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Abstract: The reliability and safety of the cascade system, which is widely applied, have attached
attention increasingly. Fault detection and diagnosis can play a significant role in enhancing its
reliability and safety. On account of the complexity of the double closed-loop system in operation,
the problem of fault diagnosis is relatively complex. For the single fault of the second-order valued
system sensors, a real-time fault diagnosis method based on data-driven is proposed in this study.
Off-line data is employed to establish static fault detection, location, estimation, and separation
models. The static models are calibrated with on-line data to obtain the real-time fault diagnosis
models. The real-time calibration, working flow and anti-interference measures of the real-time
diagnosis system are given. Experiments results demonstrate the validity and accuracy of the fault
diagnosis method, which is suitable for the general cascade system.

Keywords: cascade system; fault diagnosis; sensor; data-driven

1. Introduction

Currently, the control system is showing a trend of complexity and large-scale. Along
with this phenomenon, there are various types of system failures. The occurrence of the
fault will cause the behavior of the control system to deviate from the regular running
track inevitably. As a result, the performance of the system will be weakened, unstable,
and even severe accidents such as property loss and casualties will occur. Since the 1970s,
the emergence and development of fault detection and diagnosis technology have opened
up a new way to ensure the safety and reliability of the system. It has appeal to growing
scholars at home and abroad [1–3].

In practical engineering, the equipment operation data reveals the working state of
the system. It is feasible for us to diagnose the status [4] and judge whether the system
faults in time via collecting these data. Nevertheless, a sea of data and the requirements of
timely diagnosis improve the complexity and difficulty of real-time fault diagnosis. Due to
the introduction of feedback in the closed-loop system, when a fault occurs in one part of
the system, it may cause the fault behavior to spread within the control system and make
other parts abnormal. A double closed-loop exists in a cascade system, and the behaviors
between the major and vice loops are closely related. Consequently, the phenomenon of
fault propagation in the double closed-loop system makes fault diagnosis more complex
and more difficult [5]. All parts of the cascade control system may fail in engineering
applications, and the probability of sensor failure is the highest.

Fault detection and diagnosis are essential measures to improve system reliability
and availability [6,7]. Numerous methods have been proposed since the development of
fault detection and diagnosis technology, including roughly three categories [8,9]. First, the
analytical model-based approach, for example, parameter estimation and equivalent space
method [10,11], which is based on the system operation mechanism. For a large-scale sys-
tem, it is arduous to establish an accurate mathematical model. Knowledge-based method
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as the second one, such as fault tree [12] and Expert System (ES) [13,14]. The limitation of
the ES lies in relying on the domain knowledge acquisition of experts. Last but not least,
the data-driven method [15,16]. The way based on data-driven is to collect, analyze and
diagnose the data generated during the operation of the equipment without knowing the
accurate system model. Data-driven strategies include information processing methods,
statistical analysis methods, machine learning methods, et cetera. Since it can diagnose
without a precise system model description, and the historical data [17,18] can be obtained
entirely and sufficiently, both academia and industry attach positive importance to this
method [19,20]. For instance, Rashidi et al. [21] proposed a multivariable process fault diag-
nosis method based on data-driven, used the normalized transfer entropy (NTE) between
the measured process variables and residual signal variation to estimate the strength of
causality, which reduced the amount of calculation required for analysis. Renga et al. [22]
put forward a transparent, exploratory, and detailed data mining workflow based on data
characterization, time window, association rule mining, and association classification. For
the PEMFC system, a deep belief network (DBN) was adopted by Zhang et al. [23] to
the fault diagnosis. They used the simulated annealing genetic algorithm fuzzy c-means
clustering (SAGAFCM) method to eliminate redundant and invalid data. Hu et al. [24] gave
a data-driven rotating machinery fault diagnosis method based on compressed sensing
(CS) and an improved multi-scale network (IMSN), which can effectively identify faults
under different working conditions.

In contrast with the open-loop system, the feedback effect of the closed-loop system
will cause the fault to propagate within it, make other parts of the data abnormal, and
reduce the performance of the system [25]. For sensors in closed-loop systems, fault detec-
tion methods of Kalman filter, parameter estimation, and maximum likelihood estimation
were used by Doraiswami et al. [26]. However, they suffered from complicated calcula-
tions, time-consuming, and initialization problems. Shi [27] took the traction motor of
the closed-loop system as the research object and adopted the diagnosis method based
on the analytical model. However, the actual non-linear factors were not considered in
the modeling process. More realistic system properties are inseparable from more precise
mathematical models. Sheriff [28] adopted the fault detection methods of kernel PCA
(KPCA) and kernel PLS (KPLS) to improve the accuracy, but there was still exists the false
alarm and missed detection rate of more than 3%. This study proposes a real-time single
fault diagnosis of sensors in a cascade system based on data-driven by studying the off-line
historical data of the double tank. This method solves the shortcomings of the above
techniques and has the following advantages. It calculates the collected data directly with
less calculation amount, has a low missed detection rate, and well real-time performance;
it does not rely on the system operating mechanism and avoids the problem of error in the
modeling process.

