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The accurate predicting of physical properties and bioactivity of drug molecules in deep
learning depends on howmolecules are represented. Many types of molecular descriptors
have been developed for quantitative structure-activity/property relationships quantitative
structure-activity relationships (QSPR). However, each molecular descriptor is optimized
for a specific application with encoding preference. Considering that standalone
featurization methods may only cover parts of information of the chemical molecules,
we proposed to build the conjoint fingerprint by combining two supplementary fingerprints.
The impact of conjoint fingerprint and each standalone fingerprint on predicting
performance was systematically evaluated in predicting the logarithm of the partition
coefficient (logP) and binding affinity of protein-ligand by using machine learning/deep
learning (ML/DL) methods, including random forest (RF), support vector regression (SVR),
extreme gradient boosting (XGBoost), long short-termmemory network (LSTM), and deep
neural network (DNN). The results demonstrated that the conjoint fingerprint yielded
improved predictive performance, even outperforming the consensus model using two
standalone fingerprints among four out of five examined methods. Given that the conjoint
fingerprint scheme shows easy extensibility and high applicability, we expect that the
proposed conjoint scheme would create new opportunities for continuously improving
predictive performance of deep learning by harnessing the complementarity of various
types of fingerprints.
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INTRODUCTION

Predicting molecular properties plays important roles in guiding drug discovery. In the last decade,
applying machine learning to predict physical or chemical properties of molecular drugs gains great
interest, especially since the emergence of deep learning (LeCun et al., 2015; Min et al., 2016; Shen
et al., 2020). By converting molecules into computer readable formats, such as molecular descriptors,
machine learning will map features through hierarchical non-linear functions to required outputs.
Deep learning with matched input molecular descriptors has achieved breakthrough improvements
in biology and chemistry fields, such as predicting quantitative structure-activity relationships
(QSAR) (Butler et al., 2018), modeling absorption, distribution, metabolism, excretion and toxicity
(ADMET) (Lei et al., 2017; Wu et al., 2019), virtual screening (Cereto-Massagué et al., 2015; Wang
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et al., 2020), drug design (Morrone et al., 2020), materials design
(Xie and Grossman, 2018), chemical reactions (Grambow et al.,
2020), and protein structure prediction (Senior et al., 2020), etc.

The accumulated experience in bioinformatics studies shows
that the accurate predictions of machine learning heavily depend
on the effective molecular representations (Schneider, 2010).
Researchers from chemistry and biology field adopt many
ways to design proper molecular descriptors, which requires
strong experience and professional knowledge (Mater and
Coote, 2019). Many types of molecular descriptors have been
designed based on professional knowledge and specific demands.
In the early days, the primary aim is to store and retrieve
molecules, so that the molecular representations are compact
and simple. The famous example is simplified input line entry
system (SMILES) (Weininger, 1988; Weininger et al., 1989;

Weininger, 1990). Later, the aim to search substructures drives
to develop key-based fingerprints, such as molecular access
system (MACCS) keys (Durant et al., 2002a). To meet
growing need to model structure-activity and bioactivity, more
effective fingerprints are designed, such as pharmacophore
fingerprint and topological fingerprints. Recently, researchers
are trying to incorporating 3D information in fingerprints for
accurately predicting bioactivity of molecular drugs. More expert-
designed fingerprints are continuously to be developed, such as
4D-fingerprints (Senese et al., 2004), molecular graphs (Kearnes
et al., 2016), coulomb matrices and atomic coordinates (Sanchez-
Lengeling and Aspuru-Guzik, 2018) or properties extracted from
molecular dynamics simulations (Riniker, 2017).

Though many types of molecular descriptors have been
proposed, there is not “one size fits all” molecular

FIGURE 1 | The schematic computing procedures of MACCS keys, ECFP fingerprints and the conjoint fingerprints for LSTM and DNN. One molecule is
transformed to its feature (vector) space representation using MACCS keys and ECFP fingerprints. Two types of fingerprint are combined as conjoint fingerprint. Output
of deep neural network is the predicted properties. (A) schematic computing procedures of MACCS keys; (B) schematic computing procedures of ECFP fingerprints; (C)
LSTM trained with conjoint fingerprint; (D) DNN trained with conjoint fingerprint.
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representation. The domain expert-engineered molecular
features sometimes becomes one main obstacle sitting on the
road to deep learning (Chuang et al., 2020). Molecular descriptors
represent molecular structures from holistic representations, such
as molecular size, weight, molecular shape. In the contrast,
molecular fingerprints describe the local aspect of chemical
structures and exploding whether the presence of substructure
patterns. Molecular fingerprints have been optimized based on
the particular tasks. Existing molecular fingerprints encodes
different information with preference to reproduce the best
results for the designated tasks. The available fingerprints can
be classified into five types: topological, geometrical,
thermodynamic, electronic and constitutional fingerprints
(Danishuddin and Khan, 2016). Several studies have been
reported to check the performance of different fingerprint
schemes (Duan et al., 2010; Riniker and Landrum, 2013; Wu
et al., 2018). Each type of molecular descriptors combined with
machine learning methods fits into the matching scope of
applicability. Two most used molecular descriptors are
MACCS keys and extended connectivity fingerprints (ECFP)
(Rogers and Hahn, 2010a). MACCS key is the substructure
key-based fingerprints, which includes predefined atom
symbols, bond types, atom environment properties, atom
properties (Figure 1) (Durant et al., 2002b; Cereto-Massagué
et al., 2015). ECFP encodes local neighborhoods around each
atom and bonding connectivity in molecules (Rogers and Hahn,
2010b). Both MACCS keys and ECFP have gained wide
applications in similarity searching (Vilar et al., 2014; Cereto-
Massagué et al., 2015), modeling QSAR (Glen et al., 2006; Myint
et al., 2012), and predicting chemical reactivity (Sandfort et al.,
2020). Wei group has adopted MACCS keys to encode protein
and ligand pharmacological space and realized high predictive
accuracy and improved high-throughput performance in drug
discovery (Li et al., 2019). Recently, deep learning combined with
ECFP fingerprint has been shown as a robust method for high
throughput logP predictions, which obtained the root mean
square error of 0.61 logP units and ranks as top quarter out of
the 92 submissions in the sixth round of Statistical Assessment of
the modeling of Proteins and ligands (SAMPL6) competition
(Prasad and Brooks, 2020).

