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Abstract

Motivation: Drift tube ion mobility spectrometry coupled with mass spectrometry (DTIMS-MS) is

increasingly implemented in high throughput omics workflows, and new informatics approaches

are necessary for processing the associated data. To automatically extract arrival times for mol-

ecules measured by DTIMS at multiple electric fields and compute their associated collisional cross

sections (CCS), we created the PNNL Ion Mobility Cross Section Extractor (PIXiE). The primary ap-

plication presented for this algorithm is the extraction of data that can then be used to create a ref-

erence library of experimental CCS values for use in high throughput omics analyses.

Results: We demonstrate the utility of this approach by automatically extracting arrival times and

calculating the associated CCSs for a set of endogenous metabolites and xenobiotics. The PIXiE-

generated CCS values were within error of those calculated using commercially available instru-

ment vendor software.

Availability and implementation: PIXiE is an open-source tool, freely available on Github. The

documentation, source code of the software, and a GUI can be found at https://github.com/PNNL-

Comp-Mass-Spec/PIXiE and the source code of the backend workflow library used by PIXiE can be

found at https://github.com/PNNL-Comp-Mass-Spec/IMS-Informed-Library.

Contact: erin.baker@pnnl.gov or thomas.metz@pnnl.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The field of metabolomics has made great strides since its early

explorations by Pauling and Robinson (Pauling et al. (1971),

Robinson et al. (1973), Robinson et al. (1974)), and conceptualiza-

tion as an ‘omics’ by Nicholson et al. (1999). Many analytical plat-

forms exist for collecting metabolomics data, although methods

based upon gas chromatography (GC) and liquid chromatography

(LC) coupled with mass spectrometry (MS) dominate most

applications. Similarly, many algorithms and software packages are

available for analyzing the data in the associated informatics pipe-

lines. These informatics tools are used for identification and align-

ment of detected features (i.e. initially unidentified, putative

metabolites) across multiple analyses (LaMarche et al. 2013; Pluskal

et al. 2010; Smith et al. 2006), normalization of metabolite abun-

dance information (Polpitiya et al. 2008; Xia et al. 2015), and

matching the experimental metabolite characteristics to reference
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libraries containing spectra, retention times or chemical shifts from

analyses of authentic chemical standards ( Gerlich and Neumann

2013, Kind et al. 2013; Weljie et al. 2006). However, a desire for

the complete characterization of both xenobiotics and endogenous

chemicals in human exposures has initiated a transformation in

metabolomics (Council 2012; Metz et al. 2016; Soltow et al. 2011),

resulting in the need for measurements that provide much higher

throughput while still maintaining high sensitivity.

Drift tube ion mobility spectrometry (DTIMS) is a rapid gas

phase separation technique that is easily combined with MS for high

throughput multi-dimensional separations (Guevremont et al. 1997;

Steiner et al. 2001). In DTIMS, ions are subject to a constant electric

field while traveling through a buffer gas and separate quickly based

on ion shape and size, e.g. compact species drift faster than those

with extended structures (Guevremont et al. 1997; Mason and

McDaniel 1988). By measuring DTIMS arrival times it is possible to

derive a molecule’s collisional cross section (CCS), which character-

izes its chemical structure and increases the specificity of metabolite

identifications, particularly when combined with accurate mass

measurements. Herein, we report an approach for automatically ex-

tracting arrival times for metabolites from DTIMS-MS measure-

ments and for subsequently calculating their CCS values, where

multiple electric fields are utilized to obtain the most accurate ex-

perimental CCS measurements. Given a list of empirical formulae

for target molecules of interest, our algorithm analyzes the DTIMS-

MS data for each target ion and extracts the arrival times at the

peak centroids for each electric field measurement. These arrival

times are then utilized to calculate the CCS for each ion. When can-

didate ions are indistinguishable using mass information alone, the

algorithm calculates and tracks CCSs for all possible candidate ions

throughout the experiment by implementing a unique, global data

association approach inspired from multi-object tracking in video

sequences (Berclaz Fleuret et al. 2011; Siems et al. 1994). The result-

ing algorithm, implemented in the PNNL Ion Mobility Cross

Section Extractor (PIXiE) software supports the extraction of arrival

times, molecular CCSs and accurate mass data for the rapid con-

struction of reference libraries for use in high throughput DTIMS-

MS-based studies.