The novelty of this research: In principle, the first is to study fault diagnosis methods
according to system classification to facilitate the realization of system configuration. Here
is the cascade system; Secondly, it combines real-time data, which reflects the dynamic
characteristics of the system; Last is to integrate analytical geometric modeling methods.
In terms of functionality, first, establishes the static models of sensor fault detection, fault
location, fault estimation and fault separation in cascade system; The second is proposes a
method of calibrating static models by using on-line data to obtain real-time fault diagnosis
models; Then, gives the workflow and anti-interference measures of the real-time diagnosis
system. This method can be applied to the single sensor fault diagnosis of the general cascade
system. The effectiveness and accuracy of fault diagnosis were verified by experiments.

2. Structure and Characteristics of the Cascade System

In contrast with the single loop control system, the cascade control system has one
more vice loop to form a double closed-loop structure [29] (Figure 1) which improves
the dynamic characteristics of the controlled process and the ability to overcome the
disturbance [30].
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This study takes the Double-capacity Water Tank Level Cascade Control System
(DWTLCCS) as the research object (Figure 2).
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3. Fault Detection and Diagnosis Method

The cascade system is a double-loop system with a major loop and a vice loop. Each
circle has a sensor to measure the data of the corresponding object.

Sensor faults contain many types according to different classification standards. Based
on the external characteristics of the defect, the sensor faults are divided into additive fault
and multiplicative fault. The symptom of additive failure is that the measured value is
different from the actual value by a constant, while the sign of multiplicative failure is a
constant multiple.

Sensor fault diagnosis is based on big data reflecting the dynamic characteristics of
the system. Analyze the characteristic relationship of data after the system reaches control
stability requirement. In the fault detection part, the data is used for fault detection in the
form of windows. The following fault location, estimation, and separation diagnosis steps
are performed based on the fault signs found by the fault detection.

3.1. Fault Detection Method
3.1.1. Fault Detection Method

The fault detection algorithm is performed after the system reaches the control stability
requirements. When the system is running stably, the liquid level of the water tanks will
fluctuate slightly. The liquid level fluctuation refers to the slight difference between the
liquid level data of two adjacent sampling points collected by sensors. It has a specific
range so that the fault can be detected according to the degree of the liquid level fluctuation.
Calculate the liquid level fluctuation value (LLFV) of the experimental data obtained under
fault-free conditions: {

M f l = |Mc(t)−Mc(t− T)|
Vf l = |Vc(t)−Vc(t− T)| (1)

where Mfl and Vfl denote the LLFVs of the lower water tank (LWT) and upper water tank
(UWT), respectively, Mc and Vc are the measured values of these two water tanks, t is a
sampling time, and T is the sampling step.
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Suppose that one group of experimental time is ta and liquid level adjustment time is
ts. Calculate the LLFV after it has stabilized for a while t1, and the LLFV number of two
water tanks is Num:

Num =
(ta − ts − tl)

T
+ 1 (2)

Carry out multi-group fault-free experiments to reduce the error and improve fault
detection accuracy. Obtain the maximum LLFV of two water tanks in each group of
experiments:  M f lmaxk =

[
M f lmax1, M f lmax1, · · · , M f lmaxr

]
Vf lmaxk =

[
Vf lmax1, Vf lmax1, · · · , Vf lmaxr

] (3)

where r represents the number of fault-free experimental groups. Mflmax and Vflmax stand
the maximum values of the liquid level data of the LWT and UWT of each group of
experiments calculated by Equation (1), respectively.

Take the LWT as the example to calculate the mean value and sample variance σM:

M f lmaxk =
1
r

r

∑
k=1

M f lmaxk (4)

σM =

√
1

r− 1

r

∑
k=1

(
M f lmaxk −M f lmaxk

)2
(5)

Take 3σ as the trade-off of abnormal data, obtain the fluctuation threshold of the LWT
liquid level for primary loop sensor fault detection can as follows:

Mth = M f lmaxk + 3σM (6)

Similarly, the liquid level fluctuation threshold of the UWT is:

Vth = V f lmaxk + 3σV (7)

Then the static models of fault detection of the major and vice sensors are, respectively:

M f l(t) > Mth (8)

Vf l(t) > Vth (9)

where Mfl (t) and Vfl (t) are the LLFVs of the LWT and UWT at a sampling time t,
respectively.

The proposed fault detection method averaging the maximum value of multiple
windows and sets of data has a certain inhibitory effect on normal sampling fluctuations in
engineering.

3.1.2. Interference Signal Suppression

Consider the fault detection method in this study is to process the instantaneous value
of system running data, so suppressing the interference signal to avoid misjudgment is
essential.

