
constituting "property clusters"; (c) if two proteins have
very different combinations of annotations, they are
unlikely to share a single functional annotation and there-
fore there is a high chance that one of them was given that
annotation incorrectly. These notions are not obvious, but
were shown to correctly indicate false annotations in
some individual cases tested manually using the graphical
annotation-analysis tool of PANDORA [7]. We aim to
generalize these sporadic observations and to address the
feasibility of automating the detection of FP.

Using these ideas, the method attempts to separate a
group of proteins into "property clusters", by introducing
a measure that quantifies the similarity between the anno-
tation combinations of two proteins. According to our
basic notions, these clusters are likely to be in accordance
with false and true hits.

We tested our method on the PROSITE protein signature
database [8]. The database consists of 1189 protein signa-
tures (essentially annotations) that were assigned to a pro-
tein database. PROSITE annotation of proteins is

manually validated, stating for each protein hit whether
the annotation is a TP or a FP. Out of this set of 1,189 sig-
natures, we chose a subset of all signatures that have both
true and false hits, and this served as our test set. Alto-
gether 327 such signatures were collected and tested. For
each of the signatures, the method examined the set of
proteins that were assigned the signature. We called the
separation successful only if at any step of the clustering
process all the TPs were clustered together without any
FPs. We applied a stringent scoring, where a partial success
is considered failure.

Furthermore, we constructed a random FP simulation test
in order to provide a more extensive test. In this test, all
5,551 InterPro [9] annotations were considered. For each
InterPro annotation we selected the set of proteins in
SwissProt [10] that were assigned that annotation, and
added to that set random proteins, simulating proteins
that were assigned the annotation by mistake (FPs). For
each annotation we repeated the test 15 times: 5 times
with 1 random protein, 5 times with 5 random proteins
and 5 times with 10 random proteins. This artificial con-
tamination of the annotation source strives to simulate
mistaken annotations that may occur under some auto-
mation annotation inference schemes.

Results
Property-based clustering
We begin by describing the method of property-based
clustering. Given a set P of all proteins that were given a
certain annotation, and that there are both FPs and TPs in
P, we would like to separate the set into disjoint subsets,
so that one of the subsets will include all TPs and no FPs
(leaving one or more subsets containing the FPs).

Annotation-based clustering is used to detect these sub-
sets. We define an annotation as a binary property
assigned to a protein (each protein may or may not have
a "hit"). At the first stage, annotations from GO (Gene
Ontology) [11], InterPro (entries) and SwissProt (key-
words) are gathered for all proteins in P.

The clustering works in the following way: between each
two proteins we define a similarity score that tries to
quantify how much do the two proteins have in common
from a biological perspective. The score between two pro-
teins p1 and p2 is defined as:

where A1 and A2 are the set of annotations of proteins p1
and p2 respectively, i is the current annotation, and f(i) is
the frequency of i in the database. This score uses the fol-
lowing logic: if two proteins share an annotation, they are
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biologically similar in some manner. The more annota-
tions these proteins share, the more cause we have to
believe that they are similar biologically. However, two
proteins sharing an annotation like "Enzyme" (that
appears 45,991 times in our database) should receive a
worse similarity score than two proteins that share a much
uncommon annotation like "Heat Shock Protein" (that
appears only 832 times). This is taken into account by
using log(f(i)). Obviously, one could think of different
scoring schemes that would quantify this differently. For a
specific example of how the score is calculated see Table 1.

The similarity score is calculated between every two pro-
teins in P. Next, we define the similarity score between
two clusters as the arithmetic average of scores of all inter-
cluster protein pairs:

where C1 and C2 are clusters of proteins. Starting with clus-
ters of 1 protein each, the method begins by an initial one-
step clustering which merges all clusters that have the
exact same combination of annotations. Following this
the primary clustering commences: At each clustering step

the two clusters that have the highest similarity score are
merged. At each step the contents of the clusters are eval-
uated, and if all TP proteins appear in one cluster without
any FPs, we say that the clustering process successfully
separated the TPs from the FPs. Note that we do not
require all the FPs to be grouped into one cluster, due to
the fact that they cannot be expected to share biological
similarity amongst themselves.

PROSITE test
Out of 327 sets of proteins that share a PROSITE signa-
ture, the method showed successful separation (as defined
previously) in 227 sets, i.e. 69% of the cases. The average
size of the protein sets was 156.1 and the median 76. Alto-
gether 58,254 proteins were used for this test. The average
and median FP rates (FP rate is defined as: FP/(TP+FP)) of
the sets were 0.12 and 0.07 respectively. These general sta-
tistics about the test set indicate that the sets were large
enough and had a high enough amount of TPs and FPs so
that the chance of random success would be minimal.

