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Unique Spin Vortices and 
Topological Charges in Quantum 
Dots with Spin-orbit Couplings
Wenchen Luo1,2, Amin Naseri2, Jesko Sirker2 & Tapash Chakraborty2

Spin textures of one or two electrons in a quantum dot with Rashba or Dresselhaus spin-orbit couplings 
reveal several intriguing properties. We show here that even at the single-electron level stable spin 
vortices with tunable topological charges exist. These topological textures appear in the ground state 
of the dots. The textures are stabilized by time-reversal symmetry breaking and are robust against the 
eccentricity of the dot. The topological charge is directly related to the sign of the z component of the 
spin in a large dot, allowing a direct probe of its topological properties. This would clearly pave the way 
to possible future topological spintronics. The phenomenon of spin vortices persists for the interacting 
two-electron dot in the presence of a magnetic field.

A variety of topological states have recently been observed in condensed matter physics. These novel states of 
matter are a direct consequence of spin-orbit coupling (SOC)1,2 with topological insulators (TIs) being one of 
the most prominent examples3,4. The SOC also plays an important role in tailoring topological superconduc-
tors (TSs) where the elusive Majorana fermions might be present5,6. Both TIs and TSs display a topologically 
non-trivial structure in momentum space. SOC can, however, also lead to topological charges in real space. The 
Dzyaloshinskii-Moriya interaction —microscopically based on the SOC—can, for example, give rise to spin skyr-
mions in helical magnets7,8 and pseudospin skyrmions in bilayer graphene9,10. Synthetic spin-orbit couplings can 
also be engineered in cold atomic gases and skyrmion-like spin textures11,12 have been observed. For pseudos-
pinor condensates, the existence of vortex solitons that are stabilized by the combined Rashba and Dresselhaus 
SOC has been predicted13,14.

Quantum dots (QDs) are of practical and fundamental interest and provide an excellent platform to control 
the spin and charge of a single electron15–17. Extensive studies on QDs with SOCs have been reported in recent 
years18–33. Here we investigate the spin textures associated with the electron density profiles in isotropic and 
elliptical QDs. We show that in the presence of SOC the in-plane spin texture of a single electron is a spin vortex. 
The QD is consequently turned into an artificial atom34 with topological features. Spin vortices often emerge 
in many-spin systems forming either a crystalline arrangement or vortex/anti-vortex pairs35,36. For instance, in 
quantum Hall systems the skyrmion is a single-particle excitation in low Landau levels and the in-plane spin 
texture is similar to the one we find in a QD with SOC. The skyrmion excitations in the former case are, how-
ever, induced by Coulomb interactions. Interaction-induced merons have also been described for rotationally 
symmetric QD’s at specific magnetic fields where states with different angular momentum cross37. The rotational 
symmetry of the dot and the conservation of total angular momentum are also at the heart of the meron-like 
spin textures observed in cylindrical dots with a large z component thickness in the presence of linear and cubic 
Dresselhaus SOCs38. In contrast, the spin textures described in the following are stable and tunable, are neither 
skyrmions nor merons, and exist even without the rotational symmetry, at the single- and multi-electron level, 
and for any given magnetic field.

We focus on the physics of the two-dimensional (2D) surface where the QD is constructed. We consider 
both the Rashba and the linear Dresselhaus SOCs which arise in materials with broken inversion symmetry. The 
strength of the Rashba SOC can be controlled by a gate electric field39–41. Moreover, the ratio of the Rashba SOC to 
the Dresselhaus SOC can be tuned over a wide range, for instance in InAs QDs, by applying an in-plane magnetic 
field42. We will show that this leads to a system where the topological charge can be dynamically controlled by 
external electromagnetic fields making spin vortices in QDs possible candidates for future applications in topo-
logical spintronics and quantum information.
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Results
The SOCs can be theoretically considered as effective momentum-dependent magnetic fields43. In the absence 
of a confinement and an external magnetic field, the momentum is conserved and the SOC in the Hamiltonian 
becomes a momentum-dependent operator with a good quantum number (e.g., the helicity operator for Rashba 
SOC). On the other hand, the spin state is momentum-independent if both Rashba and Dresselhaus couplings 
have equal strength and there is no Zeeman coupling, leading to a persistent spin helix44,45. This particular spin 
state persists in the presence of a confinement potential and can be obtained by exactly solving the Hamiltonian 
which is equivalent to a quantum Rabi model (See the supplementary material for details). If the spin is not a 
good quantum number then it is instructive to study the spin field in a given single-particle wavefunction Ψ(r) 
of the dot

