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Abstract

Parkinson's disease (PD) is characterized by overlapping motor, neuropsychiatric, and

cognitive symptoms. Worse performance in one domain is associated with worse

performance in the other domains. Commonality analysis (CA) is a method of vari-

ance partitioning in multiple regression, used to separate the specific and common

influence of collinear predictors. We apply, for the first time, CA to the functional

connectome to investigate the unique and common neural connectivity underlying

the interface of the symptom domains in 74 non-demented PD subjects. Edges were

modeled as a function of global motor, cognitive, and neuropsychiatric scores. CA

was performed, yielding measures of the unique and common contribution of the

symptom domains. Bootstrap confidence intervals were used to determine the preci-

sion of the estimates and to directly compare each commonality coefficient. The

overall model identified a network with the caudate nucleus as a hub. Neuropsychiat-

ric impairment accounted for connectivity in the caudate-dorsal anterior cingulate

and caudate-right dorsolateral prefrontal-right inferior parietal circuits, while

caudate-medial prefrontal connectivity reflected a unique effect of both neuropsy-

chiatric and cognitive impairment. Caudate-precuneus connectivity was explained by

both unique and shared influence of neuropsychiatric and cognitive symptoms.

Lastly, posterior cortical connectivity reflected an interplay of the unique and com-

mon effects of each symptom domain. We show that CA can determine the amount

of variance in the connectome that is unique and shared amongst motor, neuropsy-

chiatric, and cognitive symptoms in PD, thereby improving our ability to interpret the

data while gaining novel insight into networks at the interface of these symptom

domains.
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1 | INTRODUCTION

Parkinson's disease (PD) is a neurodegenerative disorder characterized

by a classic set of motor symptoms, including tremor, rigidity,

bradykinesia, and postural instability (Jankovic, 2008). However, it is

now evident that many non-motor symptoms arise early in the course

of the disease and significantly impact quality of life (Poewe, 2008;

Schapira, Chaudhuri, & Jenner, 2017). These non-motor symptoms

include cognitive and neuropsychiatric impairment. Cognitive symp-

toms include impairments of executive function, attention, memory,

language, and visuospatial abilities (Janvin, Larsen, Aarsland, &

Hugdahl, 2006; Svenningsson, Westman, Ballard, & Aarsland, 2012;

Williams-Gray et al., 2009; Yarnall et al., 2014). Neuropsychiatric

symptoms include depression, anxiety, apathy, impulse control disor-

ders, and perceptual distortions (Aarsland, Marsh, & Schrag, 2009;

Castrioto, Thobois, Carnicella, Maillet, & Krack, 2016; Kulisevsky

et al., 2008). PD can therefore be understood as a multi-system disor-

der, with three main symptom domains: motor, neuropsychiatric, and

cognitive. While each of these domains is independent to some

degree, they are also correlated amongst each other. For example,

worse cognitive performance is associated with more severe motor

(Burn, Rowan, Allan, Molloy, & Mckeith, 2006; Hu et al., 2014;

Schneider, Sendek, & Yang, 2015) and neuropsychiatric symptoms

(Aarsland, Taylor, & Weintraub, 2014; Monastero, Di Fiore, Ventimi-

glia, Camarda, & Camarda, 2013; Yoon et al., 2019). Similarly, worse

neuropsychiatric symptoms can be associated with higher motor

severity (Burn et al., 2012; Lee & Koh, 2015; Riedel et al., 2010; Solla

et al., 2011). The neural representation of each of these symptom

spheres has been investigated individually, often while controlling for

the influence of one or the other domains. These changes have been

summarized in previous review articles (Biundo, Weis, &

Antonini, 2016; Filippi, Sarasso, & Agosta, 2019; Gao & Wu, 2016;

Prodoehl, Burciu, & Vaillancourt, 2014; Tahmasian et al., 2017; Valli,

Mihaescu, & Strafella, 2019; Wen, Chan, Tan, & Tan, 2016) and con-

sist of diverse, heterogenous changes throughout the brain. However,

while understanding the separate neural representations of each

symptom domain is useful, it may be equally interesting to gain insight

into neural features which may lie at the interface between the

domains. This concept is visualized in Figure 1. Here, we conceptual-

ize the entire neural network involved in PD as the PD-Network.

Hypothetically, within this PD-Network, there are networks involved

in neuropsychiatric, cognitive, and motor symptoms, with a sub-

network situated at the interface of the domains. This subnetwork

may be further decomposed into connections which are unique (U1,

U2, U3) and common (C1, C2, C3, C4) to each symptom sphere.