2 Materials and methods

2.1 Overview: CCS calculations from IMS data
Reference libraries for high throughput identification of molecules

ideally contain two or more orthogonal metrics such as accurate

mass, isotopic signature, LC elution time, NMR spectra, MS/MS

spectra, or DTIMS CCS values (Lapthorn et al. 2013). These criteria

adhere to the recommendations of the Metabolomics Society’s

Metabolomics Standards Initiative for highest confidence in metab-

olite identification (Castle et al. 2006; Sumner et al. 2007). While

methods for experimentally determining molecular CCS values are

well established, software implementations to calculate these values

remain limited with currently available open source tools either

needing calibrant ions to calculate CCS values, requiring that CCS

values be provided, or having difficulties calculating values for mol-

ecules other than native proteins (Allison et al. 2015; Eschweiler

et al. 2015).This manuscript describes the automatic extraction of

measured drift times and calculation of associated experimental

CCS values by collecting ion arrival time distributions (ATDs) from

analyses conducted at multiple, different electric fields (seven in this

demonstration), a capability which is not currently available for

DTIMS in open source format. Although it is possible to determine

molecular CCS values experimentally using single electric field

approaches together with calibration against molecules with known

CCS values, we chose to measure CCS directly using multiple

DTIMS electric fields, for higher accuracy. While we utilized seven

electric fields for each measurement, any number >2 can be used,

with higher numbers enabling more accurate results. To acquire

CCS, the mobility of each ion must be calculated by extracting the

arrival time, tA, from its peak apex, and then plotting it against p/

(TV), as shown in Equation (1).

tA ¼
l2

Ko
� 273:15

760
� p

V � T þ to: (1)

The expression for tA is an equation for a straight line (y¼mxþb)

where the slope of the line is inversely proportional to the reduced

mobility of the ion (Ko), and the y-intercept is equal to the time out-

side the IMS drift cell (to). tA is also a function of drift voltage (V, in

volts), temperature (T, in Kelvins), pressure (p, in torr) and the phys-

ical length of the drift tube (l, in meters). Plots of tA versus p/(TV)

are highly linear with R2 values of at least 0.9999. The relationship

between the mobility of an ion, Ko, and its CCS has been derived in

detail using kinetic theory (Mason et al. 1958) and is given by

Equation (2).

Ko ¼
3q

16N
� 2p

lkBT

� �1=2

� 1
X
; (2)

where q is the ion charge, N is the buffer gas density, l is the

reduced mass of the collision partners, kB is Boltzmann’s constant

and X is the momentum transfer collision integral, which describes

the collision between the ion and the buffer gas atoms and gives dir-

ect information about the conformation of the ion traveling through

the drift cell. To reduce errors in the experimental evaluation of X,

multiple measurements are made on each system studied so that

standard deviations can be determined.

Automated processing of DTIMS-MS data is required to support

high-throughput creation of reference libraries, which would other-

wise involve extensive manual data analysis. However, there are

challenges associated with automated extraction of CCS as the

DTIMS ATD peak at the expected m/z of a target ion can corres-

pond to three distinct possibilities: (1) the actual target ion; (2) a

co-drifting, unresolved compound that is indistinguishable from the

target ion using m/z; or (3) noise. Further, to determine the link be-

tween observed and expected ions, as well as to identify and remove

noise, peaks need to be detected and tracked across multiple elec-

trical fields. We formulated this last challenge as a global data asso-

ciation problem, and refer to each of the potential solutions as an

association hypothesis. To solve the global association problem,

PIXiE creates the association hypotheses set based on analyses of

peak diffusion profiles across electric fields. From this set, PIXiE se-

lects the optimal association hypothesis as the final solution to the

global data association problem. The following sections describe the

details of each step of the algorithm in the order they are imple-

mented (Fig. 1).

2.2 Data collection and target lists
For the CCS calculations made by PIXiE, n different electric fields

are used. In our case, seven electric fields ranging from 10.8 to

18.5 V/cm were analyzed for 30 s each, resulting in 3.5 min analyses

for each ion collected in the same unified ion mobility file (UIMF)

(Shah et al. 2010). PIXiE requires a target list to begin the analyses.

This list consists of known empirical formulae and putative adducts

for the molecules of interest in each UIMF. PIXiE then extracts
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CCSs for all molecular conformers of the target molecules that can

be distinguished by the IMS separations.