For random data burr interference, restrain it during the fault detection process to realize
the operation of suppressing interference while detecting. The LLFV in both cases of fault and
interference signal will exceed the corresponding threshold. The difference is as follows: in the
former, only a single LLFV exceeds the corresponding threshold, namely, its adjacent LLFVs
are all below the threshold; in the latter, at least two adjacent LLFVs exceed the corresponding
threshold. We can distinguish between a system failure and an interference signal according
to the difference between the two. For other disturbances such as system and environment,
the fault detection method uses the measure of taking the average value, which itself has a
certain function of restraining interference. For disturbance has a linear relationship with
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the fault, the adjustment period after the defect is used to correct the level data to achieve
suppression. The disturbance and the fault are distinguished by the adjustment period.

3.2. Fault Location Method
3.2.1. Fault Location of Major Loop Sensor

The liquid level of LWT is the controlled variable, the loop it is in is the main loop, and
its sensor is the major loop sensor. When the sensor in the major loop fails, the measured
value of the sensor will change abruptly, and the LLFV in the lower water tank will be
greater than the threshold. Through the feedback of the cascade system, the vice loop will
tailor according to the measured data for the major loop sensor. In some cases, the liquid
level of the UWT over-adjustment may also induce its LLFV to exceed the threshold.

Through the above analysis, we can infer that the judgment conditions of sensor
failure in the major loop are as follows:

M f l(tMF) > Mth (10){
M f l(tMF) > Mth
Vf l(tVF) > Vth

, and tMF < tVF (11)

Meeting either of the above conditions represents the system fault located in the major
loop sensor. Where tMF and tVF are the sampling times when the fluctuation value of LWT
and UWT exceeds the corresponding threshold, respectively.

3.2.2. Fault Location of Vice Loop Sensor

When the vice loop sensor fails, the measured value of the sensor will change abruptly,
and the current fluctuation value of the UWT will exceed the threshold. The fault of the
vice sensor is almost no influence on it if the liquid level in the LWT has reached a stable
state at this time. Hence, the LLFV in the LWT will not change significantly and will remain
below the threshold.

Thus, the judgment condition for the failure of the vice loop sensor is as follows:

Vf l(tVF) > Vth (12)

If the above condition is satisfied, the fault occurs in the vice loop sensor.

3.3. Fault Estimation Method

Fault estimation consists of the estimation for fault occurrence time and intensity.

3.3.1. Fault Time Estimation

Combine the fault detection and fault location algorithm to determine the time of the
failure.

When the major loop sensor fails, the LLFV in the LWT at the failure sampling moment
can be known by the fault detection algorithm, and then the fault occurrence time is known
as tMF by the fault location algorithm Formulas (10) and (11). Similarly, the fault time is tVF
described in Formula (12) when the vice loop sensor fails.

3.3.2. Fault Intensity Estimation

The fault intensity is the comparison between the liquid level sampling value at the
time of failure and the one before the failure.

When the major loop sensor generates an additive fault, the fault intensity MFp is the
result of the sampling value at the fault time minus the value at the previous time:

MFp = Mc(tMF)−Mc(tMF − T) (13)
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When the major loop sensor has a multiplicative fault, the fault intensity MFm is the
result of dividing the sampling value at the fault time by the value at the previous time:

MFm =
Mc(tMF)

Mc(tMF − T)
(14)

Similarly, when the vice loop sensor has an additive fault, the fault intensity VFp is:

VFp = Vc(tVF)−Vc(tVF − T) (15)

When the vice loop sensor occurs a multiplicative fault, the fault intensity VFm is:

VFm =
Vc(tVF)

Vc(tVF − T)
(16)

The above equations can estimate the additive and multiplicative fault intensities of
the major and vice sensors.

3.4. Fault Separation Method

Fault separation is to analyze the properties of the faults detected by the above
methods and judge whether the faults belong to additive fault or multiplicative fault.

3.4.1. Fault Separation of Major Loop Sensor

After failure, the measured level of LWT will mutate and then change in the opposite
direction to the fault until it returns to a stable state again. In this process, the controller
will adjust the liquid level for UWT according to the deviation degree of the liquid level
for LWT. There exists a specific relationship between the liquid level changes of two water
tanks. Consider the different states on the dynamic relationship due to different types and
intensities of failures, regard the changing data as the preliminary characteristic data set.
Then the measured data of the lower and upper water tank as independent and dependent
variables, respectively, the first non-linear regression analysis of the characteristic data set
is carried out by using Equation (17) to obtain a smooth characteristic data set:

Y1 = α1M2 + α2M + α3 + ε (17)

Select multiple groups of data with different failure types and intensities for regression
analysis according to Equation (17). These curves are equivalent to parabolas with different
coefficients and represent the liquid level change trace after different types and intensities
faults. Therefore, one of the three elements of the parabola, namely the axis of symmetry,
can be used as the fault eigenvalue. According to the symmetry axis formula:

S = − α2

2α1
(18)

We can acquire the eigenvalue set SP of additive fault is:

SP = [p11, p12, p13, · · ·]T (19)

where, p11, p12, p13, . . . represent the characteristic values of the symmetry axis under
different strength additive faults. The eigenvalue set SM of multiplicative fault is:

SM = [m11, m12, m13, · · ·]T (20)

where, m11, m12, m13, . . . represent the characteristic values of the symmetry axis under
different strength multiplicative faults. After selecting the fault eigenvalue S, the second
non-linear regression analysis uses the least square principle. The independent and depen-
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dent variables are fault intensity and eigenvalue S, respectively. Thus, we can acquire the
fault separation model of the major loop sensor.