Commonality analysis (CA) is a method of detailed variance par-

titioning in multiple regression, used to decompose the coefficient of

determination (R2) into unique and common variance of each predic-

tor in the model (Nimon & Reio, 2011; Prunier, Colyn, Legendre,

Nimon, & Flamand, 2015; Ray-Mukherjee et al., 2014; Zientek &

Thompson, 2006). These unique and common variance partitions,

known as commonality coefficients, represent nonoverlapping compo-

nents of variance which always sum to R2 and can be viewed as effect

sizes (<1% negligible, >1% small, >9% moderate, and > 25% large)

(Marchetti, Loeys, Alloy, & Koster, 2016). When divided by R2, one

can determine the relative contribution of each partition to the total

explained variance. Considering a model with three predictors (x1, x2,

x3), the total variance is explained with seven commonality coeffi-

cients. Using Figure 1 as an example, the unique contribution of neu-

ropsychiatric symptoms is specified as U1, while the common

contribution of neuropsychiatric and cognitive impairment is C2, and

so forth. Unique partitions (U1, U2, U3) quantify the amount of vari-

ance in the dependant variable that is uniquely accounted for by a sin-

gle predictor variable. Values can range from 0 to 1, where a value of

1 indicates all the variance is explained solely through the contribution

of this variable. First order commonalities (C1, C2, C3) quantify the

shared variance between two predictors, while the second order com-

monality (C4), describes the proportion of variance jointly explained

by all three of the predictors. In the case of completely independent

predictors, commonalities are null, and the sum of unique effects

equals the coefficient of determination of the overall model. How-

ever, with multicollinearity, commonalities are non-null and can

assume both positive and negative values. Positive values are of par-

ticular interest in this study, as they represent a synergistic association

amongst predictor variables. Negative commonality values suggest

the presence of suppressor variables. A suppressor variable is a pre-

dictor that removes irrelevant variance (variance not shared with the

dependant variable) in another predictor, thus strengthening the rela-

tionship of that latter predictor with the dependent variable (Prunier

et al., 2015; Ray-Mukherjee et al., 2014). Suppression can occur when

the variable has zero or a small positive correlation with the depen-

dent variable, but is correlated with the one or more predictor vari-

ables (Horst, 1941; Ray-Mukherjee et al., 2014; Watson, Clark,

Chmielewski, & Kotov, 2013). In sum, CA allows for an improved

understanding and interpretation of the influence of collinear

F IGURE 1 Three distinct but overlapping symptoms
(neuropsychiatric, cognition, motor) spheres in PD. At the interface of
these domains, there may exist a subset of connections which can be
explained through a combination of unique (U1, U2, U3) and shared
(C1, C2, C3, C4) contributions from each symptom domain
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predictors in multiple regression, by explicitly localizing the site and

amount of overlap.

The objective of the current study was to investigate the unique

and common neural connectivity underlying the interface of motor,

neuropsychiatric, and cognitive symptoms in PD. To achieve this

objective, we applied, for the first time, regression CA to the func-

tional connectome. We hypothesized that this analysis would reveal a

significant role of the caudate nucleus, given its role in the cognitive,

neuropsychiatric, and motor symptoms of Parkinson's disease (Caplan

et al., 1990; Graff-Radford, Williams, Jones, & Benarroch, 2017;

O'Callaghan, Bertoux, & Hornberger, 2014). However, we did not

have specific expectations regarding how the variance would partition

between each of the symptom domains.

2 | METHODS

2.1 | Subjects

Seventy-four non-demented PD subjects at Stages I–III of Hoehn and

Yahr were diagnosed by movement disorder neurologists and met the

UK brain bank criteria for idiopathic PD (Hughes, Daniel, Kilford, &

Lees, 1992). Subjects were recruited from the Movement Disorder

Clinic at the University of Calgary between 2014 and 2019. Exclusion

criteria included neurological or severe psychiatric disease aside from

idiopathic PD (including alcohol or drug dependency), dementia,

inability to tolerate MRI scans, or previous deep brain stimulation sur-

gery. With respect to psychiatric disorders, subjects have been

excluded if they have a history of long-standing psychiatric disease

documented in their clinical medical records by a physician.

Subjects underwent a comprehensive clinical assessment which

included evaluations of cognitive, neuropsychiatric, and motor symp-

toms. This included a neuropsychological evaluation (Supplementary

Table 1), for which we focus primarily on the Montreal Cognitive

Assessment (MoCA) as a measure of global cognition, and the Unified

Parkinson's Disease Rating Scale part three (UPDRS-III), which we used

as a measure of global motor symptoms. The Mild Behavioral Impair-

ment Checklist (MBI-C) was also completed for every subject and the

total score was used a global measure of neuropsychiatric symptoms.