In order to demonstrate the method's performance in this
test, we provide the following example of testing a single
protein set. The set presented here is the set of all 37 pro-
teins that matched the PROSITE "Serum albumin family"
signature. Each protein in the set contains an average of

Table 1: Similarity score calculation

Source Annotation CD63_RABITa CD68_HUMANa Frequencyb -ln(freq)

SwissProt Antigen 1 1 0.007130 4.9435114
SwissProt Lysosome 1 1 0.001929 6.2506136
SwissProt Glycoprotein 1 1 0.094727 2.3567562
SwissProt Transmembrane 1 1 0.159770 1.8340200
SwissProt Alternative splicing 0 1 0.029281 -
SwissProt Signal 0 1 0.123850 -
SwissProt Repeat 0 1 0.078968 -
InterPro Serum albumin family 1 0 0.000342 -
InterPro CD9/CD37/CD63 antigen 1 0 0.000666 -
InterPro Lysosome-associated membrane glycoprotein 

(lamp)/CD68
0 1 0.000123 -

GO Membrane 1 1 0.210869 1.5565182
GO Lysosome 1 1 0.002043 6.1932038
GO Vacuole 1 1 0.002184 6.1267895
GO Lytic vacuole 1 1 0.002043 6.1932038
GO Cell 1 1 0.440206 0.8205125
GO Integral membrane protein 1 1 0.160874 1.8271338
GO Cytoplasm 1 1 0.186569 1.6789541
GO Intracellular 1 1 0.307578 1.1790266

Similarity Score: 40.960244

The table shows a calculation of the similarity score between two SwissProt proteins: Rabbit CD63 antigen (CD63_RABIT) and Human Microsialin 
precursor (CD68_HUMAN). The similarity score is the summation of -ln(freq) on all annotations that are shared by both proteins. a – 1 or 0 
indicate if the given protein has or does not have the annotation respectively. b – The frequency is the portion of proteins in the database that have 
the annotation.
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18.2 annotations (obviously not all are relevant). First,
the score between every pair of proteins is calculated,
based on their mutual annotations. Next, the proteins
undergo a preliminary clustering step in which all pro-
teins that have the exact same combination of annota-
tions are merged into clusters. Following this, the proteins
are clustered together based on their mutual similarity
score. Finally, once the clustering has finished we examine
the tree to see if the true positives were separated from the
false positives. In the given example, there are 5 proteins
that were incorrectly assigned the PROSITE annotation
(FPs), and in Figure 1 we see that they are indeed sepa-
rated from the TP proteins.

Random FP simulation test
5,551 sets of proteins were tested 15 times each and
showed successful separation in 74% of the cases. Alto-
gether 99,076 proteins were used for this test. This can be
subdivided into 78% success for the sets that had 1 ran-
dom protein added, 74% success for the sets that had 5
random proteins added and 68% for the sets that had 10
random proteins added. The average set size was 78 pro-
teins. The drop in the performance by increasing the level
of FPs is due to the fact that there is a higher chance that
one of the randomly selected proteins will be biologically
similar to the TPs. Since we consider only cases in which
all FPs are detected, then there would be a higher chance

Biological clustering exampleFigure 1
Biological clustering example. The figure shows a dendrogram describing the clustering of 37 proteins that matched the 
PROSITE "Serum Albumin Family" signature. The clustering advances from right to left along the axis that shows the similarity 
score at each point of the process. The vertical axis shows 16 initial clusters of proteins that the clustering starts with after the 
initial clustering stage. The initial clusters are numbered 1–16 and in parentheses show the number of proteins in them. Clus-
ters 1–3 contain 5 Vitamin D Binding proteins (TPs). Clusters 4–13 contain 24 Albumin proteins (TPs). Cluster 14 contains 3 
Afamin proteins (TPs). Clusters 15 and 16 contain the 5 FPs. The colors indicate the correct separation of this set into TPs and 
FPs.
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of failure as the number of randomly-generated FPs
increases.

While the simulation of FP errors randomly provides end-
less amounts of test sets, which is a clear advantage over
the limited test sets provided by a real database such as
PROSITE, the simulation has its own limitations. The hid-
den assumption made by this approach is that the FP hits
are independent of each other. This assumption is not
necessarily true: for example, if annotation is done by
means of sequence similarity, false hits may be more
likely to be biologically similar to each other (e.g. belong
to the same family). In fact, in many cases in the PROSITE
test we find that the correct separation separates the TP
proteins into one cluster and the FP into one or two clus-
ters, suggesting that the FPs share some degree of biologi-
cal similarity (see "Determination of the correct halting
step"). This difference in the way that FP annotations are
generated may also account for the difference in success
rates between the PROSITE test set and the simulated test
set. The way FP annotations are introduced into databases
is impossible to model, but the combined success of the
method on both a real database test set and on an exten-
sive simulated test set seems promising.