σ σ= Ψ Ψ†r r r( ) ( ) ( ), (1)i i

where σi for i = x, y, z are Pauli matrices. An in-plane vector field σ σ σ=r r r( ) ( ( ), ( ))x y  reveals how the spin in real 
space is locally affected by the effective magnetic field. In the following, we demonstrate that generic SOCs compel 
the spin field to rotate around the center of the QD and to develop into a spin vortex.

Model.  The Hamiltonian of an electron with effective mass m* and charge −e in a quantum dot with SOCs is 
given by
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where the vector potential is chosen in the symmetric gauge = −B y xA ( , , 0)1
2

 with the magnetic field B. The 
confinement is anisotropic with the frequencies in two directions, ωx and ωy, and Δ is the Zeeman coupling. We 
consider both the Rashba SOC, HR, and the Dresselhaus SOC, HD, with

σ σ= −H g P P( ), (3)R x y y x1

σ σ= −H g P P( ), (4)D y y x x2

where HSOC = HR + HD. Pi = pi + eAi is the kinetic momentum, and g1,2 determine the strength of each SOC. We 
note that Rashba and Dresselhaus terms have different rotational symmetry generators: HR commutes with 

σ+L /2z z  while HD commutes with σ−L /2z z , where Lz is the z-component of the angular momentum opera-
tor. In the following, we will show that this difference is responsible for the different topological charges associated 
with the spin vortex of the dot.

It is also useful to introduce a renormalized set of frequencies ω ωΩ = + /4i i c
2 2  with the cyclotron fre-

quency ωc = eB/m*. The natural length scales in x and y directions are = Ω

⁎m/( )i i  while the confinement 
lengths are defined as  ω= ⁎R m/( )i i . In the numerical calculations presented in the following the eigenvectors 
of σ= + Ω + Ω + ∆
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, which is a two-dimensional harmonic oscillator, are used as a basis set. 

To be concrete, we consider the case of an InAs dot here, where the effective mass is m* = 0.042me, Landé factor 
gL = −14 and dielectric constant = .14 6 . In this system it appears to be experimentally feasible to change the 
ratio of the SOCs g1/g2 over a wide range.

Exact and perturbative calculations.  No analytical solution is known for the generic Hamiltonian in Eq. 
(2) due to its complexity46. We can, however, analytically investigate the special case of an isotropic dot (Ωx,y = Ω, 

= x y, ) without a magnetic field and with equal SOCs, g1,2 = g. The Hamiltonian (2) is then equivalent to a 
two-component quantum Rabi model which has been extensively studied in quantum optics (See the supplemen-
tary material for details). The ground states in this case are a degenerate Kramers pair due to time reversal 
symmetry,
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where | 〉0, 0  is the ground state of the two-dimensional quantum oscillator H0. A weak magnetic field will lift the 
degeneracy of the Kramers pair, and the unique ground state is then given by | 〉 = | 〉 + Δ | 〉+ −GS GS GS( sgn( ) )/ 2  
which minimizes the energy. The spin fields are consequently well defined. We note some features of the spin field: 
(i) There is a mirror symmetry about the line x = ±y. (ii) σx(r) + σy(r) = 0, and σx(r) = σy(r) = 0 along the line 
x = y. (iii) σ = −

π

Δ −


 ⁎e m xgr( ) cos(4 2 / )z
xsgn( ) 2 / x

2

2
 along the line x = −y, i.e., σz(r) is a spiral. Its period is related 

to the effective mass and the strength of the SOCs47. We find that the exact solution perfectly agrees with the exact 
diagonalization results shown in Fig. 1. Similar results are found for the case g1 = −g2. For large magnetic fields 
the exact solution for the case without field is no longer a good starting point and the spin texture rotates (See the 
supplementary material for details).