The MBI-C is a 34 item instrument that is completed by a patient, close

informant, or clinician (Ismail et al., 2017). It is a validated measure that

captures later life onset of sustained neuropsychiatric symptoms across

five domains (Hu, Patten, Fick, Smith, & Ismail, 2019; Ismail et al., 2016;

Ismail et al., 2017; Mallo et al., 2018; Yoon et al., 2019). These domains

include impaired drive and motivation, emotional dysregulation, impulse

dyscontrol, social inappropriateness, and abnormal perception or

thought content. The total MBI-C score thus represents a suitable mea-

sure of global neuropsychiatric symptoms. The entire questionnaire can

be found at https://mbitest.org. Subjects also had MRI scans adminis-

tered within the same week. All subjects were asked to continue taking

their regular scheduled medications and thus were in the “On” state for

all clinical and neuroimaging evaluations. For descriptive purposes, we

classify subjects as having mild cognitive impairment (according to the

Movement Disorder Task Force Level II criteria (Litvan et al., 2012)),

high MBI scores (according to a cut-off of >7.5(Mallo et al., 2018; Mallo

et al., 2019; Yoon et al., 2019)), and tremor dominant, mixed, or

nontremor dominant motor phenotypes, according to previous litera-

ture (Schiess, Zheng, Soukup, Bonnen, & Nauta, 2000). We also classify

subjects as having minimal, mild, or moderate motor severity based on

the overall UPDRS-III score (Shulman et al., 2010). Subjects provided

informed consent, and the protocol was approved by the University of

Calgary Research Ethics Board. Demographic information is in Table 1.

TABLE 1 Demographic details

Demographic variables

N 74

Age 70.8 (6.0)

Gender (women) 25 (33.8%)

Education (years) 14.8 (2.8)

Disease duration (years) 5.6 (3.9)

LED (mg/day) 768.2 (381.7)

UPDRS-III 18.8 (10.5)

Minimal motora 30 (40.5%)

Mild motorb 39 (52.7%)

Moderate motorc 5 (6.8%)

Tremor dominantd 17 (22.9%)

Nontremor dominante 48 (64.8%)

Mixedf 9 (12.1%)

MoCA 25.1 (4.0)

Executive function (z-score) −0.33 (0.82)

Attention (z-score) −0.24 (0.59)

Language (z-score) −0.12 (0.76)

Visuospatial (z-score) −0.33 (0.92)

Memory (z-score) −0.09 (0.83)

MCIg 32 (43.2%)

MBI-C (Total) 5.6 (8.3)

Drive/motivation 1.4 (2.4)

Mood/anxiety 1.8 (2.9)

Impulse dyscontrol 1.7(3.5)

Social inappropriateness 0.39 (1.3)

Perception/thought 0.30 (75)

High MBIh 21 (28%)

Antidepressant/anti-anxiety medication 22 (29.7%)

Cholinergic medication 2 (2.7%)

Mean motion (mm/TR) 0.21 (0.13)

Invalid volumesi 3.5% (8.2%)

Note: Values reported as mean (standard deviation) or number of subjects

(%). a = UPDRS-III < 15; b = UPDRS-III 15–35; c = UPDRS-III >35;

d = tremor/nontremor score > 1.0; e = tremor/nontremor score < 0.8;

f = tremor/nontremor score 0.8–1.0; g = Movement Disorder Task Force

level II criteria; h = MBI-C > 7.5; i = invalid fMRI volumes as defined in

Methods: Image denoising.
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2.2 | MRI acquisition and analysis

Subjects were scanned at the Seaman Family MR Center, at the University

of Calgary, with a 3 T GE Discovery MR750 scanner. Sessions included a

high-resolution, T1-weighted, 3D volume acquisition for anatomic localiza-

tion (TR = 7.18 ms, TE = 2.25 ms, flip angle 10�, voxel size 1mm3,

172 slices), followed by echo-planar T2*-weighted image acquisitions with

BOLD contrast (TR = 2.9 sec, echo time = 30 ms; flip angle, 90�, voxel size

2.5mmx2.5mmx3mm, 48 slices, 152 volumes). Resting-state fMRI was

acquired over one 7.34-minute run in a single session. During the scan,

participants were presented with a black fixation cross on a white back-

ground and were instructed to keep their eyes open and look at the cross.

2.3 | Image preprocessing

Images were preprocessed using SPM 12(Friston, 2007). Functional

images underwent realignment and unwarping as well as slice-time

correction. The high-resolution structural images were co-registered

to the mean functional image. The co-registered structural images

were segmented into gray matter, white matter and cerebrospinal

fluid (CSF). Functional images were nonlinearly normalized into MNI

space using SPM unified normalization (Ashburner & Friston, 2005)

and were spatially resampled at 2 mm3 prior to analysis.