The importance of effective representations of molecules has
been recognized when seeking higher accuracy of predicting
results (Feinberg et al., 2020; Lui et al., 2020). Professional
knowledge-based molecular descriptors will be one
straightforward way but will bring great challenges for general
users who are not familiar with computer techniques.
Considering that the standalone molecular descriptors
inherently cover parts of information of chemical molecules,
we can develop new computing schemes to utilize the existing
molecular descriptors. With realization of preference encoding in
each molecular descriptor, combining two fingerprints together
shows great potential in improving prediction performance in
addition to design novel types of fingerprints (Tseng et al., 2012).

Though the combining of different classes of the molecular
fingerprint was proposed by Tseng et al., only important
molecular features were selected from the trial descriptor pool
that is constructed from molecular representations (Tseng et al.,

2012). The hybrid fingerprints with feature engineering have been
actively employed in the field (Nisius and Bajorath, 2009; Wang
et al., 2016). Features selection can be completed by genetic
algorithms, least absolute shrinkage and selection operator
(LASSO), or partial least square (PLS), etc. For example,
Tseng applied genetic function approximation and multi-
dimensional linear regression to select important descriptors
from the entire descriptor pool (Senese et al., 2004). They also
employed PLS to highlight import features from multiple
descriptor pool in the predictive toxicology modeling (Su
et al., 2012). Pérez-Castillo reported an automatic genetic
algorithm to select features for binary classification when they
built QSAR modeling (Pérez-Castillo et al., 2012). Algamal
employed the adaptive LASSO method to study high-
dimensional QSAR prediction of the anticancer potency.
Feature selection methods are active not in QSAR modeling
but also in machine learning fields (Algamal et al., 2015).
Bajorath and coworkers extracted main features from MACCS
keys, typed-graph distances (TGD) (Sheridan et al., 1996), typed-
graph triangles (TGT) (Tovar et al., 2007) to form hybrid
fingerprints for similarity searching (Nisius and Bajorath,
2009). In the latest research, Hou et al. also found that proper
molecular descriptors selection was able to yield satisfied
performance of machine learning (Fu et al., 2020; Jiang et al.,
2020). These works proved that building proper hybrid
fingerprints was one of important techniques for traditional
machine learning methods (Cai et al., 2018). However, feature
engineering is required to identify significant molecular features
among molecular descriptor pools. Feature engineering process is
a tedious and error-prone process and also requires professional
knowledge (Wang and Bajorath, 2008; Hu et al., 2009).

Nowadays, deep learning shows capability of feature
engineering and can automatically train algorithms to learn
which fingerprints are important, leading to unique advantages
in dealing with complex patterns of big data (Taherkhani et al.,
2018). As been reported, automatically feature extraction endows
deep learning with incomparable advantages in predicting
physical and chemical properties of molecules in
bioinformatics, chemistry, material science and drug discovery
fields (Goh et al., 2017; Sanchez-Lengeling and Aspuru-Guzik,
2018; Yang et al., 2019; Jiang et al., 2020). Can we avoid feature
engineering in the days of deep learning? Hop and coworkers
proved that machine learned features outperformed than the
domain expert engineered features (Hop et al., 2018). Tseng and
coworkers reported that using raw data as molecular
representations for deep learning can efficiently learn the most
informative features (Chen and Tseng, 2020). As novel
architectures have been developed, molecular descriptors even
can be learned from low-level to high-level encodings of
molecules during the training process (Kearnes et al., 2016;
Winter et al., 2019). From the previsou success, we can find
that more features lead to better prediction results by using deep
learning.