The additive fault model is:
Sp = f

(
MFp

)
(21)

The multiplicative fault model is:

Sm = g(MFm) (22)

Finally, compare the real-time fault eigenvalue S with the Sp and Sm obtained by the
above fault separation models: {

e1 =
∣∣S− Sp

∣∣
e2 = |S− Sm|

(23)

If e1 < e2, it is judged that the major loop sensor generates an additive fault; otherwise,
multiplicative fault.

3.4.2. Fault Separation of Vice Loop Sensor

After the vice loop sensor fails, the direction of liquid level change is completely
different from the failure. At this time, the liquid level of the LWT has reached a stable state,
so the change has little impact on it. Therefore, the characteristic data set only includes the
data of UWT with apparent changes. Pay significant concern on the different initial change
rates feature data for the UWT among various faults. Smooth the characteristic data set
according to:

Y2 = β1V + β2 + ε (24)

Select multiple groups of data with different failure types and intensities for regression
analysis according to Equation (24) to obtain a series of primary linear functions with dif-
ferent coefficients. The coefficients of each primary term are regarded as fault eigenvalues
and bring the following results:

The eigenvalue set SLP of additive fault is:

SLP = [p21, p22, p23, · · ·]T (25)

where, p21, p22, p23, . . . represent the characteristic values of the symmetry axis under
different strength additive faults. The eigenvalue set SLM of multiplicative fault is:

SLM = [m21, m22, m23, · · ·]T (26)

where, m21, m22, m23, . . . represent the characteristic values of the symmetry axis under
different strength multiplicative faults. The additive fault model is:

SLp = q
(
VFp

)
(27)

The multiplicative fault model is:

SLm = y(VFm) (28)

Finally, compare the real-time coefficient of the first-order term with the SLp and SLm
obtained by the above fault separation models:{

e3 =
∣∣β1 − SLp

∣∣
e4 = |β1 − SLm|

(29)

The judgment method is the same concept as that of the major loop sensor. That is,
the valid result is the one with a smaller value.
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3.5. On-Line Fault Diagnosis Algorithm Flow

Static models of fault diagnosis are given above. In practical applications, calibrate
can convert the static model into a dynamic model. Calibration is based on the static model,
and the steps are as follows: (a) combine the eigenvalues of historical data for different
faults; (b) obtain various parameters through the non-linear least square principle; (c)
acquire the data change law caused by faults suitable for the states of various components
of different engineering cascade systems; (d) complete the calibration.

We acquire the on-line fault diagnosis of practical engineering by algorithms and
calibration method above. The diagnosis steps in the sequence are fault detection and
interference signal elimination, fault location, fault estimation, and separation. Figure 3
represents the on-line calibration and diagnosis process.
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4. Verification of Fault Detection and Diagnosis Method
4.1. Experiment Platform

The research is based on the “complex system fault diagnosis and fault-tolerant control
innovation platform,” which is composed of device hardware and PC software. Hard-
ware composition: a typical process control object—four-capacity water tank; ultrasonic
sensor with a range of 0–1 m, a blind area less than 0.06 m, and a precision and mini-
mum display resolution of 1 mm; DC water pump; Burkert proportional solenoid valve,
composed of 6223 valve body and 8065 controller; PLC part uses Siemens S7-300 module
introduced at the end of the 20th century. Software part: WinCC upper computer con-
figuration software; Matlab (2015b)/Simulink; STEP7 for configuration programming of
PLC independent hardware unit control mechanism. Communication part: Simatic Net
(Manufacturer: Simens AG, Berlin, Germany), Siemens industrial communication solution
for OPC (OLE for Process Control) to realize data integration in the control system, realize
data communication.

The experimental model is created with Matlab/Simulink library browser, as shown
in Figure 4. The input signal is a step signal. The primary controlled object control requires
no residual error, so the PID control law. The secondary allows the residual error and
speeds up the adjustment time, so the PD control law. Rely on the system characteristics
and empirical method, the main controller parameters are set as P = 11.9, I = 0.07, D = 16.8;
the secondary controller P = 1, D = 5.8. Each closed loop has an analog additive and
multiplicative fault occurrence module, which can customize the occurrence time and
intensity.
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Figure 4. Experimental model in Simulink.

4.2. Data Acquisition

Divide the experimental data into five states: fault-free state, additive fault states on
major and vice loop sensors, multiplicative fault states on two sensors.