Next, we study the case of an isotropic dot in a weak magnetic field with generic strengths of the SOCs g1 and 
g2 based on a standard perturbative calculation. We find that the in-plane spin fields up to first order in g1,2 are 
given by



www.nature.com/scientificreports/

3SCientifiC REPOrTS |           (2019) 9:672  | DOI:10.1038/s41598-018-35837-y

σ ξ θ θ= −r r g gr( ) ( )( / )( sin cos ), (6)x 2 1

σ ξ θ θ= −r r g gr( ) ( )( / )( cos sin ), (7)y 2 1

and σz(r) = ξ(r)/2 with ξ π= −
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, θ is the polar angle in coordinate space, and the new parameters are
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where we have assumed Δ < 0. The in-plane spin field σ(r) winds once around the origin and acquires a topolog-
ical charge q = ±1 when ≠g g1 2. If =g g1 2, no vortex appears in agreement with the exact solution discussed 
earlier. If g1 = 0 or g2 = 0, σ(r) obtained perturbatively qualitatively agrees with the numerical solutions shown in 
Fig. 2, and the vortices even exist in a strong magnetic field beyond the perturbation calculations. We stress that 
the two vortex configurations are stable and representative for the regime 

g g1 2 and 
g g2 1, respectively (See 

the supplementary material for details). We further note that under B → −B the spin field changes direction, 
σ(r) → −σ(r), leaving the topological charge invariant though.
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Figure 1.  Numerical results for a single-electron QD with Rx = Ry = 35 nm, B = 0.1 T, and equal SOCs 
 = =g g 201 2  nm · meV. (a) Electron density (contours) and in-plane spin fields (arrows), (b) σz(r) along 
x = −y, and (c) the normalized 


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2 2  along x = −y.
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Figure 2.  Single-electron QD with Rx = Ry = 15 nm, B = 0.1 T (Δ < 0), and (a) Rashba SOC =g 401  nm · meV 
only, and (b) Dresselhaus SOC =g 202  nm · meV only.
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Next, we analyze the rotational symmetry of the two types of SOCs in order to characterize the sign of the 
winding number. First, we consider the spin field of a dot when only the Rashba SOC is present. The spin field is 
then invariant under the rotation matrix

ϑ = ϑ ϑ
− ϑ ϑ( )U ( ) cos sin

sin cos
,

(9)R

for πϑ ∈ [0, 2 ], which is rooted in the rotational symmetry of a Rashba dot under the operator σ+L /2z z . 
Therefore, the in-plane spin rotates clockwise by 2π if we move around the center of the dot in a clockwise direc-
tion, and hence, its winding number is q = +1. On the other hand, the in-plane spin field of a dot with only 
Dresselhaus SOC being present, is invariant under the action of ϑ = −ϑU U( ) ( )D R . Along the same line of reason-
ing, the in-plane spin field then rotates anticlockwise by 2π if we move around the center in a clockwise direction. 
Dresselhaus SOC thus leads to a winding number q = −1. In the absence of an external magnetic field B, Kramers 
degeneracy may cancel the spin textures, since there is a global π phase difference between the pair. Hence, the 
vortices should be stabilized by breaking of time-reversal symmetry in which case they are also robust against the 
ellipticity of the dot (See the supplementary material for details). If the dot is strained, the topological features are 
not changed, since the spin textures originate from the SOCs of the material.

Probing the topological state.  The total 〈σz〉 in the presence of SOC is no longer constant as a function 
of the applied magnetic field and becomes more and more polarized with increasing magnetic field. The dis-
tinct behavior of 〈σz〉 when SOCs are present might be observable experimentally via magnetometry or optically 
pumped NMR measurements48–51.