Considering the limitations of standalone featurization and
the automatic feature engineering ability of deep learning, we
hypothesized that combining two complementary fingerprints
rather than relying on expert engineering fingerprints may have
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room to improve performance of deep learning. As prospected by
Tseng et al., the future of QSAR lies in developing new strategies
that combine and use 1D through nD molecular fingerprints.
Endeavors are worthy to be paid for optimizing the use of
available descriptors or fingerprints (Tseng et al., 2012). By
harnessing the automatic learning ability of deep learning,
combining two types of fingerprints as input data for deep
learning rather than manually feature engineering shows great
potential in improving predicting performance. Combining
multi-dimensional fingerprints preserves as much information
as possible. The selecting fingerprints will be automatically
completed during the training of machine learning or deep
learning (ML/DL) methods by leveraging the learning ability
of ML/DL methods. Under this context, we tried to circumvent
feature engineering by selecting a proper pair of conjoint
fingerprints and ML/DL methods. To facilitate practical
applications of deep learning, we adopt two well established
molecular fingerprints, MACCS keys and ECFP fingerprints, to
construct conjoint fingerprints for deep learning. MACCS keys
contain the constituent elements and predefined substructural
keys of molecules while lacking substructure connectivity. ECFP
contains bonding connectivity and topological features. These
two types of molecular fingerprints can provide supplementary
information in predicting physicochemical properties. However,
the evaluation of combining of MACCS keys and ECFP
fingerprints has not been reported.

In this study, we validate the performance of conjoint
fingerprints by using three classic machine learning methods
(RF, SVR, and XGBoost) and two deep learning methods (LSTM
and DNN) in the predicting the logarithm of partition coefficient
of a molecule between water and the lipid phase (abbreviated as
logP), and the binding affinities of protein-ligand. To
demonstrate the generalizability of the proposed conjoint
fingerprint, we conducted the regression task on three tasks:
predicting logP of DrugBank database (Wishart et al., 2018),
predicting logP of the Lipophilicity dataset that is collected in the
MoleculeNet (Wu et al., 2018), and predicting binding affinities
for protein-ligand complex in the PDBbind database (Liu et al.,
2014). It is expected that deep learning can automatically learn
the proper representations from conjoint fingerprints, which will
overcome the limitations of feature engineering in machine
learning methods.

MATERIALS AND METHODS

Data Preparation
DrugBank database. The molecular structures and the
corresponding logP values were obtained from DrugBank
database (Wishart et al., 2018). DrugBank database collects the
detailed drug data and the comprehensive drug target
information. The logP value is one of most concerned
properties of drug molecules, which measures the solubility,
absorption, and membrane penetration of drug molecules in
the tissues. The DrugBank database contains two subsets: the
FDA approved drug molecules, which will be named as
“Approved” subset, and all molecules including potential drugs

under study, which will be referred as “All” subset in this study.
Until 2020, there are 13,566 drug entries. Among them, 2011 and
8,656 drug molecules contain logP value entries in the
“Approved” and “All” subset. In current study, 20% of data
were randomly selected as test set and the remaining data
were further separated as training and validation dataset with
the ratio 4:1 in the hyperparameter optimization using Grid
Search with cross-validation (GridSearchCV) method
(GridSearchCV, 2020). The dataset was split using the same
random seed to keep reproducibility for different validated
models.

Lipophilicity dataset. We also selected the Lipophilicity dataset
that is collected in the MoleculeNet to present the general
applicability of conjoint fingerprints in a different dataset. The
Lipophilicity dataset consists of the experimental value of the
octanol/water distribution coefficient, which is curated from
ChEMBL database. Based on this high-quality dataset, we
further validated the performance of standalone and conjoint
fingerprints when using 5 ML/DL methods. For comparison, we
also computed SlogP by using one traditional logP prediction
approach proposed by Wildman-Crippen logP prediction
approach (Wildman and Crippen, 1999), which is
implemented in RDKit (RDKit, 2017). Moreover, we checked
the “random” splitting and “scaffold” splitting effect on the
performance. “Scaffold” splitter in the DeepChem was used to
split the Lipophilicity dataset into training and test subsets
(DeepChem, 2018).

PDBbind dataset. The refined subset of PDBbind was selected
because the refined subset contains high quality experimental
dissociation constant or inhibition constant (referred as pKi) data
for the reasonable number of protein-ligand structures. We used
the MACCS keys and ECFP fingerprint to predict pKi of the
refined subset of PDBbind. The bound ligands and the binding
pockets of protein within 4.5 Å of ligand were converted into
MACCS keys and ECFP fingerprint, respectively. Water molecule
andmetal ions within the pocket were deleted due to the technical
limitations of RDKit. 4,752 structures were successfully converted
to fingerprints. The conjoint fingerprints were built by
concatenating MACCS keys and ECFP fingerprint strings. The
major focus is on the performance comparison between separated
and conjoint fingerprint, therefore the same set of
hyperparameters that optimized for DrugBank was adopted.

Fingerprint conversion. The molecular structures and logP
were extracted from the SDF files of DrugBank database. The
molecules were converted from Cartesian coordinates into vector
space representation. Specifically, MACCS keys use a dictionary
to check whether the atom types and substructure exist. MACCS
keys only cover information of atom and bond types for one
molecule and provide limited connecting information in
chemical molecules. While ECFP includes the information of
how atoms bonded with each other but does not include the
chemical properties of each atoms. The combining of MACCS
keys and ECFP fingerprints can provide supplementary
information in the predicting physicochemical properties. For
MACCS keys, the type with 166 keys is the most commonly used
in virtual screening. Therefore, each drug molecule was converted
into a 166-bit structural MACCS key by checking whether the
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substructures exist. MACCS keys were computed by using RDKit
(RDKit, 2017). ECFP fingerprints analyze the bonded structural
information within the circular radius of atoms. The local
structural information around each atom was converted into
integer identifiers and then hashed to a bit vector. A radius of two
bond lengths was usually used in ECFP. A fixed number of vectors
of 2048-bit circular fingerprint were adopted in this study. The
ECFP fingerprints were converted by DeepChem open-source
package which was developed in Pande group (Ramsundar et al.,
2017).