2.4 | Image denoising

Denoising of the functional data was performed using the MATLAB tool-

box Conn (Whitfield-Gabrieli & Nieto-Castanon, 2012). Physiological and

other sources of noise from the white matter and CSF signal were esti-

mated using the aCompcor method (Behzadi, Restom, Liau, & Liu, 2007;

Chai, Castanon, Ongur, & Whitfield-Gabrieli, 2012). Five principle compo-

nents were extracted from eroded CSF and white matter masks and

included as covariates of no-interest. To account for motion, movement

parameters, and their first temporal derivative, were also included in the

regression. Further quality assurance to detect outliers in motion and

global signal intensity change was performed. Volumes with greater than

3 mm change of maximal composite motion, or a blood oxygen level

dependent (BOLD) change >3 SD from the mean, were flagged as invalid

and included as regressors in the first level analysis. Linear detrending, to

remove signal drift, was performed. The residual BOLD time series was

subjected to a high-pass filter (>0.008 Hz) prior to calculation of resting

state connectivity. A full band pass filter (i.e., 0.008–0.1 Hz) was not used,

as there is accumulating evidence for the relevance of higher frequencies

in the resting state signal (Chen & Glover, 2015). fMRI quality control

metrics were derived (mean motion (mm/TR) and number of invalid scans.

2.5 | Functional connectome

Seventy-eight regions of interest (ROI) were selected from our previ-

ous work (Lang et al., 2019). These were originally defined through

high dimensional group ICA (Calhoun, Adali, Pearlson, &

Pekar, 2001). ROI details can be found in Table 2. The residual

BOLD time course was averaged amongst voxels within each indi-

vidual ROI. As a standard measure of functional connectivity, the

Pearson correlation coefficient was calculated between the average

signal in each ROI, creating a 78x78 correlation matrix. To improve

normality of the correlation measure, a Fisher transformation was

applied. To determine the influence of the specific brain

parcellation, we performed a supplementary analysis using the

Brainnetome Atlas (Fan et al., 2016). This is a parcellation consisting

of 246 cortical and subcortical regions based on connectional

architecture.

2.6 | Commonality analysis

In order to operationalize the three symptom domains for the pur-

pose of performing CA, we chose to use global measures of motor,

cognitive, and neuropsychiatric symptoms. Motor severity was

defined as the total score on the UPDRS-III, cognition was defined

as the total score on the MoCA, and neuropsychiatric symptoms

were defined as the total score on the MBI-C. Each of these vari-

ables were adjusted for the influence of age, gender, and medication

use (levodopa equivalent dose; LED) prior to performing the com-

monality analysis. The variance in the functional connectome was

then explained by using these three adjusted predictors (x1 = MBI-C,

x2 = MoCA, and x3 = UPDRS-III) in a multiple regression model,

where the dependant variable was the connectivity between each

ROI (Y(i,j)).

Y i, jð Þ= x1+ x2+ x3

Significance for this overall regression model was set to p < .05

with a false discovery rate (FDR) correction for 78 seeds (or 246 seeds

in the case of the supplementary analysis). Edges which were signifi-

cantly explained by the multiple regression model were examined fur-

ther with CA to determine the amount of unique and common

variance of each predictor. Unique and common variance was deter-

mined by (a) performing regression of the dependent variable over all

possible subsets of predictors (all possible subset regression; APS),

followed by (b) applying commonality coefficient equations for each

unique and common effect (Nimon, Lewis, Kane, & Haynes, 2008;

Warne, 2011).

APS

R2total :Y i, jð Þ= x1+ x2+ x3

R2x1x2 :Y i, jð Þ= x1+ x2

R2x1x3 :Y i, jð Þ= x1+ x3

R2x2x3 :Y i, jð Þ= x2+ x3

3752 LANG ET AL.



TABLE 2 Region of interest (ROI) details including abbreviations used throughout the article