During the experiment, the expected liquid level of the lower water tank was 10 cm,
the experimental time was 1200 s, and the sampling step T was 0.5 s.

4.2.1. Fault-Free Data Acquisition

We collected multiple groups of fault-free data to reduce error. Set the expected liquid
level of each group of the fault-free experiment at 10 cm. The experimental running time
was 1200 s, and the sampling step was 0.5 s. Figure 5a shows the system liquid level
response curve for one group of fault-free experiments in the form of time series, including
the expected liquid level of the main controlled object and the original data of two water
tanks directly obtained by the sensors.
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4.2.2. Fault Data Acquisition

Maintained the control parameters in the fault-free state, then added additive and
multiplicative faults of different intensities to two sensors at 700 s after the system ran
to a stable condition. Set the range of additive fault intensity between ±2.0 cm and
multiplicative in 0.8~1.2. Take the additive fault (−1.0 cm) of the sensor in the major loop
and the multiplicative fault (0.90) in the vice loop as examples, the system liquid level
response curves as shown in Figure 5b,c by the form of time series, respectively. The
expected liquid level of the main controlled object and the original liquid level data of LWT
and UWT directly obtained by the sensors in the case of failure are drawn in the figure.

The additive fault in Figure 5b occurs in the primary loop sensor, which measures
the liquid level of LWT. The multiplicative defect in Figure 5c arises in the secondary loop
sensor to obtain the data of UWT. LWT is the main control object of the cascade system in
this paper. When it is not at the set value, such as the additive fault of the sensor measuring
the lower water tank here, the controller will adjust the actuator to increase or reduce the
water inflow. This step acts directly on UWT, which will change the liquid level of itself. If
LWT has reached the expected value and stabilized, a slight change in the liquid level of the
upper at this time, such as Figure 5c, will have little effect on LWT. The reason is that the
volume of UWT affects the buffering impact of its liquid level and the timely adjustment of
the controller.

4.3. Verification of Fault Detection Method

Taking 10 groups data of fault-free, we acquired the average and sample variance of
the maximum LLFVs of the LWT and UWT after the system reaches the control stability
requirements, respectively, according to Equations (4) and (5):

M f lmax = 0.1085 cm, σM = 0.0147 cm
V f lmax = 0.1216 cm, σV = 0.0115 cm

Then, the liquid level fluctuation thresholds of the two water tanks were calculated by
the Equations (6) and (7):

Mth = M f lmax + 3σM = 0.1526 cm
Vth = V f lmax + 3σV = 0.1563 cm

After the system runs stably, run the fault detection algorithm in real-time based on
the collected data. The detection results of faults within ±3% through the above thresholds
are listed in Tables 1 and 2 (0: fault-free; 1: out of order). The deviation and gain in the
tables represent the faults intensity within ±3%, respectively.
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Table 1. Detection results of faults within ±6% of major sensor.

Additive Fault
Deviation/cm −0.3 −0.2 −0.16 −0.1 +0.1 +0.16 +0.2 +0.3
Result 1 1 1 0 0 1 1 1

Multiplicative
Fault

Gain 0.97 0.98 0.984 0.99 1.01 1.016 1.02 1.03
Result 1 1 1 0 0 1 1 1

Table 2. Detection results of faults within ±6% of vice sensor.

Additive Fault
Deviation/cm −0.3 −0.2 −0.16 −0.1 +0.1 +0.16 +0.2 +0.3
Result 1 1 1 0 0 1 1 1

Multiplicative
Fault

Gain 0.97 0.98 0.984 0.99 1.01 1.016 1.02 1.03
Result 1 1 0 0 0 0 1 1

Tables indicate that failure intensities beyond 1.6% on the major sensor and beyond
2% on the vice sensor did not appear missed detection.

4.4. Verification of Fault Location Method
4.4.1. Fault Location of Major Loop Sensor

After the system is stable, the fault before, with the help of Equation (1), in the form of
moving small Windows, calculated each sample point is corresponding to the liquid level
fluctuation. The LLFVs of the upper and lower water tanks were calculated. Take the case
of the additive fault +0.6 cm, as shown in Figure 6.
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Figure 6. Additive fault on the major loop sensor is +0.6 cm: (a) the LLFV of the lower water tank; (b) the LLFV of the upper
water tank.

Figure 6 shows the LLFVs of the two water tanks both exceed their threshold, but
LWT exceeds the threshold value earlier than UWT, which satisfies In Equation (11).
Consequently, the sensor in the major loop has failed.

The location results of faults within ±6% on the major loop sensor are listed in Table 3
(1: major loop sensor; 2: vice loop sensor), showing the location accuracy is 100%.

Table 3. Location results of faults within ±6% of major sensor.