2.3 Peak identification, scoring and filtering
PIXiE performs electric field grouping, multidimensional peak ex-

traction (Crowell et al. 2013), scoring, and filtering (Fig. 1). These

steps detect candidate peak(s) for each target ion and remove those

that do not have sufficient peak quality for further analysis or whose

isotopic distribution(s) do not match that of the target empirical for-

mula. These steps are described briefly below.

2.3.1 Electric field grouping and multidimensional peak extraction

The first step in processing the data in PIXiE is to bin the IMS-MS

spectra according to the electric field at which the spectrum was col-

lected. Spectra sharing the same electric field are then averaged to

enhance the signal-to-noise ratio. DTIMS-MS features are then char-

acterized by m/z, arrival time and intensity and extracted from the

raw data using a modified version of the LC-IMS-MS Feature Finder

(Crowell et al. 2013). The original implementation of the feature

finder modeled a peak in two dimensions on an intensity map with

LC retention time and IMS arrival time as x- and y-axes, respect-

ively. We modified this algorithm to extract 2D peaks from an inten-

sity map with m/z and arrival time as x- and y-axes. In order to

increase computational performance, the peak detector was applied

to the 2D intensity area within a 6250-ppm mass window sur-

rounding the expected m/z of the target molecule to determine noise

and peaks. Filtering of co-drifting compounds based on measured

m/z is implicitly done in the global data association step, as ions

with a measured mass closer to the expected value produce a higher

a posterior probability. A second mass measurement error threshold

of 615 ppm was then applied as part of the post-filtering process

after the global data association step for better ion selection.

2.3.2 Peak scoring and filtering

For apex extraction, peaks are characterized according to the fol-

lowing: base peak intensity, m/z at the apex, arrival time at the

apex, m/z width at the base peak, and the arrival time as full width

at half maximum. In addition, a peak shape and isotopic distribu-

tion score (Ghavidel et al. 2014) are calculated to further character-

ize the quality of the peak and the proximity of the peak to the ideal

isotopic distribution of the target molecule. The peak shape score is

calculated by quantifying how closely the IMS peak diffusion profile

matches the expected Gaussian distribution using the Jaque–Bera

Statistical Test (Jarque 1981). Peak shapes deviating significantly

from the expected Gaussian distribution are likely to be instrumen-

tal or computational artifacts.

The isotopic distribution score is calculated by quantifying the

similarity between the theoretical (Jaitly et al. 2009) and observed

isotopic distribution for each target molecule. The angle between

the theoretical and observed isotopic distribution vectors (whose

value is normalized to 1) is used as an isotopic matching score

(Equation 3). The angle scoring method is preferred to conventional

methods (e.g. Euclidean distance or Pearson correlation) for quan-

tifying differences between expected and observed isotopic signa-

tures when differences are large. This attribute is useful for filtering

of peaks with a very low probability of being associated with target

ions in the preprocessing step.

cos h ¼ I
*

s � I
*

offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jI
*

sj � jI
*

oj
q

Scoreisotopic ¼
h

p=2

(3)

In addition, peaks with a summed intensity lower than 3% of the

most abundant peak in the extraction window were also discarded

as low relative intensity to prevent PIXiE from reporting false con-

formers. Peaks that did not pass the peak shape threshold, isotopic

score threshold or the relative intensity threshold were also dis-

carded in this step.

Fig. 1. (a) Steps of the mobility extraction algorithm. A raw data file in UIMF for-

mat and a set of target ions are provided as inputs to PIXiE. The preprocessing

step starts after voltage grouping to extract and filter peaks. After filtering, the

algorithm uses K-shortest path and maximum a posteriori probability estima-

tion to solve the global data association problem and process the peaks into

mobility information of conformer ions; (b) Application of isotopic score for im-

proved chemical identification. In the example shown, the software extracted

two candidate conformers for bisphenol S (sulfonyl diphenol) when given a

low isotopic score threshold in the preprocessing step. When the isotopic score

threshold is raised, the latter conformer is removed due to its low isotopic

score; (c) the ion transition graph G. Each path from source to sink represents a

potential association hypothesis of ion peaks (x1. . .xn) across multiple electric

fields. These hypotheses are evaluated for robustness, and those that pass all

filtering steps are used to calculate CCS values. In the example above, two

hypotheses, T1¼ (x1, x4, x7) and T2¼ (x2, x6, x9), represent two conformers

measured across three electric fields
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2.4 Global data association
Following the preprocessing steps, the global data association step

further removes peaks that are artifacts and determines the link be-

tween observed peaks and target molecules. PIXiE makes the follow-

ing assumptions for this step.