Anatomical region

MNI coordinates

ROI # Abbreviation x y z

1 L IOT (lateral) Left inferior occipital-temporal (lateral) −51 −51 −19

2 R MFG Right middle frontal gyrus 36 41 28

3 R FP (lateral) Right lateral frontal pole 47 46 −5

4 R IP Right inferior parietal 46 −49 45

5 R FP Right frontal pole 35 54 7

6 L FP Left frontal pole −36 55 6

7 L AG Left angular gyrus −44 −58 44

8 R IFG Right inferior frontal gyrus 53 29 12

9 mPFC (dorsal) Medial prefrontal cortex(dorsal) 3 31 55

10 L ins (superior) Left insula (superior) −40 1 10

11 R ins (superior) Right insula (superior) 41 1 10

12 L ins (ventral) Left insula (ventral) −44 4 −8

13 R ins (ventral) Right insula (ventral) 44 6 −10

14 L SMG Left supra-marginal gyrus −60 −29 32

15 R SMG Right supra-marginal gyrus 62 −27 34

16 dACC Dorsal anterior cingulate −3 20 39

17 L MFG (anterior) Left anterior middle frontal gyrus −39 47 20

18 R Heschl Right Heschls 47 −24 22

19 PCC Posterior cingulate cortex 1 −55 33

20 ACC Anterior cingulate cortex 0 45 4

21 L FP Left frontal pole −14 69 15

22 R FP Right frontal pole 14 69 14

23 PCC Posterior cingulate cortex −1 53 24

24 mPFC (bilateral) Bilateral medial prefrontal cortex −1 52 16

25 mPFC (dorsal) Bilateral medial prefrontal cortex (dorsal) 2 54 30

26 vmPFC Ventromedial prefrontal cortex 2 35 −18

27 L Prc (superior) Superior precuneus −1 −57 54

28 mPFC (dorsal) Bilateral medial prefrontal cortex (dorsal) 1 37 43

29 L OC (mid) Left mid occipital −38 −81 34

30 R OC (mid) Right mid occipital 41 −77 36

31 L Calc Left calcarine −13 −59 5

32 R Calc Right calcarine 16 −56 5

33 L Lg Left lingual 2 −82 4

34 L FFg Left fusiform gyrus −24 −71 −11

35 L Cun (superior) L Cunues (superior) 0 −81 33

36 R OC (inferior) Right occipital (inferior) 27 −93 −2

37 L OC (inferior) Left occipital (inferior) −24 −95 −4

38 L OC (mid) Left occipital (mid) −36 −76 3

39 L OC (mid/superior) Left occipital (mid/superior) −35 −68 15

40 L Prc/SP Left precuneus/superior parietal −10 −73 45

41 R Prc Right precuneus 13 −69 45

42 R ITC Right inferior temporal 44 −50 −12

43 L DLPFC Left dorsolateral prefrontal cortex −48 8 36

44 L OC/IP Left occipital −27 −70 33

45 R OC/IP Right occipital (inferior) 32 −70 32

(Continues)
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Commonality coefficient

U1=R2total−R2x2x3

U2=R2total−R2x1x3

U3=R2total−R2x1x2

C1= −R2x3+R2x1x3+R2x2x3−R2total

C2= −R2x2+R2x1x2+R2x2x3−R2total

C3= −R2x1 +R2x1x2 +R2x1x3−R2total

C4=R2x1 +R2x2 +R2x3−R2x1x2−R2x1x3−R2x2x3+R2total

Commonality coefficients were calculated for each significant

edge, yielding seven partition estimates corresponding to the

unique and common components of variance. As is recommended

in CA (Marchetti et al., 2016; Nimon et al., 2008), bootstrap estima-

tion was used for significance testing (Wood, 2004). First, we

TABLE 2 (Continued)

Anatomical region

MNI coordinates

ROI # Abbreviation x y z

46 L IP Left inferior parietal −42 −30 38

47 R DLPFC Right dorsolateral prefrontal cortex 51 14 34

48 L PreC (ventral) Left precentral gyrus (ventral) −55 −8 30

49 R PreC (ventral) Right precentral gyrus (ventral) 57 −5 28

50 PreC (medial) Medial pre/post central 0 −35 65

51 R PreC Right precentral gyrus 40 −25 60

52 SMA Supplementary motor area 3 −13 72

53 L PreC Left precentral gyrus −39 −26 61

54 R STG Right superior temporal gyrus 61 −19 5

55 L STG Left superior temporal gyrus −57 −24 8

56 R STG Right superior temporal gyrus 55 −20 −5

57 R MTG/IP Right middle temporal gyrus 57 −55 20

58 L MTG Left middle temporal gyrus −56 −40 −8

59 R MTG/OC Right temporal-occipital 59 −35 −10

60 L IFG Left inferior frontal gyrus −50 32 1

61 R TP Right temporal pole 35 6 −34

62 L TP Left temporal pole −34 6 −34

63 L TP (inferior) Left inferior temporal pole −42 −4 −43

64 R TP (inferior) Right inferior temporal pole 41 −3 −45

65 OFC Orbitofrontal cortex −3 42 −20

66 R Cb (crus 1) Right cerebellum crus 1 30 −71 −34

67 L Cb (crus 2) Left cerebellum crus 2 −13 −81 −32

68 Cb (ventral) Cerebellum (ventral) −4 −63 −45

69 L Cb (crus 1) Left cerebellum crus 1 −39 −58 −33

70 R Cb (dorsal) Right cerebellum (dorsal) 29 −51 −24

71 L Cb (crus 2) Left cerebellum (crus 2) −8 −77 −30

72 Vermis Vermis −1 −59 −26

73 L Cb (ventral) Left cerebellum (ventral) −25 −66 −56

74 R Cb (ventral Right cerebellum (ventrral) 25 −66 −56

75 L put Left putamen −26 5 0

76 R put Right putamen 27 6 0

77 R Caud (dorsal) Right dorsal caudate 17 6 18

78 Caud (bilateral) Caudate (bilateral) −1 −3 11

Note: Anatomical regions based on correspondence between the ROI coordinates and the Automated Anatomical Labelling (AAL) atlas. Region of interest