Machine learning and deep learning algorithms were trained
with conjoint fingerprints along with MACCS keys and ECFP
fingerprint separately. The conjoint scheme was built by
concatenating two strings into one input string (Figure 1).
The conjoint fingerprint is expected to be more informative by
covering both substructural and topological information. The
impact of the conjoint fingerprint on performance will be checked
in comparison with MACCS keys and ECFP using five learning
algorithms.

Random forests. Random forests (RF) was normally selected
as a baseline to compare with deep learning methods. RF attracts
much interest in QSAR/QSPR studies because it is not sensitive to
the hyperparamters. RF outstands from other machine learning
methods with advantages of high accuracy (Breiman, 2001). RF is
an ensemble prediction method, which consists of many
individual decision trees and the final results are averaged over
each individual tree. RF can complete random feature selections
in the trees. The difference between RF and DNN is that RF split
the whole feature into fragment for each individual tree while
DNN can simultaneously process whole features. The number of
estimators, tree depth and the number of leafs were selected based
on GridSearchCV method.

Support vector regression. The support vector machine
(SVM) is designed to classification problems. To do
regression, SVR tries to find a hyperplane with the
minimized sum of distance from data to the hyperplane. The
hyperplane is the combination of functions that parameterized
by support vectors. SVR is one popular machine learning
methods in QSAR/QSPR with advantages in modeling
nonlinear problems. In the “RBF” kernel, “C” is the
regularization parameter, which is inversely proportional to
the strength of the regularization. A higher “C” value leads
to lower tolerance toward to misclassification of training data.
“Gamma” is the coefficient of “RBF” kernel, which is inversely
proportional to the variance of Gaussian distribution. It controls
how far the influence of a selected support vector reaches. The
value of “C” and “gamma” was chosen from a GridSearchCV
method using ECFP fingerprint. The “RBF” kernel function with
“C” equals to five and “gamma” equals to 0.015 was adopted in
this study.

Extreme gradient boosting. Extreme gradient boosting
(XGBoost) model is recognized as a new generation of
ensemble learning model. It is developed under the Gradient
Boosting framework and is developed sequentially in a stagewise
additive model. It can solve many data science problems with
improved speed and accuracy. It has dominated in machine
learning and Kaggle competition with higher performance and

robust speed. XGBoost has been reported to achieve comparative
performance than deep neural network (Sheridan et al., 2016).

Architecture of long short-termmemory network. Long short-
term memory network (LSTM) is improved based on the
recurrent neural network (RNN). The advantage of LSTM is
its ability to process sequence information with long-term
dependency information. LSTM may be benefited from
conjoint fingerprints, where two types of fingerprints are kept.
The general architecture of LSTM unit is composed of an input
gate, a forget gate, an output gate and a memory block. The forget
gate is used to decide what information will be forgot from
previous cell states. The input gate controls how much
information will be kept for new cell states. The output gate
determines the output information for new state. LSTM passes
information selectively through gating mechanism by
incorporating the memory cell that learns when to forget
previous hidden states and when to update new hidden states.
In this study, we adopted two LSTM layers, which were connected
sequentially with one dense layer and one output layer. The time
step was set to 1. The output dimension of the first LSTM layer
was set to the same dimension of input data. To the best of our
knowledge, it is the first time to implement LSTM in predicting
logP value for drug molecules.

Architecture of deep neural network. Deep neural network
(DNN) is a prototypical deep learning architecture. The
important advantage of using DNN is that it can extract
useful features from the raw input data. The typical DNN
contains three parts: input, hidden and output layer. Each
layer contains a set of neurons. We trained different DNN
which varied in the size and number of neurons of hidden
layers in their architecture. The number of neurons, batch size,
epoch number, dropout rate and activation were searched over
the hyperparameter space using K-fold cross validation over
the training set using GridSearchCV method. In the study, five-
fold was employed for the training dataset during
hyperparameter optimization. Specifically, the number of
neurons of hidden layer used is 10, 20, 40, 50, 60, 100, 300,
and 500. Activation function of “softsign”, “rectified linear unit
(relu)”, “linear” and “tanh” were tested each by each. The
optimizer of “adaptive moment estimation (Adam)” with the
default learning rate of 0.001 was employed in this study
because Adam optimizer uses the adaptive learning
momentum and also performs efficiently (Kingma and Ba,
2015). To reduce the overfitting, the dropout rate from 0 to
0.6 with interval of 0.1 was optimized using GridSearchCV
method. During training and validation, the batch size and
number of epochs were searched. The processes were repeated
20 times to calculate ensemble averages.