1. Conformers and isobaric species of the target ion(s), are indistin-

guishable in the m/z dimension, and CCSs will be extracted for

those ions, if detected.

2. Even under varying electric field, some aspects of the 2D diffu-

sion profiles of a given ion remain the same. For example, the

ion cloud distribution is largely determined by the initial pulse

into the drift tube and the diffusion that occurs as the ions drift

(Siems et al. 1994). As a result, the peak profile for a given mol-

ecule will broaden predictably (Mason and McDaniel 1988).

3. Peak apices corresponding to the same ion at different electric

fields are subject to kinetic theory and can thus be modeled using

Equation (1).

To solve the global association problem, we implemented a K-shortest

path scheme to identify potential association hypotheses constrained by

the above assumptions. Next, in the association hypotheses set identi-

fied by the K-shortest path algorithm, we adapted Bayesian statistics

and used maximum a posterior estimation (MAP) (Berclaz et al. 2011;

Siems et al. 1994) to test association hypotheses against observed peaks

and ultimately select the optimal case.

2.4.1 K-shortest path for hypothesis space reduction

If an ion is detected at more than one electric field, an ion path

defining the ion’s presence at different electric fields is formed.

When large numbers of peaks are observed in the targeted m/z space

due to low signal to noise ratio or a high number of conformers or

co-drifting compounds, the number of possible ion paths that can be

formed becomes large enough that the subsequent MAP becomes

computationally expensive. To reduce the computational complex-

ity of the MAP calculation, we introduced K-shortest path (Berclaz

et al. 2011) to select the K most likely ion paths across the different

electric fields. First, we defined an ion transition graph G as a

weighted and directed graph, where the vertices are the set of all the

peaks observed in the targeted m/z window: X¼ {x1, x2, x3. . . xi. . . xn}

in all electric fields. Edges are then inserted for every peak in a

given electric field to all peaks in the adjacent electric fields (Fig. 1c).

Next, the weight of an edge is defined as the negative log of the match-

ing score, Pmatch(xi, xiþ1), which corresponds to the diffusion pro-

file matching the probability of a pair of peaks in adjacent electric

fields (Equation 4). In addition, two non-peak vertices are added to

the graph as the source and sink. A hypothetical ion path Tk is

thus defined as a path in G from the source to the sink (Fig. 1b).

Notably, the shorter an ion path, the more consistent are the peaks

associated with the path in terms of diffusion profiles as shown by

Equation (5). Finding K shortest path in the ion transition graph is

thus equivalent to finding Tk with the most consistent peak diffusion

profiles.

weight xi;xiþ1ð Þ ¼ �log Pmatch xi;xiþ1ð Þð Þ (4)

jTkj ¼
Xn�1

i¼1

weight xi; xiþ1ð Þ

¼
Xn�1

i¼1

� log Pmatch xi; xiþ1ð Þð Þ

¼ �log
Yn�1

i¼1

Pmatch xi; xiþ1ð Þ
 !

¼ �log Pdiffusion Tkð Þ

(5)

We solve the K-shortest paths problem from G using the Hoffman–

Pavley algorithm (Hoffman and Pavley 1959) to acquire the K most

likely hypothetical ion paths. Subject to the computing resources

available, the number K can range from hundreds to thousands if

the association result does not converge. Tk would then be combined

to form the association hypotheses for the data. The next step is to

then use the MAP approach and determine the optimal association

of peaks across electric fields.

2.4.2 A posteriori probability of association hypothesis

After K-shortest path reduces the hypothesis space, the next step is

to define and compare the a posteriori probability of different asso-

ciation hypotheses. If X continues to be the set of all peaks observed

in the targeted m/z window X¼ {x1, x2, x3. . .xi. . .xn} in all electric

fields, and T is the association hypothesis represented by T¼ {Tk},

where Tk \ Tl¼Ø, then the optimal association hypothesis is one

that maximizes its probability given the peaks observed.