A further issue which concerns the simulation method is
determining the amount of FPs to add to each set. Here we
chose to add 1, 5 or 10 proteins to each set. This does not
necessarily reflect the amount of FPs in real databases.
Understandably, each database's average FP rate depends
on its specific characteristics. However, the PROSITE data-
base's average FP rate of 0.12 (median of 0.08) might give
an indication as to what a typical rate is. In comparison,
the average FP rate for our random simulation set was
0.11 (median of 0.07), which suggests that our choice was
reasonable.

Determination of the correct halting step
We call a clustering process successful if it managed at any
step to separate the false annotations. However, this step
must be somehow determined automatically. There are
two approaches to this: one is to use an intrinsic parame-
ter of the clustering process that would indicate where the
correct halting step is located; the other is selecting a pre-
determined step of the process. We chose the similarity
score at each merging step as an intrinsic process parame-
ter. When plotting the score against the progression of the
clustering (Figure 2), a knee shape in the plot would indi-
cate a point of stability (biological similarity), suggesting
it as a potential halting step. Analysis of the second deriv-
ative of this plot allows finding these knee-shaped stabil-
ity points automatically. Using this method, 56% percent
of the correct halting steps in the PROSITE test were cor-
rectly predicted. A different approach was to always
choose the last step or the last two steps as the correct halt-

ing step. This resulted in 45% and 65% correct prediction,
respectively. Furthermore, the union of the correct predic-
tions made by both approaches indicates that together
they correctly predict the halting step in 79% of the
PROSITE test cases.

Discussion
Prediction of success
Interestingly, we found that with certain sets the method
tended to be more successful than with other sets, proba-
bly indicating that these sets are more coherent biologi-
cally. This might suggest exploring an approach in which
for each annotation one could predict the level of success
provided by this method. Furthermore, we used the Inter-
Pro categorization of annotations into types in order to
check success in specific annotation types. InterPro
divides its annotations into different categories, such as
"domain", "repeat" and "family". Understandably, "fam-
ily" type annotations had a ~30% higher success rate than
the other annotation types, primarily due to the fact that
the "family" annotations often represent protein sets that
are biologically coherent whereas other types such as
"repeat" or "domain" annotations are biologically
diverse. This result would be expected by a method that

Similarity score plotFigure 2
Similarity score plot. The figure shows the similarity 
score (solid line) plotted versus the progression of the clus-
tering process for a sample protein set that was tested. The 
protein set includes 606 proteins that were annotated as 
"Rhodopsin-like GPCR superfamily". The score decreases 
from left to right as the clusters are merged, indicating 
decreasing biological similarity. The vertical dashed line indi-
cates the correct halting step. Note that the correct halting 
step is located where there is a distinct knee in the graph, 
indicating a point of stability in the process.
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performs a clustering based on biological similarity. This
indicates that this approach should be aimed primarily at
functional family annotations.

However, functional families can be defined at different
resolutions: an alcohol dehydrogenase belongs to the
enzyme family, the dehydrogenase family and the alcohol
dehydrogenase family. The test sets of the PROSITE and
InterPro databases mainly represent mid-level and low-
level annotations, with a typical size of tens or a few hun-
dreds of proteins (see the statistics given previously). In
order to further our understanding of the resolution in
which this method is successful, we divided the protein
groups into size categories and studied the relative
amount of success in every size category. Figure 3 shows
that as the group size increases, the rate of success
decreases. Assuming larger sets represent the higher level
annotations of InterPro, this suggests that when the anno-
tations are more general ("higher" in the biological func-
tional hierarchy) they have less in common biologically.
Therefore, we would not expect the method to succeed on
very general terms such as "enzyme". Sporadic tests of sev-
eral high level GO annotations suggest that this is indeed
the case (data not shown).

Annotation source interdependency
Because multiple annotation sources were used, concerns
arose regarding interdependencies amongst them. For
example, InterPro is highly dependent on PROSITE, so
proteins that have a PROSITE annotation will very likely
be assigned an InterPro annotation as well automatically.
In order to minimize this effect, we did not allow the
algorithm to use the InterPro annotations that matched
the PROSITE annotation which was being tested. Further-
more, in order to increase reliability of the random FP
simulation test, all known PROSITE FPs were removed
from InterPro prior to the test. Still, there is some concern
that the results are partially biased due to annotation
source interdependencies. Furthermore, it is difficult to
determine whether these dependencies represent true bio-
logically dependent properties, or simply a duplication of
the same property in different sources. Keeping this
difficulty in mind, our results which show different levels
of success for different types of annotations (see "Predic-
tion of success") indicate that the success of the method is
more likely due to biological dependency rather than arti-
ficial duplication.