(ROI) details including abbreviations used throughout the paper.
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quantified the precision of each partition estimate by computing

95% bootstrap (bias corrected and accelerated (Diciccio &

Romano, 1988)) confidence intervals (CI) on the basis of 1,000 rep-

licates of the data using resampling with replacement. In this man-

ner we could determine whether a specific commonality coefficient

had a statistically significant contribution to the edge in question

by examining the lower bound of the CI. The null hypothesis was

rejected if the lower bound of the 95% CI did not contain zero. In

the case of negative commonalities (suggesting a suppression

effect), we considered the effect significant if the upper bound of

the 95% CI was below zero. In these cases, we further examined

the zero-order relationship between the relevant predictors and

the edge in question to gain insight into which variable was

resulting in suppression.

Secondly, we tested the statistical difference between each vari-

ance partition for every significant edge. While non-overlapping CIs

represent a statistical difference, the opposite is not necessarily true

(Greenland et al., 2016). Therefore, to assess if any two partitions

were significantly different from each other in cases of non-

overlapping CIs, for every bootstrap sample (n = 1,000), we calculated

the difference between the partitions and obtained the distribution of

this difference. Subsequently, we calculated the percentile based 95%

CI of this difference distribution and rejected the null hypothesis

(no difference between variance partition estimates) if it did not con-

tain zero (Marchetti et al., 2016). Lastly, for descriptive purposes, the

proportion of explained variance from the overall model accounted

for by each partition was obtained by dividing the commonality coeffi-

cient by the total R2. All commonality and bootstrap analyses were

performed in MATLAB with a combination of custom code and the

bootci and bootstrp functions. An overview of the analysis is visualized

in Figure 2.

3 | RESULTS

3.1 | Demographics

Seventy-four non-demented PD subjects were included in the study.

The average age was 70.8 years (57.9–81.3) and 34% were women.

The average MoCA was 25.1 (standard deviation (SD) = 4.0), UPDRS-

III was 18.8 (SD = 10.5) and the average total MBI-C score was 5.6

(SD = 8.3). Subjects had an average daily levodopa equivalent dose of

768.2 mg/day (SD = 381.7) and had an average disease duration of

5.6 years (SD = 3.9). Subjects had a range of cognitive and neuropsy-

chiatric impairment, with 32 meeting formal criteria of mild cognitive

impairment and 21 meeting criteria for high-MBI. Most subjects had

minimal or mild motor severity (Shulman et al., 2010). Demographic

details are in Table 1. The fMRI quality control metrics (mean motion

and number of invalid scans) were not associated with any of the clini-

cal scores (p > .05).

3.2 | Zero-order correlations

All three primary variables were significantly collinear with each other

(r (MBI-C, MoCA) = −0.305, p = .008; r (MBI-C, UPDRS-III) = 0.287, p = .0133;

r (MoCA, UPDRS-III) = −0.469, p = .000025) (Figure 3). These relationships

remained significant after adjusting for age, gender, and LED.

3.3 | Overall model

The overall model explained a significant amount of variance in

10 edges after correction for multiple comparisons (Figure 4). The

F IGURE 2 Functional connectivity (Pearson correlation) was calculated for each pair of ROIs to create connectivity matrix for each subject.
For every edge, a multiple regression was performed with connectivity as the dependent variable and MBI-C, MoCA, and UPDRS-III as the
predictor variables. Significant edges were determined if the overall model had a significance of p < .05 with a FDR correction. Each resulting
significant edge was then used in the commonality analysis
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results of the multiple regression, including beta coefficients, are dis-

played in Table 3. The sign of the beta coefficient represents the

direction of the relationship between connectivity and the specific

symptom score. Commonality coefficients were derived for each of

these edges (Figure 5). Notably 6/10 (60%) of these connections

involved the caudate nucleus. Complete details of the CA from every

edge are located in Supplementary Table 2.

3.4 | Commonality analysis

Bootstrap 95% CIs were created to estimate the precision of the com-

monality coefficients. A statistically significant involvement of a particular

partition in an edge was determined when the lower bound of the CI was

greater than zero, or in the case of suppression, the upper bound was less

than zero. With this definition, neuropsychiatric symptoms (U1; MBI-C)

had a unique involvement in 9/10 edges, cognition (U2; MoCA) had a

unique involvement in 5/10 edges, and motor (U3; UPDRS-III) had a

unique involvement in 1 edge. Partitions were also directly compared with

each other to determine if they were significantly different (Figure 6).