T� ¼ arg max
T

PðTjXÞ

¼ arg max
T

PðXjTÞPðTÞ

¼ arg max
T

Y
i

PðxijTÞ
Y

Tk2T

PðTkÞ

(6)

According to Equation (6), the association hypothesis with the high-

est a posteriori probability, P(Tk) and P(xi j T), needs to be modeled

as a function of individual peak profiles, relationships of peaks to

ion paths, and the probability of a peak to not reject the association

hypothesis. We then model the probability of ion path P(Tk) based

on Assumptions 2 and 3: where the ion path Tk is more likely to be

real if (1) the peak responses share similar diffusion profiles and (2)

the arrival time and electric field pairs of the peak comply with the

kinetic theory described in Equation (1). P(Tk) is thus defined in

Supplementary Equation 2 (Supplementary Material S1) as the

weighted geometric mean of the correlation of determination value

of the least squares fit line (R2) and the diffusion profile matching

the probability for all the observations of an ion (including confor-

mers), which is the Pdiffusion used in the K shortest path ion tracking

step (Equation 5). For Pr(xi j T) we implemented a simplified likeli-

hood model as shown in Supplementary Equation 3 (Supplementary

Material S1). If the peak xi is on one of the paths Tk, we evaluate the

arrival time error between the observed peak and what the path Tk

predicts. The error corresponds to the degree to which the peak is re-

jecting hypothetical ion path Tk as a valid ion path. When the peak

xi is not on the ion path Tk, Pr(xi j T) is evaluated as d or the
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probability of a peak being an artifact or interference within the tar-

get m/z, which is a constant that can be tuned based on the noise

level of the data.

2.4.3 Diffusion profile matching

Both the weight calculation of the ion transition graph and comput-

ing Pr(Tk) requires computation of the matching probability of base

peak diffusion profiles of two peaks measured at different electric

fields. We characterize the distance between diffusion profiles of

two ions with the following parameters: Dmzc, Dmzw, Dmzl, Ddtc,

Ddtw, Ddtl, which correspond to the differences in m/z at peak

apex, m/z full width at half maximum, percentage of peak intensities

on the lower m/z side of the peak apex, ATD value at peak apex,

ATD full width at half maximum and percentage of peak intensities

before the peak apex. By calculating the geometric mean of these

six parameters weighted according to their impact on the diffusion

profile matching, we can obtain a score that favors peaks sharing

similar diffusion profiles. This matching score can then be normal-

ized to 1 to model Pmatch(xi, xiþ1) (Supplementary Material S1,

Supplementary Equation 1).

2.5 CCS calculation and post-filtering
tA is calculated for all ion paths in the optimized association hypoth-

esis using the least squares fit of Equation (1) to obtain mobility.

Mobility can then be converted to CCS using Equation (2). In add-

ition to the linear simple least squares typically used to calculate ion

mobility, PIXiE offers an option to use iteratively reweighted

least squares as an alternative with bisquare weight (Wolke and

Schwetlick 1988) to account for numerical and instrumental errors

in determining the apex of ATD (Supplementary Material S1, Part

2). Although the isotopic filtering and global data association is able

to filter out various kinds of artifacts and identify co-drifting com-

pounds, these steps cannot identify the remaining ions as conformers

of the target. The identifications might be clear for a simple sample

of known composition (e.g. an authentic chemical standard in solu-

tion); however, in the case of data from complex samples (e.g. blood

plasma), it is still possible that a co-drifting compound could pass

the isotopic filter and global association step for CCS extraction.

The next step is to use discretional thresholds on multiple scores

generated in various steps of the algorithm, such as the isotopic simi-

larity score, mass error in ppm, or the a posteriori probability to fur-

ther identify any remaining co-drifting chemicals. For example,

users can establish thresholds such as a mass measurement error

�10 ppm, or an a posteriori probability >0.7. To aid this process,

PIXiE generates an analysis database for each batch performed so

that users can easily adjust various parameter thresholds for post-

filtering through database queries, while viewing the results gener-

ated from the optimal association hypothesis.