Consensus model. We also build the hybrid network models
using the consensus model idea of DeepDTA (Öztürk et al.,
2018). The consensus model has been reported to provide
superior performance than single model in some recent
researches (Öztürk et al., 2018; Fu et al., 2020). Different
from Hou’s work (Fu et al., 2020), we trained machine
learning methods with two standalone fingerprints rather
than using different types of methods. Consensus model was
constructed from different inputs for the same machine learning
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methods and can reduce statistical bias brought from single
learning algorithm.

Performance evaluation. The mean squared errors (MSE) were
calculated based on the following equation as the loss function
during hyperparameter tuning.

MSE � ∑ (log Pexp − log Pcal)2
n

The root mean squared errors (RMSE) were computed to present
the accuracy of examined learning algorithms. The predicting
performance was checked based on a linear correlation between
predicted and true logP value in DrugBank database on the given
set of drug molecules. The overall agreement between
experimental and predicated value was assessed by computing
Pearson correlation coefficient according to the following
equation

R2 �
∑ (logPexp − logPexp)(logPcal − log Pcal)���������������������������������������∑ (log Pexp − logPexp)2∑ (logPcal − logPcal)2

√
The Keras-2.2.2 was used to build the models and to optimize
hyperparameters. Tensorflow version 1.14 and scikit-learn
version 0.20 were used for training and evaluating for five
learning algorithms.

RESULTS

The Distribution of logP in DrugBank
Database
The logP is the partition coefficient of a chemical molecule
between water and lipid phase, which measures the ability of
molecular absorption and excretion. The computational
methods of logP prediction can be classified into two major
categories: substructure-based and property-based methods.

Mannhold et al.’s review summarizes the available logP
prediction approaches and provides benchmarked results
for 30 methods (Mannhold et al., 2009b). The logP has
been used to estimate transport ability of molecules through
membranes and metabolisms in tissues, which has been
included in the Lipinski’s rule of five. Considering the
importance of predicting logP, we selected the chemical
molecules and the corresponding logP values in DrugBank.
The empirical logP values ranged from -4.21 to 9.72. the
proportion of 93% of drug molecules shows logP smaller
than 5 (Figure 2). The distribution is consistent with
Lipinski’s rule of five, which states that the logP should
ideally be not greater than five for orally bioavailable
druglike small molecules.

The encoded chemical space of MACCS keys, ECFP and
conjoint fingerprints can be projected on the principle
components to aid visualization. From principle components
analysis (PCA), the conjoint fingerprint shows the more
degree of dispersion in comparison with MACCS keys and
ECFP. As shown in Figure 3, MACCS keys and ECFP
distributed around a local region and the represented chemical
space was not as wide as the conjoint fingerprint, implying more
chemical space was kept in conjoint fingerprints. The training set
and test set share the same distribution and may guarantee
reasonable prediction performance.

Hyperparameter Optimization
Tuning hyperparamters is critical for the predicting performance.
We conducted Grid Search with cross-validation (GridSearchCV)
method to tune hyperparamters with 5-fold cross validation
scheme by using “Approved” and “All” data subset of
DrugBank. Each data set was further separated as training,
validation and test sets. We examined the predicting
performance by using MACCS keys, ECFP and the conjoint
fingerprints. The negative of mean squared error acted as
mean score to evaluate the results as shown in Supplementary
Figures S1–S4. Clearly, the optimal hyperparameters should be
tuned in a statistical way as the mean score fluctuated for each
examined parameter. The parameters were chosen based on the
20 round cross validations rather than a chance encounter. The
selected parameters were summarized in Supplementary Tables
S1 andS2.

Conjoint Fingerprint Improved Predictive
Accuracy
The predictive performance for unrecognized molecules was
validated in the test subsets using in total five machine
learning and deep learning algorithms. The scatter plots of
predicted logP against stored logP value in DrugBank were
shown in Figures 4, 5. Clearly, conjoint fingerprint can
provide the better distribution and higher predictive accuracy
for the test set than that of MACCS keys and ECFP by using SVR,
XGBoost, LSTM and DNN. RMSE was calculated to evaluate the
overall error for the test set and was shown in Table 1. Overall,
“All” subset displayed smaller root mean squared error (RMSE)
than “Approved” subset. From our results, the obvious

FIGURE 2 | The logP value distributions in “Approved” and “All” subset
of DrugBank. The red line represents the upper value of logP in Lipinski’s rule
of five invented by Pfizer.
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improvement is observed when dataset changes from “Approved”
to “All” subset. If there are more high-quality data, the predictive
performance of deep learning can be further improved.

To facilitate the comparison between different schemes, the
same set of hyperparameters that selected based on MACCS keys
was used for conjoint fingerprint. From Table 1, we can notice
that the smallest RMSE for “Approved” and “All” dataset were
0.686 and 0.475, which obtained from XGBoost and SVR with
conjoint fingerprint, respectively. Conjoint fingerprint increased
prediction accuracy for SVR, XGBoost, LSTM, and DNN when
predicting logP values.