3.5 | Edges with a complete dominance of one
partition

The explained variance in the caudate-dorsal anterior cingulate cortex

(dACC) (total R2 = .1826 (95% CI = 0.05–0.35)) and caudate-right

F IGURE 3 Global neuropsychiatric (MBI-C), cognitive (MoCA) and
motor (UPDRS-III) impairment scores are significantly correlated with
each other

F IGURE 4 The overall model identified 10 significant edges hypothesized to underlie the interface of neuropsychiatric, cognitive, and motor
symptoms in PD. (a) Visualized as connectivity ring. (b) Visualized in MNI space. The list of brain region abbreviations are located in Table 2
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dorsolateral prefrontal cortex (DLPFC) (total R2 = .1916 (95%

CI = 0.03–0.45)) connectivity was completely dominated by the

unique influence of MBI-C scores (U1 = 0.1724 (95%

CI = 0.0551–0.3684) and U1 = 0.1873 (95% CI = 0.0257–0.4200),

respectively), as demonstrated by the statistically significant differ-

ence between U1 and every other partition (Figure 6). No other

unique coefficient showed complete dominance of the explained vari-

ability in any other edge.

3.6 | Edges with a single significant partition

Other connections showing involvement of a single statistically signifi-

cant partition (though not significantly different from every other

partition) included caudate-left cuneus (total R2 = .1826 (95%

CI = 0.04–0.41)) with a unique contribution from MBI-C (U1 = 0.1340

(95% CI = 0.0039–0.4036)) and caudate-left inferior occipital cortex

(total R2 = .1844 (95% CI = 0.03–0.33)) with a unique contribution

from MoCA (U2 = 0.1182 (95% CI = 0.0130–0.2911)). The explained

variability for all other edges contained contributions from a combina-

tion of both unique and common partitions (Figure 5, Supplementary

Table 2).

3.7 | Edges with multiple significant partitions

Motor scores were uniquely involved in one edge: the left lateral infe-

rior occipital temporal cortex–right occipital cortex connection (total

TABLE 3 Details corresponding to the overall multiple regression model. X1 = MBI-C; X2 = MoCA; X3 = UPDRS-III

Connection name (ROI #) β MBI-C (p-value) β MoCA (p-value) β UPDRS-III (p-value) Total R2 (95% CI)

1 R IP–R DLPFC (4,47) −0.1063 (.00009) −0.0551 (.0570) 0.0291 (.2824) .2150 (0.07–0.37)

2 R Calc–L Prc/SP (32,40) 0.0898 (.00002) 0.0542 (.0160) −0.0249 (.2335) .2577 (0.07–0.44)

3 L IOT (lateral)–R OC (inferior) (1,36) −0.0585 (.0016) −0.0310 (.1214) 0.0774 (.00009) .3076 (0.12–0.54)

4 L OC/IP–R Calc (32,44) 0.0725 (.00029) 0.0514 (.0179) −0.0225 (.2648) .2116 (0.08–0.35)

5 Caud (bilateral)–dACC (78,16) −0.0695 (.00026) −0.0176 (.3843) −0.0040 (.8346) .1826 (0.05–0.35)

6 Caud (bilateral)–L Prc (superior) (78,27) −0.0503 (.0028) 0.0264 (.1498) 0.0039 (.8193) .1890 (0.04–0.42)

7 Caud (bilateral)–mPFC (dorsal) (78,28) −0.0474 (.0085) 0.0278 (.1571) 0.0031 (.8685) .1608 (0.04–0.27)

8 Caud (bilateral)–L Cun (78,35) −0.0578 (.0012) 0.0228 (.2331) 0.0213 (.2382) .1826 (0.04–0.41)

9 Caud (bilateral)–L OC (inferior) (78,37) −0.0193 (.2932) 0.0645 (.0022) 0.0053 (.7844) .1844 (0.03–0.33)

10 Caud (bilateral)–R DLPFC (78,47) −0.0622 (.00014) −0.0081 (.6409) 0.0080 (.6228) .1916 (0.03–0.45)

Note: The sign of the beta coefficient represents the direction of the relationship between symptom score and connectivity. The list of brain region abbre-

viations are located in Table 2. Details corresponding to the overall multiple regression model. X1 = MBI-C; X2 = MoCA; X3 = UPDRS-III.

F IGURE 5 Results of the commonality analysis with 95% bootstrapped confidence intervals. Red points correspond to partitions contributing
to a significant portion of explained variance (lower bound of 95% CI > 0). Blue points correspond to significantly negative coefficients
(suggesting suppressor effects). U1 = unique MBI-C; U2 = unique MoCA; U3 = unique UPDRS-III; C1 = common MBI-C|MoCA; C2 = common
MBI-C|UPDRS-III; C3 = common MoCA|UPDRS-III; C4 = common MBI-C|MoCA|UPDRS-III. The list of brain region abbreviations are located in
Table 2

LANG ET AL. 3757



R2 = .2116 (95% CI = 0.12–0.54); U3 = 0.1698 (95%

CI = 0.0477–0.3355)). This edge also had a significant contribution

from the unique effect of MBI-C (U1 = 0.1072 (95%

CI = 0.0230–0.3007), a significant contribution from overlap between

MoCA and UPDRS-III (C3 = 0.0393 (95% CI = 0.0021–0.1438), as well

as a significant negative commonality (overlap between MBI-C and

UPDRS-III, C2 = −0.0376 (95% CI = −0.1170 to -0.0051). Analysis of

the overall regression model demonstrated significant coefficients

from MBI-C (β = −.0585, p = .0016) and UPDRS-III (β = .0774,

p = .00009), though univariate analysis revealed a significant relation-

ship of only UPDRS-III (r2 = .13, p = .0016), with no relationship of

MBI-C (r2 = .028, p = .157). This suggests a partial suppression effect

of MBI-C on the UPDRS-III.