3 Results

3.1 An automated tool for DTIMS CCS calculation
We developed PIXiE as an open source, C# software toolkit that

automatically extracts arrival times and calculates CCS values for

target molecules measured across multiple electric fields in DTIMS-

MS experiments. PIXiE implements the preprocessing steps and glo-

bal data association algorithm described in Figure 1. The primary

application for PIXiE is to extract data that can then be inde-

pendently used in the construction of a reference library containing

accurate mass and CCS data for metabolites and other small mol-

ecules. To further automate data analysis for an arbitrary amount of

targets in a given amount of data, we developed a parallel batch pro-

cessor function. This allows the user to schedule searches for mul-

tiple targets from a set of DTIMS-MS data. The batch processor will

run multiple analysis processes, aggregating the results to a single

SQLite database consisting of relational tables such as chemical tar-

gets, data files, analyses, detected ions and peaks. This database can

later be queried directly for quality control, post-processing or visu-

alization purposes. Results after post-processing can then be ex-

ported and used to populate an accurate mass and CCS library.

Intensive testing of PIXiE on data from DTIMS-MS analyses of 472

small molecules in mixed and standard datasets with seven different

IMS electric fields shows that on a windows server with 8-core Intel

Xeon X5560 CPU with 2.8 GHz and 25 GB of RAM, PIXiE required

2–5 s to analyze one adduct variant of a target molecule with the

maximum K in K-shortest path set to 3000. The processing time of

PIXiE scales linearly with the number of CCS analyses needed.

3.2 Peak extraction and filtering
To test the peak extraction and filtering, we manually inspected

analyses of 12 standards in positive and negative ionization

modes. In addition to listing their optimal association hypotheses in

Supplementary Material S2, we here walk through an analysis re-

cord from D-tryptophan (PubChem CID 9060) as an example (Table

1). The empirical formula of the target molecule, C11H12N2O2, was

set in PIXiE to form the corresponding sodiated, protonated and

Fig. 2. (a) Protonated D-tryptophan data at m/z 205.0977 Da. As seen in the

raw data, as the DTIMS electric field decreases the arrival time of the ions in-

creases. (b) Ions were tracked by PIXIE using global data association. The op-

timal association hypothesis consisted of a single ion path. This association

hypothesis had an a posteriori probability higher than all other association

hypotheses and was thus chosen to explain the observed peaks. Other peaks

failed to meet the criteria for identification of the target ion and were thus

registered as artifacts. Based on the optimal association hypothesis, a single

conformer was reported for the target m/z with a CCS value of 154.44 Å2
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deprotonated adduct ions. Taking the protonated D-tryptophan ion

analysis as an example, the accurate mass of the corresponding tar-

get m/z is 205.0977. PIXiE first grouped the DTIMS-MS data

frames into seven electric fields. After averaging the IMS data within

the initial m/z window of 205.0977 6 15 ppm, the peak detector

found 1, 1, 1, 1, 1, 2 and 2 peaks in electric fields 1 through 7, re-

spectively. Next, the global data association step was applied and

the optimal association hypothesis consisted of a single ion. The

PIXiE result from peak filtering and peak extraction matches visual

inspection of the raw data (Fig. 2). Such peak extraction and filter-

ing information is logged for each optimal association hypothesis to

ensure the provenance of PIXiE CCS calculations. In addition, each

CCS extracted by PIXiE can be traced to the optimal association hy-

pothesis used and is visualized graphically, as shown in Figure 2b.

The optimal association hypothesis plot shows all observed peaks as

scatter points according to their arrival time, the value of p/(TV),

and peak intensity.

3.3 Validation of PIXiE extracted CCSs
To verify the accuracy of PIXiE extracted CCSs, we performed a

side by side comparison of PIXiE results with those calculated by

Agilent’s IM-MS Browser for 12 common metabolites which form

25 total ionic species. The results in Table 2 show that PIXiE-

determined CCSs are nearly identical with those calculated by

Agilent IM-MS Browser. Slight discrepancies in CCS between the

two programs were due to the fact that PIXiE uses the set of points

that optimizes the a posteriori probability score of an ion path,

while Agilent IM-MS Browser uses all available points. This choice

in heuristics for PIXiE ensures that specious features are not incor-

porated in the CCS calculation and preserves confidence in a low

false discovery rate during automated batch processing.