Additive Fault
Deviation/cm −0.5 −0.4 −0.3 −0.2 −0.16 +0.16 +0.2 +0.3 0.4 0.5
Result 1 1 1 1 1 1 1 1 1 1

Multiplicative
Fault

Gain 0.95 0.96 0.97 0.98 0.984 1.016 1.02 1.03 1.04 1.05
Result 1 1 1 1 1 1 1 1 1 1
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4.4.2. Fault Location of Vice Loop Sensor

Take the additive fault +0.6 cm as an example, calculated the liquid level fluctuation
values, as shown in Figure 7.
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Figure 7. Additive fault on the vice loop sensor is +0.6 cm: (a) the LLFV of the lower water tank; (b) the LLFV of the upper
water tank.

Figure 7 indicates the LLFV of LWT remains below the threshold, and only that of
UWT exceeds the threshold, which matches the In Equation (12). Thus, the failed sensor in
the vice loop.

Table 4 represents the location results of faults within ±6% of the vice loop sensor (1:
major loop sensor; 2: vice loop sensor).

Table 4. Location results of faults within ±6% of vice sensor.

Additive Fault
Deviation/cm −0.5 −0.4 −0.3 −0.2 −0.16 +0.16 +0.2 +0.3 0.4 0.5
Result 2 2 2 2 2 2 2 2 2 2

Multiplicative
Fault

Gain 0.95 0.96 0.97 0.98 0.984 1.016 1.02 1.03 1.04 1.05
Result 2 2 2 2 / / 2 2 2 2

The outcome indicates that the fault location method can effectively judge the location
of additive fault with 100% accuracy. It can also locate multiplicative faults beyond 2%
accurately.

4.5. Verification of Fault Estimation Method
4.5.1. Fault Estimation of Major Loop Sensor

Take the additive fault +0.6 cm as an example, and Figure 6 represents the fault that
occurs at 700 s: {

M f l(tMF) > Mth
Vf l(tVF) > Vth

,
{

tMF = 700 s, tVF = 705 s
tMF < tVF

Take two kinds of fault data within the range of ±6% to verify by the fault estimation
algorithm, and the verification results are shown in Tables 5 and 6.
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Table 5. Estimated results of additive faults within ±6% of major sensor.

Deviation/cm Fault Estimation/cm Error|Ea|/cm

−0.5 −0.5 0
−0.4 −0.4 0
−0.3 −0.3 0
−0.2 −0.2 0
−0.16 −0.16 0
0.16 0.16 0
+0.2 +0.2 0
+0.3 +0.3 0
+0.4 +0.4 0
+0.5 +0.5 0

Table 6. Estimated results of multiplicative faults within ±6% of major sensor.

Gain Fault Estimation Error|Em|

0.95 0.95 0
0.96 0.96 0
0.97 0.9672 0.0028
0.98 0.98 0
0.984 0.9812 0.0028
1.016 1.016 0
1.02 1.02 0
1.03 1.036 0.006
1.04 1.04 0
1.05 1.05 0

4.5.2. Fault Estimation of Vice Loop Sensor

Take the additive fault +0.6 cm for instance, and Figure 6 shows the fault that occurs
at 700 s:

Vf l(tVF) > Vth, and tVF = 700 s

Take two kinds of fault data within the range of ±6% to verify by the fault estimation
algorithm, and the verification results are shown in Tables 7 and 8.

Table 7. Estimated results of additive faults within ±6% of the vice sensor.

Deviation/cm Fault Estimation/cm Error|Ea|/cm

−0.5 −0.5 0
−0.4 −0.4 0
−0.3 −0.3 0
−0.2 −0.2 0
−0.16 −0.16 0
0.16 0.16 0
+0.2 +0.2 0
+0.3 +0.3 0
+0.4 +0.4 0
+0.5 +0.5 0

By calculation, the relative errors of additive and multiplicative faults for the major
loop sensor are 0% and 0.29%, respectively. Both are 0% for the vice loop sensor.
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Table 8. Estimated results of multiplicative faults within ±6% of the vice sensor.

Gain Fault Estimation Error|Em|

0.95 0.95 0
0.96 0.96 0
0.97 0.97 0
0.98 0.98 0
0.984 / /
1.016 / /
1.02 1.02 0
1.03 1.03 0
1.04 1.04 0
1.05 1.05 0

4.6. Verification of Fault Separation Method
4.6.1. Fault Separation of Major Loop Sensor

It is essential to acquire a batch of experimental data on fault states with different
intensities to establish the fault separation static models for the major loop sensor. Based
on the liquid level adjustment data of two tanks within a period of time after the fault, the
eigenvalues corresponding to different fault intensities of additive and multiplicative—axis
of symmetry were calculated by Equations (17) and (18). The second row of Tables 9–12
lists the eigenvalue sets obtained—Equations (19) and (20). Table 9, for example, obtained a
fitting curve (Figure 8)—Equation (21), reflecting the relationship between failure intensity
and characteristic value, from the characteristic data with an outlier removed of additive
fault MFp < 0. Similarly, data in Tables 10–12 were analyzed by the second non-linear
regression—the fitting functions are listed in Table 13.

Table 9. The symmetry axis of the preliminary fitting function for additive fault deviation < 0.