Furthermore, the predictive accuracy was quantified using the
deviation counting statistics. We classified the prediction
accuracy using the same criteria used by Tetko (Mannhold
et al., 2009a), the deviation between predicted and true logP in
the range of 0.0–0.5 as considered as “acceptable”, 0.5–1.0 as
“disputable”, and larger than 1.0 as “unacceptable”. Therefore,
counting statistics for RMSE was classified into three regions. For
“All” dataset, the percentages within “acceptable” range took up
to 63.1% when using conjoint fingerprints in SVR, which was
higher than that of each standalone fingerprint (52.3 and 57.8%
for MACCS and ECFP). Except RF, other methods also achieved
similar conclusion. The results demonstrated that the conjoint
fingerprint could improve predictive performance and also
showed satisfactory generalization ability in predicting logP
values of drug molecules. Overall, conjoint fingerprint
reproduced the least RMSE than each standalone fingerprint
even without optimal hyperparameters.

Conjoint Fingerprint Boosted Overall
Performance
We compared the overall predicting results among RF, SVR,
XGBoost, LSTM, and DNN. The Pearson coefficients of the same
test set were calculated for all examinedmethods. The generalization

ability is another important indicator to examine the predictive
performance of deep learning. We run 20 individual training by
randomly separate dataset into training and testing set. The average
Pearson coefficients and error bars were computed to present
generalization ability. From Figure 6, the conjoint fingerprint
improved predictive performance over MACCS keys or ECFP,
suggesting that the conjoint fingerprints achieved
complementarity of two types of fingerprints. DNN generally
outperformed over other methods when predicting logP values in
“Approved” subset. The Pearson coefficient of DNN with conjoint
fingerprint reached to 0.910. When data becomes more, the kernel-
based method, SVR, showed remarkable predictive performance by
reproducing the highest Pearson coefficient of 0.959 in “All” subset.
With enough data, SVR displays increasingly performance in
treating nonlinear problems and presents better generalization
performance. In general, the improvements benefited from the
conjoint fingerprint have been realized in SVR, XGBoost, LSTM,
and DNN. In this study, we adopted the same set of hyperparamters
tuned based on MACCS keys. The performance can be improved
with fine-tuned hyperparameters (see Supplementary Table S3 for
more information). Conjoint fingerprints increase prediction
accuracy, implying that the logP of molecules is relevant with
both substructures and its neighboring atomic environment.
Therefore, the standalone fingerprints cannot surpass the
conjoint fingerprints.

Comparison Between Ensemble Learning
and Deep Learning
RF and XGBoost are the ensemble learning methods. The
remarkable performance of XGBoost has been demonstrated in
previous studies (Lei et al., 2017). We also obtained consistent
results as shown in Figure 6. For RF, the Pearson coefficient even
decreased for conjoint fingerprint. This is consistent with previous
studies that the feature engineering is required for traditional

FIGURE 3 | The principal component analysis plot of the first two principal components based on MACCS keys, ECFP and the conjoint fingerprint.
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machine learning method (Solorio-Fernández et al., 2020). As has
been pointed by Hou et al., the machine learning methods
displayed different prediction capabilities and some machine
learning methods showed comparative performance as deep
learning (Fu et al., 2020). Therefore, prediction models should
be adopted on a case-by-case basis.

RF employs different approaches to process input
fingerprints. RF consists of many decision trees and it

splits the fingerprints for each individual tree. Each tree of
RF samples parts of input fingerprints and cannot harness the
complementarity information from conjoint fingerprint. The
presence of irrelevant or redundant fingerprints even reduces
the predictive accuracy for machine learning methods (Cai
et al., 2018). While DNN or LSTM can process all input
fingerprints at the same time, from which it automatically
learns and identifies useful features. The results demonstrate

FIGURE 4 | Scatter plot of the predicted logP vs. stored data in “Approved” dataset of DrugBank for five models with MACCS, ECFP, consensus model and the
conjoint fingerints.
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that the proposed conjoint fingerprints can be combined with
deep learning to improve predicting accuracy by taking full
advantages of automatic feature engineering in DNN
and LSTM.

Comparison Between Conjoint Fingerprint
and Consensus Model
Consensus model showed superior performance than each
standalone method but did not surpass the performance of

conjoint fingerprint. The loss can be tracked during the
training process of LSTM and DNN. As revealed in
Figure 7, MACCS keys and ECFP showed the larger
deviation between training and validation subsets in
consensus model than that of the conjoint fingerprint.
Conjoint fingerprints reproduced the least deviation for
both “Approved” and “All” subset. The deviation decreased
from 0.827 to 0.583 for LSTM when dataset changed from
“Approved” to “All” (see Supplementary Table S4 for more
information). The loss value of consensus model in “All”

FIGURE 5 | Scatter plot of the predicted logP vs. stored data in “All” dataset of DrugBank for five models with MACCS, ECFP, consensus model and the conjoint
fingerprints.
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subset was 1.772 while it was 0.656 for the conjoint fingerprint
for DNN. From Figure 7, the loss for LSTM and DNN with
conjoint fingerprint leveled off within 20 epochs. Consensus
models required more training cycle. The loss did not level off
until after ∼80 epochs for consensus models. As revealed from
the training and validation loss, conjoint fingerprints required
less training cycle and increased robustness than
consensus model.

Conjoint fingerprints scheme outperformed over
consensus model that uses standalone fingerprint. The
reason may be that the input was trained separately in the
consensus model and some information may be lost along
with dimension reduction during the training through trees
or neural network layers. The results are controlled by
“buckets effect”, which limits further improved predictive
accuracy. In contrast, the conjoint fingerprint conserves all

TABLE 1 | Root mean square error and distribution for each validated fingerprints.