For a small dot with R = 15 nm shown in Fig. 3(a), 〈σz〉 for a Rashba dot and a Dresselhaus dot have the same 
sign which is opposite to the sign of the Landé factor. However, the measurement of 〈σz〉 can distinguish the dif-
ferent SOCs if the size of the dot is sufficiently large. To understand this size effect, we again employ perturbation 
theory and compare the energies of the two states with different spin orientations. For simplicity, we consider an 
isotropic InAs dot (ωx,y = ω and gL < 0) with only one type of SOC. The sign of 〈σz〉 is positive in finite magnetic 
field if there is no SOC. However, if the size is large enough then the sign of 〈σz〉 can be reversed for a Dresselhaus 
dot. Suppose that the size of the dot approaches infinity. Then the sign of 〈σz〉 is reversed if (See the supplemen-
tary material for details)

µ µ
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

and if the r.h.s. of Eq. (10) is positive. Alternatively, we can also estimate perturbatively the magnitude of the con-
finement for which the sign is reversed for small magnetic fields leading to the condition ω < − g m g4 /e L2

2 . For 
the SOC coupling =g 202  meV · nm used in Fig. 3(b) this estimate yields ω < .1 5 meV or R > 35 nm. This is in 
reasonable agreement with the numerics where we find a sign reversal for R > 49 nm.

Figure 3(b) demonstrates that the sign of 〈σz〉 for an InAs system with R = 50 nm in a weak magnetic field 
B < 0.14 T allows to determine the type of the dominant SOC and thus, indirectly, the topological charge of the 
dot. We note that for a material with a positive Landé factor, the reversal of 〈σz〉 will instead occur for a dot with 
dominant Rashba SOC (See the supplementary material for details). Information stored as topological charge in 
a quantum dot system can thus be accessed by measuring the sign of 〈σz〉 in a weak magnetic field.
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Figure 3.  (a) 〈σz〉 in a single-electron InAs dot (R = Rx = Ry = 15 nm) without SOC, with Rashba SOC only 
( =g 401  nm · meV), and with both Rashba and Dresselhaus SOCs ( =g 401  nm · meV,  =g 202  nm · meV). (b) 
The sign of 〈σz〉 in a large InAs dot are different for different SOCs. Here g1 and g2 are given in units of 
nm · meV/.
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The two-electron dot.  If there is more than one electron confined in the dot, we need to also consider the 
Coulomb interaction. The Hamiltonian of the interaction is given by = † †H V n n n n c c c c( , , , )C n n n n1 2 3 4 1 2 3 4

 where c 
is the electron annihilation operator and ni = (nix, niy, ns) is an index combining the quantum numbers of the 
two-dimensional oscillator in x, y direction with the spin index. The interaction matrix elements are given in 
the Suppl. Mat. The full Hamiltonian with interaction is then HI = H + HC with H as given in Eq. (2). We diago-
nalize the interacting Hamiltonian exactly to obtain the electron and spin densities. Since the interacting system 
does contain very rich physics, we restrict the discussion in the following to the case of a dot with two electrons.

In a two-electron dot with Coulomb interactions, the spin textures can be much more complex than in the 
single-electron case. If there is no time reversal symmetry breaking, the texture is cancelled by the Kramers pair. 
In the presence of a magnetic field, the spin textures appear again with topological charge +1 or −1 if the dot 
is perfectly isotropic. For an anisotropic quantum dot the electron density will split into two centers in a strong 
magnetic field even without SOC. With SOCs the spin textures are modified by this density deformation. In the 
examples shown in Fig. 4, we find in both cases three vortices along the elongated x axis. In the Rashba SOC case 
shown in Fig. 4(a) there are two vortices with q = 1 and one with q = −1, while there are two vortices with q = −1 
and one with q = 1 in the Dresselhaus SOC case presented in Fig. 4(b). Hence, the total winding numbers are still 
+1 and −1 in a Rashba SOC and Dresselhaus SOC system, respectively, as in the single-electron dot. Indeed, 
the spin textures along the edges of the dot are quite similar to the single-particle case. Here interactions are less 
relevant and the spin textures are thus mainly induced by the SOCs.