Deviation MFp < 0 −0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6 −1.8 −2.0

Symmetry axis SP Abnormal 9.8253 9.7824 9.7153 9.621 9.5665 9.5136 9.4526 9.4049 9.3536
RMSE / 0.1030 0.1338 0.1394 0.1476 0.1298 0.1914 0.1917 0.2237 0.2098

Table 10. The symmetry axis of the preliminary fitting function for additive fault deviation > 0.

Deviation MFp > 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Symmetry axis SP 10.1021 10.2322 10.2867 10.2867 10.4100 9.5665 9.5136 10.6346 10.7780 10.8680
RMSE 0.1482 0.1850 0.2048 0.1639 0.1463 0.1641 0.1777 0.1203 0.1670 0.1678

Table 11. The symmetry axis of preliminary fitting function for multiplicative fault gain < 1.

Gain MFm < 1 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80

Symmetry axis SM 9.8963 9.8578 9.7687 9.7180 9.6428 9.6057 9.5437 9.4762 9.2899 9.2289
RMSE 0.1083 0.1039 0.1329 0.1557 0.1511 0.1846 0.2252 0.2209 0.2243 0.2526

Table 12. The symmetry axis of preliminary fitting function for multiplicative fault gain > 1.

Gain MFm > 1 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

Symmetry axis SM 10.0984 10.2303 10.2423 10.3671 10.4737 10.5825 10.6813 10.7172 10.8310 10.8631
RMSE 0.1492 0.1673 0.1448 0.1572 0.1814 0.1736 0.1874 0.1535 0.1275 0.1500
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Table 13. Results of the second non-linear regression analysis.

Fault Type Fitting Function of the Second Nonlinear Regression r2 RMSE

MFp < 0 Sp = 0.0368MFp
2 + 0.3926MFp + 9.9900 0.9961 0.0121

MFp > 0 Sp = 0.0542MFp
2 + 0.2475MFp + 10.0867 0.9854 0.0307

MFm < 1 Sm = −8.2140MFm
2 + 18.2708MFm − 0.1268 0.9939 0.0198

MFm > 1 Sm = −6.2519MFm
2 + 17.4998MFm − 1.2400 0.9892 0.0261

Tables 14 and 15 indicate the verification results of fault separation for the major loop
sensor. The accuracy of fault separation reaches 5%.

Table 14. Separation results of additive faults of the major sensor.

Deviation MFp/cm e1 e2 Result

−0.9 0.0076 0.0230 Additive
−0.7 0.0026 0.0244 Additive
−0.5 0.0023 0.0119 Additive
−0.3 0.0282 0.0199 Multiplicative
−0.16 0.02945 0.3240 Additive
0.16 0.0828 0.0379 Multiplicative
0.3 0.0165 0.0364 Additive
0.5 0.00084 0.0140 Additive
0.7 0.00046 0.0353 Additive
0.9 0.0020 0.0537 Additive

Table 15. Separation results of multiplicative faults of the major sensor.

Gain MFm e1 e2 Result

0.91 0.0299 0.00058 Multiplicative
0.93 0.0150 0.0120 Multiplicative
0.95 0.0117 0.0023 Multiplicative
0.97 0.0017 0.0026 Additive
0.984 0.0087 0.0332 Additive
1.016 0.3279 0.2829 Multiplicative
1.03 0.0328 0.0243 Multiplicative
1.05 0.0092 0.0022 Multiplicative
1.07 0.0242 0.0134 Multiplicative
1.09 0.0302 0.0260 Multiplicative

4.6.2. Fault Separation of Vice Loop Sensor

A batch of experimental data with different fault strengths was taken to establish
the qualitative static fault model for each type of fault. According to Equation (24), the
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characteristic values corresponding to different additive and multiplicative fault intensities-
primary term coefficients of liquid level adjustment data of UWT after failure are calculated.
The second row in Tables 16–19 shows the obtained set of eigenvalues—Equations (25)
and (26). Take Table 16 as an example, bringing the fitting curve (Figure 9)—Equation (27),
reflecting the connection between failure intensity and characteristic value, from the char-
acteristic data with the additive fault deviation VFp < 0. Similarly, the second non-linear
regression was analyzed according to eigenvalues in Tables 17–19—the fitting functions
listed in Table 20.

Table 16. First order coefficient of additive fault deviation < 0.

Deviation VFp < 0 −0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6 −1.8 −2.0

Coefficient SLP 0.0048 0.0068 0.0169 0.0219 0.0299 0.0355 0.0425 0.0455 0.0558 0.0586
RMSE 0.0434 0.0171 0.0324 0.0377 0.0357 0.0291 0.0557 0.0459 0.0483 0.0550

Table 17. First order coefficient of additive fault deviation > 0.

Deviation VFp > 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Coefficient SLP Abnormal −0.0105 −0.0113 −0.0142 −0.0190 −0.0283 −0.0341 −0.0441 −0.0615 −0.0702
RMSE / 0.0152 0.0159 0.0251 0.0206 0.0610 0.0624 0.0310 0.0222 0.0431

Table 18. First order coefficient of multiplicative fault gain < 1.