Approved All

% Of molecules within error
range

% Of molecules within error
range

Methods Fingerprint R2 RMSE <0.5 0.5–1 >1 R2 RMSE <0.5 0.5–1 >1

RF MACCS 0.85 1.04 32.3 29.8 37.9 0.89 0.87 37.0 28.5 34.5
RF ECFP 0.80 1.24 28.8 21.6 49.6 0.86 1.02 31.7 26.4 41.9
RF-Cons MACCS + ECFP 0.83 1.01 30.8 25.6 43.67 0.87 0.91 35.4 27.7 36.9
RF Conjoint 0.79 1.35 24.1 22.8 53.1 0.85 1.07 30.4 24.8 44.8
SVR MACCS 0.89 0.82 43.9 28.3 27.8 0.92 0.63 52.3 27.0 20.6
SVR ECFP 0.89 0.79 47.9 25.1 27.0 0.94 0.56 57.8 26.0 16.2
SVR-Cons MACCS + ECFP 0.89 0.72 49.1 29.0 21.9 0.93 0.52 60.2 26.8 13.0
SVR Conjoint 0.92 0.69 52.4 27.3 20.4 0.96 0.48 63.1 25.8 11.1
XGB MACCS 0.90 0.75 47.9 26.8 25.3 0.93 0.61 53.7 27.1 19.2
XGB ECFP 0.88 0.81 42.9 27.1 30.0 0.93 0.64 50.0 29.5 20.5
XGB-Cons MACCS + ECFP 0.89 0.71 50.1 26.6 23.3 0.93 0.55 56.6 28.0 15.4
XGB Conjoint 0.91 0.69 52.1 27.3 20.6 0.95 0.52 60.0 26.2 13.8
LSTM MACCS 0.87 0.82 44.9 27.8 27.3 0.92 0.69 48.3 28.3 23.3
LSTM ECFP 0.88 0.89 39.5 29.3 31.3 0.91 0.66 51.0 26.8 22.2
LSTM-Cons MACCS + ECFP 0.87 0.74 47.9 26.3 25.8 0.92 0.57 56.4 27.2 16.4
LSTM Conjoint 0.91 0.75 46.2 28.5 25.3 0.95 0.54 59.6 24.9 15.5
DNN MACCS 0.88 0.81 45.7 25.3 29.0 0.91 0.70 47.2 30.0 22.3
DNN ECFP 0.89 0.81 43.4 28.8 27.8 0.94 0.60 53.2 29.9 16.9
DNN-Cons MACCS + ECFP 0.89 0.72 49.9 25.8 24.3 0.92 0.56 55.6 29.1 15.3
DNN Conjoint 0.92 0.69 47.6 30.0 22.4 0.96 0.53 57.4 29.3 13.3

FIGURE 6 | Pearson coefficients for “Approved” and “All” dataset calculated by five learning algorithms using MACCS keys, ECFP, consensus model and the
conjoint fingerprints. The similar set of color represents one learning algorithm using different molecular fingerprints. Error bars were computed from 20 times individual
training and testing processes.
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information, which can be leveraged by deep learning to
reproduce more accurate results.

The Generalizability of Conjoint Fingerprints
for Other Regression Tasks
Conjoint fingerprint is applicable to the Lipophilicity dataset
from MoleculeNet. For all of five examined ML/DL methods,
the predicted performance was improved by using conjoint
fingerprints as shown in Figure 8. The predicted Pearson
coefficient exceeded 0.8 by using SVR and XGBoost. The
results were compared with one available computational
method, SlogP computed by Wildman-Crippen logP
prediction approach. On the same test set, the ML/DL
methods outperformed over Wildman-Crippen logP
computation method when using the current dataset.
Wildman-Crippen logP reproduced different Pearson

coefficient on the different split subset, implying that
Wildman-Crippen logP computational method may also
depend on the training dataset.

We also noticed that random splitting led to better
performance of ML/DL methods than scaffold splitting.
This is consistent with previous conclusions that
substructure-based fingerprints likely result in better
performance during random splitting than scaffold
splitting. Scaffold splitting attempts to separate different
chemical scaffold molecules into different subsets.
Therefore, scaffold splitting can reveal the true learning
abilities of ML/DL methods. In Figure 8, the Pearson
coefficient difference between conjoint fingerprints and
consensus model become more obvious, suggesting that
the superiority of conjoint fingerprint over the consensus
model. The result reminds us that we can quickly evaluate
prediction quality by checking the substructure similarity

FIGURE 7 | The loss in the training and validation dataset for MACCS keys, ECFP, the conjoint fingerprints.
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between the training dataset and the test samples during
practical applications.