Sufficient annotation
It should be stressed that the clustering process is based on
sufficient annotation. Therefore, it may be difficult to
apply this method to proteins that are poorly annotated.
Still, these cases should be relatively rare: Nearly 77% of
the ~1,600,000 proteins in TrEMBL [10] have at least one
annotation by InterPro, and when considering several
annotation sources there are on average ~10 annotations
per SwissProt protein. Note that the amount and richness
of annotation is constantly increasing at a fast rate. Fur-
thermore, the ability to detect false annotations automat-
ically may allow an increase in the sensitivity of current
methods, thereby allowing more extensive annotation of
proteins.

It is worthwhile noting that amongst the 58,254 proteins
used in these sets there were 3,587 (6%) proteins anno-
tated by SwissProt as "hypothetical proteins". 18% of the
sets that were successfully separated contained such hypo-
thetical proteins, with an average of 8% hypothetical pro-
teins for each such set. These results suggest that the
method is capable of handling to some extent hypotheti-
cal proteins of unknown function.

Another helpful approach to the problem of insufficient
annotation could be the introduction of quantitative pro-
tein properties that are easily determined and show some
correlation with function (i.e. the protein length, its Isoe-
lectric point, etc.) into this method. Preliminary testing
showed some positive correlation between protein length
and Isoelectric point with function in certain cases (not
shown).

Relative success and failure in group size categoriesFigure 3
Relative success and failure in group size categories. 
The figure shows the relative success and failure of the clus-
tering method in different categories of group sizes (the 
group size of an annotations is the number of proteins that 
have the annotation). All tested sets were grouped into 30 
categories according to the amount of proteins in them, from 
0 to 1500 proteins (shown on the horizontal axis). Each cate-
gory shows the relative amount of success (purple) and fail-
ure (blue) of the method in each of the categories. It is 
apparent that relative success decreases as the group sizes 
increase.
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Conclusion
Introduction of FP annotations into protein databases can
be harmful. It has been shown that once a mistaken
annotation is introduced into a database, it often transfers
to other proteins that are sequentially similar causing a
propagation of false annotation [1]. Due to the impor-
tance of keeping high-quality databases, either the pro-
teins are manually checked one by one or the annotation
detection sensitivity is reduced in order to minimize FPs.
The error rate and the limited sensitivity of assigning
structural annotations using PSI-BLAST [12] or SAM-T98
[13] and methodologies based on HMMs and SVMs had
been reported [14]. Naturally the process of manual vali-
dation of the annotation of protein databases is extremely
time-consuming and in many cases is subjective to the
expert view. Automatic detection of false annotations
greatly facilitates the task of manual validation of annota-
tion, and allows using lower thresholds when trying to
detect protein signatures, therefore allowing higher
method sensitivity.

Based on the notion that protein functional groups share
specific combinations of annotations, we have introduced
a method that by separating a set of proteins into biolog-
ical "property clusters" shows successful separation of
incorrectly annotated proteins from correctly annotated
proteins. We test the method both with a manually vali-
dated test set and with a randomly constructed test set,
and in both cases show a high degree of success. These
results suggest that this tendency of certain annotations to
appear in groups may be used as a basis of automatic
methods that detect FPs. Naturally, different computer
learning methods can be used to take advantage of these
interdependencies of biological properties (for example
see [15]).

Methods
Sources
We created a database that includes all proteins from
SwissProt 40.28 (114,033 proteins) [10]. The database
also included annotation of these proteins by GO[11],
SwissProt and InterPro [9]. GO terms represent a wide
range of biological terms concerning molecular function,
cellular localization and biological processes, and span
various degrees of specificity: from very general terms to
very specific ones. GO terms are assigned to proteins both
manually and automatically. InterPro annotations are
assigned automatically by sequence and typically repre-
sent functional families and domains of no more than a
few hundred protein members. SwissProt keywords are
assigned manually and cover various biological subjects.

Annotation source and the number of annotation for each
(in parenthesis) are: SwissProt version 40.28 (865 key-
words), InterPro version 5.2 (5,551 entries), GO as of July

2002 (5,229 terms), PROSITE version 17.5 (1,189
signatures).
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