Gain VFm < 1 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80

Coefficient SLM Abnormal 0.0058 0.0125 0.0145 0.0225 0.0294 0.0368 0.0386 0.0430 0.0474
RMSE / 0.0185 0.0146 0.0530 0.0341 0.0236 0.0291 0.0302 0.0279 0.0313

Table 19. First order coefficient of multiplicative fault gain > 1.

Gain VFm > 1 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

Coefficient SLM −0.0107 −0.0077 −0.0159 −0.0186 −0.0273 −0.0357 −0.0458 −0.0567 −0.0630 −0.0753
RMSE 0.0573 0.01718 0.0326 0.0192 0.0370 0.03329 0.0554 0.03639 0.0454 0.0502
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Table 20. Results of the second non-linear regression analysis.

Fault Type Fitting Function of the Second Nonlinear Regression r2 RMSE

VFp < 0 SLp = −0.0011VFp
2− 0.0399VFp− 0.0037 0.9926 0.0019

VFp > 0 SLp = −0.0226VFp
2 + 0.0155VFp − 0.0126 0.9939 0.0020

VFm < 1 SLm = −0.3864VFm
2 + 0.4103MFm − 0.0354 0.9884 0.0018

VFm > 1 SLm = −1.3220VFm
2 + 2.5522MFm − 1.2354 0.9915 0.0025

Tables 21 and 22 indicate the verification results of fault separation for the vice loop
sensor. The accuracy of fault separation reaches 7%.

Table 21. Separation results of additive faults of the vice sensor.

Deviation VFp/cm e3 e4 Result

−0.9 0.0005 0.0039 Additive
−0.7 0.0002 0.0029 Additive
−0.5 0.0127 0.0088 Multiplicative
−0.3 0.0090 0.0130 Additive
−0.16 0.0146 0.0105 Multiplicative
0.16 0.0119 0.0100 Multiplicative
0.3 0.0070 0.0065 Multiplicative
0.5 0.0019 0.0014 Multiplicative
0.7 0.0006 0.0059 Additive
0.9 0.0040 0.0056 Additive

Table 22. Separation results of multiplicative faults of the vice sensor.

Gain VFm e3 e4 Result

0.91 0.0033 0.0002 Multiplicative
0.93 0.0025 0.0008 Multiplicative
0.95 0.0069 0.0038 Multiplicative
0.97 0.0047 0.0087 Additive
0.984 / / /
1.016 / / /
1.03 0.0077 0.0068 Multiplicative
1.05 0.0010 0.0017 Additive
1.07 0.0105 0.0051 Multiplicative
1.09 0.0092 0.0054 Multiplicative

Further verified by a large amount of data: for the major loop sensor, the dead zone of
fault detection is 1.6%, fault location accuracy is 100%, the relative error of fault estimation
is 0.29%, 5% dead zone for fault separation; for the sensor in the vice loop, the dead zone of
fault detection is 2%, 100% accuracy for fault location, no relative error in fault estimation,
and the dead zone of fault separation is 7%.

5. Conclusions

In this study, we have taken the major and vice loop sensors of DWTLCCS as the
analysis objects. The static models of system fault detection, location, estimation, and sepa-
ration are established via historical data, which has characteristic information generated
by the system operation. On balance, based on the data-driven method. We proposed
the measurement to suppress disturbance, giving the calibration method and on-line fault
diagnosis process. Experiments verified the effectiveness of the fault diagnosis method.
The method is universal for single fault diagnosis of sensors in the cascade control system.

The traditional detection threshold is commonly determined based on the sum of
residuals. A clear expectation value is required for this method. Since the vice loop of the
cascade system is not the primary control object, and its controller plays the role of serving
control and does not need to use integral control, which will generate the steady-state error.
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In such a case, the liquid level of the secondary has no definite expected value. Suppose
calculated threshold value in the form of residual error sum will cause missed or false
detection. The detection method we proposed reduces the missed detection rate and the
amount of calculation, improving the detection accuracy simultaneously.

The detection threshold is determined according to the method put forward in this
paper, and the actual system calibrates the on-line diagnosis model. To some extent, it has
a certain inhibitory effect on noise, and higher detection accuracy is obtained. How to
further suppress the disturbance effect is the future research focus.

Based on system dynamic characteristics and data mining methods, this study adopts
the analytical geometry approach to modeling, fully utilizing data information. A precise
mathematical model of the system is needless and analyzes the data generated by the
system operation in real-time directly, avoiding the issue of modeling errors that depend
on the mathematical model. Diagnosis is carried out in real-time, without an obvious delay
problem.

During operation, considering the wear and tear of system components, regular
calibration can be carried out to ensure the accuracy of diagnosis. In future work, we plan
to investigate further how to enhance diagnosis precision.
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