3.4 Algorithm robustness
To evaluate how robust PIXiE was for determining optimal associ-

ation hypotheses, we tested the algorithm on datasets containing

multiple conformers. We also observed cases where the small mol-

ecules would form non-covalent dimers and break into monomers

prior to detection, so these were also evaluated. For these mol-

ecules, multiple peaks were observed several times for a target

(Supplementary Material S2). However, in the analyses of authentic

reference materials we have yet to encounter a case where the sam-

ple complexity at a single mass range was too complex for PIXiE to

determine a reasonable optimal association hypothesis. There are

times though that PIXiE ignores certain high-leverage peaks from

the optimal association hypothesis as these peaks can sometimes re-

duce the a posterior probability of the association hypothesis. This

Table 1. Peak statistics averaged across electric fields for the proto-

nated form of D-tryptophan and the filter thresholds used in

preprocessing

Criteria Value

Threshold Measured

Target detection 1

Intensity score – 0.9189

Peak shape score >0.4 0.9037

Isotopic distribution score >0.4 0.8125

Mass error <15 ppm 1.8 ppm

T0 – 4.45 ms

R2 0.96 0.9999

Mobility (cm2/(s*V)) – 1.3930

Cross section (Å2) – 154.4439

Table 2. Comparison of PIXiE and Agilent IM-MS browser determined CCSs for 12 metabolites

Metabolite Adduct PIXiE CCS (Å2) IM-MS browser CCS (Å2) Difference between programs (%)

(�)-Epinephrine [M�H] 142.4496 144.0134 1.09

Adenosine [MþH] (1) 155.555 156.2909 0.47

[MþH] (2) 168.2187 166.1145 1.27

[MþNa] 170.7047 170.9785 0.16

[M�H] 166.5123 168.3901 1.12

Choline [Mþ] 117.4588 118.2236 0.65

Cytidine [MþH] 153.8407 154.2226 0.25

[MþNa] 162.347 162.6927 0.21

D-Fructose-1,6-BP [M�H] 156.4098 155.8715 0.35

D-Glucosamine 6-P [MþH] 154.2323 155.2702 0.67

[MþNa] 162.9773 161.5521 0.88

[M�H] 150.5087 150.481 0.02

D-Tryptophan [MþH] 154.4439 153.8472 0.39

[MþNa] 149.2501 150.1552 0.60

[M�H] 155.872 156.5406 0.43

Folic acid [MþH] 195.2117 195.2644 0.03

[MþNa] 203.1976 204.6301 0.70

[M�H] 194.6636 194.4258 0.12

NAD [MþH] 227.936 226.236 0.75

[MþNa] 223.3434 223.4154 0.03

[M�H] 227.1015 227.8383 0.32

Sucrose [MþNa] 174.6098 174.2231 0.22

[M�H] 170.1421 169.641 0.30

Taurine [MþH] 139.7391 140.4202 0.49

UDP-Galactose [M�H] 210.8353 211.6699 0.39
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behavior can be seen in Supplementary Material S2 for NAD

[MþH], taurine [MþH], adenosine [MþNa] and others.

3.5 Limitations
Although PIXiE can reliably locate ions in the data that match the

mass and isotopic pattern specified by the target, it does not offer

absolute identification nor can PIXiE draw a line between confor-

mers and dimers. For the use of library construction purposes, sam-

ple purity should be high to ensure corresponding high confidence in

the determined CCS value. Extraction of data for library building is

best conducted using conservative parameters (e.g. low mass error

threshold, high isotopic score threshold, etc.) to limit the probability

of incorrect association of peaks with target molecules.

4 Conclusion

The use of CCS as a metric for confident identification of metabol-

ites and other small molecules in metabolomics studies has high po-

tential. However, the difficulty of implementing automated data

analysis has limited the throughput of multi-electric field DTIMS-

MS CCS extraction. To address these challenges, we have developed

PIXiE for reliably extracting CCSs from multi-electric field DTIMS-

MS data. Using the global data association algorithm, PIXiE was

able to track targets in the presence of co-drifting ions representing

conformers or chemical noise. The optimal association hypothesis

distills ions from the collected DTIMS-MS data having m/z consist-

ent with the target molecule, isotopic profiles similar to the expected

isotopic profile of the target, and peak responses across electric

fields that comply with ion kinetic theory (Mason and McDaniel

1988). Most importantly, CCS values can easily be calculated for

each ion distilled based on the arrival times at the different electric

fields. Arrival times can then be documented using the measured

arrival time and subtracting the time an ion spends outside the

drift tube, which is independently evaluated in the least squares step.

For applications where multi-electric field DTIMS-MS meas-

urements are performed, PIXiE increases the throughput of CCS

determination.
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