To demonstrate the generalizability of the proposed
conjoint fingerprint, we conducted the regression task for
PDBbind dataset. The Pearson coefficient between predicted
and experimental pKi was computed for each ML/DL methods
using MACCS keys, ECFP and conjoint fingerprints. Among
evaluated methods, RF, SVR, and XGBboost produced the
similar Pearson coefficient for ECFP and conjoint

fingerprint as shown in Figure 9. LSTM and DNN lead to a
higher Pearson coefficient for conjoint fingerprint than
MACCS keys or ECFP. The Pearson coefficients obtained
from conjoint fingerprints were higher than that obtained
from the consensus model, implying that the combination
of fingerprints can at least act as an alternative approach to the
consensus model. The best predicting performance was
achieved by the pairing of SVR and conjoint fingerprint,
reaching the highest Pearson coefficient of 0.74, which is
comparable to the predicted result with the grid
featurization (Xie et al., 2020). Therefore, the conjoint
fingerprint also contributed to the improved predicting
performance in the regression task for PDBbind. The
combination of two fingerprints will embody the
information from each fingerprint. Without feature
engineering, that taking all the combined fingerprints as the
input for the ML/DL methods will provide more information
while it also brings challenges for ML/DL at the meantime.
Therefore we should select the matched ML/DL methods for
the conjoint fingerprint via trial and error process. We believed
that more improvement can be realized after optimizing
hyperparameters for each ML/DL methods.

From our evaluation, we can notice that combining two
types of fingerprints can obtain improved predicting
performance than consensus model. Our manuscript acted
as the preliminary demonstration on how to select multi-
dimensional molecular fingerprints with matched ML/DL
methods to circumvent feature selection. The combining
scheme can be generally extended to other types of
molecular descriptors and fingerprints. A rigorous
evaluation of the conjoint fingerprints to check whether the
conjoint fingerprint’s superiority is statistically significant will
be conducted in the future work.

FIGURE 8 | Pearson coefficients for Lipophilicity dataset calculated by five learning algorithms using MACCS keys, ECFP, consensus model and the conjoint
fingerprints. The similar set of color represents one learning algorithm using different molecular fingerprints. Wildman-Crippen logP labeled as W-C logP.

FIGURE 9 | Pearson coefficients for PDBbind dataset calculated by five
learning algorithms using MACCS keys, ECFP, consensus model and the
conjoint fingerprints. The similar set of color represents one learning algorithm
using different molecular fingerprints.
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DISCUSSION

When developing molecular representations, molecular
descriptors have been optimized for the specific
applications. Recombination of different types of
molecular descriptors would be a convenient forward way
to improved performance, especially for general users with no
knowledge of molecular descriptor design. From our
evaluation, we can see that conjoint fingerprint can
improve predictive accuracy and reduce training cycles by
leveraging automatic feature learning ability of deep learning.
Using conjoint fingerprints, SVR and XGBoost achieved the
comparative performance as that of LSTM and DNN. In
applications, the choice of machine learning or deep
learning depended on the task. The standalone
featurization may inherently cover parts of information in
the chemical molecules and thus the combination of
accessible fingerprints would improve the predictive power
of deep learning. The following points of view can be
considered to improve predictive performance of deep
learning when using conjoint fingerprints.

(1) Both MACCS keys and ECFP have been well documented
in open-source software and thus other researchers can
adopt them in their researches, which should facilitate
applications of deep learning. Besides, we have witnessed
great development in novel types of molecular descriptors
in the last decade. Besides MACCS keys and ECFP, three
dimensional types of ECFP (Axen et al., 2017), molecular
graph convolutions (Kearnes et al., 2016) and atomic
convolutional networks (Gomes et al., 2017) have been
developed. The conjoint fingerprints can be built from
other types of molecular descriptors besides the
substructure based fingerprints. For example, conjoint
fingerprints can be extended to include atomic or
fragment-based molecular descriptors in the future
work. Each new types of molecular descriptors show
different merits. If they can provide open-source tools, it
is worthy of conducting systematic search to find out the
optimal combination of different types of molecular
descriptors.

(2) For architectures of neural networks, convolutional
neural networks and recurrent neural networks present
as another exciting starting point to improve predictive
performance of deep learning. Deep learning uses the
hierarchical learning of representations (Zeiler and
Fergus, 2014). The lowest layers of neural networks
learn simple features that will be used to build higher
order information along with their propagation through
the networks. The informative features can be captured
during hidden layers by automatically constructing one
intermediate feature space. Deep learning will be expected
reduce tedious works on intricate feature engineering.
Experts from computer or related fields can provide more
valuable insights if they have access to structural,
topological and graphical fingerprints and other

powerful deep learning architectures by following
current protocol.

CONCLUSION

We validated the impact of the conjoint fingerprints on three well
established machine learning methods and two emerging deep
learning methods, including RF, SVR, XGBoost, LSTM, and
DNN. Combining MACCS keys with ECFP achieved
complementarity in substructural and topological fingerprints,
which can be processed by machine learning and deep learning
algorithms to find the inherent rules between the demanded activity/
property and their structures of drug molecules. Our results
demonstrated that the conjoint fingerprints achieved the least
loss and the highest Pearson coefficients than that of each
standalone fingerprint for SVR, XGBoost, LSTM, and DNN, even
surpassing the consensus model. By complementarily combining
two types of fingerprints, boosted performance can be achieved than
that of using single molecular descriptor. The proposed conjoint
fingerprint scheme can be generally extended to other types of
molecular descriptor. We anticipate that our proposed conjoint
scheme would invoke following studies by integrating structural,
topological or spatial fingerprints in deep learning area.
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