In an isotropic two-electron dot with equal SOCs, g1 = g2, we find that both the density profiles and spin 
textures undergo a dramatic change as a function of the applied magnetic field [Fig. 5]. In this case, the spin and 
density profiles are determined collectively by both the interactions and SOCs. For large magnetic fields we find, 
in particular, that the electron density splits mirror symmetrically along the line x = y [Fig. 5(b)], causing also a 
complete rearrangement of the associated spin texture and a change of the total topological charge. This has to be 
contrasted with the case of an InAs dot without SOC where the angular momentum of the ground state changes 
from L = −1 to L = 3 at about B = 17 T leading instead to a ring-shaped electron density. We further note that in 
a ZnO dot with stronger Coulomb interaction52, the splitting of the electron density and the spin textures can be 
generated in a much lower magnetic field. This splitting—which only occurs if both interactions and SOCs are 
present—could possibly be observed experimentally and would thus provide an alternative indirect confirmation 
of a non-trivial spin texture in the dot.

Conclusions
In summary, the combination of electron confinement and SOCs leads to vortex-like spin textures in the ground 
state even for a single-electron dot. For dominant Rashba or Dresselhaus SOC, we show the formation of spin vor-
tices. Rashba SOC induces a vortex with topological charge q = +1 while the Dresselhaus SOC induces a vortex 
with q = −1. The spin texture can be stabilized by an external magnetic field breaking the time-reversal symmetry 
and is robust against the strain of the dot. While we have concentrated here on the ground state, we note that 
non-trivial spin textures can also exist in excited states including states with higher topological charges |q| > 1. 
Contrary to the spin textures in the ground state they are, however, more fragile due to their Kramers partner. 
Using exact diagonalizations we have shown that these spin vortices do persist also in interacting multi-electron 
dots. For an elliptic two-electron dot we find, in particular, that more than one spin vortex can exist. In all inves-
tigated cases the total topological charge is, however, still q = ±1 as in the single-electron case. Physically, this is 
understood by noting that the spin configuration at the edge of the dot, where the electron density is low, is only 
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Figure 4.  The in-plane spin fields in an elliptic dot with two electrons, Rx = 15 nm, Ry = 10 nm at B = 5 T. The 
colors represent the electron density. (a) Rashba SOC only with  =g 401  nm · meV, and (b) Dresselhaus SOC 
only with  =g 202  nm · meV.
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weakly affected by the interactions. We thus conjecture that the total topological charge for a spin texture in the 
ground state of multi-electron dots is always fixed to q = ±1. The discussed spin textures in QDs are similar to 
skyrmions in quantum Hall systems. The locations of the latter are, however, unknown and their existence has 
so far only been confirmed indirectly by NMR and transport measurements. In contrast, the spin vortices in QD 
systems are localized at a known position. This might possibly open new avenues for topological spintronics53–55 
and quantum information applications. Arrays of QDs have, for example, been realized experimentally56,57 and 
have been considered as a potential platform for quantum computation58–61. In such an array of QDs with SOCs 
the ratio of Rashba to Dresselhaus couplings might be tunable by gates over a sufficiently wide range to realize a 
system with localized and controllable topological charges q = ±1. For dominant Rashba or Dresselhaus coupling 
in a sufficiently large dot, the sign of 〈σz〉 can be measured to obtain the topological charge. Furthermore, recent 
progress on measurements of electron wavefunctions in quantum dots by scanning tunneling microscopy62–64 
might pave the way to a direct observation of the described spin textures by performing spin polarized measure-
ments in the future. QDs might thus provide an easier route to technical applications in the recently emerging 
field of topological spintronics than the antiferromagnetic heterostructures investigated so far54,55 and can poten-
tially give rise to the birth of a novel type of a fully tunable topological system.

Methods
Exact and perturbative calculations.  For the symmetric dot with equal Rashba and Dresselhaus cou-
plings the Hamiltonian can be rewritten and solved in an oscillator basis by introducing ladder operators. In 
a weak magnetic field we then obtain the spin textures by a standard first order perturbative calculation in the 
spin-orbit coupling. Further details are given in the supplemental material.

Exact diagonalizations.  We use our own exact diagonalization code which uses a harmonic oscillator basis 
which is convenient for the elliptical QDs. For the diagonalization itself standard LAPACK and ARPACK routines 
are used65.
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Figure 5.  The in-plane spin fields in a two-electron dot with Rx = Ry = 15 nm, and  = =g g 201 2  nm · meV. 
The colors represent the electron density. (a) B = 3.5 T, topological charge q = −1, and (b) B = 18 T leading to 
q = +1.
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