Several other edges demonstrated suppression effects. The right

inferior parietal- right DLPFC connection (total R2 = .2150 (95%

CI = 0.07–0.37)) had a significant contribution from U1 (0.1939 (95%

CI = 0.0502–0.3694)), U2 (0.0420 (95% CI = 0.0010–0.1719)) and C3

(0.0286 (95% CI = 0.0012–0.1151)), with significant negative input

from C1 (−0.0305 (95% CI = −0.1081 to –0.0004)) and C4 (−0.0209

(95% CI = −0.0643 to –0.0030)). Analysis of the overall model demon-

strated significant coefficients of the MBI-C (β = −.1063, p = .00009),

with a trend of the MoCA (β = −.0551, p = .0570). The univariate anal-

ysis showed a significant relationship of MBI-C (r2 = .156, p = .0005)

but not the MoCA (r2 = .0047, p = .562). These results suggest the

unique effect of the MoCA is secondary to partial suppression of irrel-

evant variance in the MBI-C. The connectivity between the right

calcarine–left precuneus/superior parietal region (total R2 = .2577

(95% CI = 0.07–0.44)) showed unique contributions from U1 (0.2196

(95% CI = 0.0425–0.4746), U2 (0.0647 (95% CI = 0.0066–0.1651)),

and C3 (0.0393 (95% CI = 0.0021–0.1438)), with negative input from

C1(−0.0417 (95% CI = −0.1202 to –0.0096)) and C4(−0.0264 (95%

CI = −0.0808 to –0.0042)). Analysis of the overall model demon-

strated significant coefficients of the MBI-C (β = .0898, p = .00002)

and the MoCA (β = .0552, p = .0160). The univariate analysis showed

a significant relationship of MBI-C (r2 = .105, p = .0048) but not the

MoCA (r2 = .035, p = .111). These results point to a partial suppression

effect of the MoCA. Lastly, the connectivity between the left occipital

cortex and the right calcarine cortex (total R2 = .2116 (95%

CI = 0.08–0.35)) showed unique contributions from U1 (0.1636 (95%

CI = 0.0192–0.4346)), U2 (0.0663 (95% CI = 0.0048–0.1888)), and C3

(0.0387 (95% CI = 0.0070–0.1171)), with negative input from C1

(−0.0375 (95% CI = −0.1118 to –0.0037))and C4 (−0.0113 (95%

CI = −0.0693 to –0.0078)). Analysis of the overall model demon-

strated significant coefficients of the MBI-C (β = .0725, p = .00029)

and the MoCA (β = .0514, p = .0179). The univariate analysis showed

a significant relationship of MBI-C (r2 = .0623, p = .032) with a trend

effect of the MoCA (r2 = .0495, p = .0567). These results also point to

a partial suppression effect of the MoCA.

Connectivity between the caudate and precuneus (total R2 = .1890

(95% CI = 0.04–0.42)) demonstrated a unique contribution from MBI-C

(U1 = 0.1111 (95% CI = 0.0032–0.3310)), a unique contribution from

MoCA (U2 = 0.0246 (95% CI = 0.0001–0.1206)), and a contribution from

the overlap between these two symptom scores (C1 = 0.0326 (95%

CI = 0.0002–0.1223)), without any suppressor effects. Lastly,

F IGURE 6 Direct pairwise comparisons between each commonality coefficient using percentile based 95% confidence intervals of the
bootstrapped difference distribution. Significant comparisons determined if the 95% CI does not contain 0 (visualized in yellow). Edges which
have a single partition dominate the explained variance (significantly greater than all other partitions) are outlined in red. U1 = unique MBI-C;
U2 = unique MoCA; U3 = unique UPDRS-III; C1 = common MBI-C|MoCA; C2 = common MBI-C|UPDRS-III; C3 = common MoCA|UPDRS-III;
C4 = common MBI-C|MoCA|UPDRS-III. The list of brain region abbreviations are located in Table 2
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connectivity between the caudate and medial prefrontal cortex (total

R2 = .1608 (95% CI = 0.04–0.27)) also demonstrated a unique contribu-

tion from MBI-C (U1 = 0.0880 (95% CI = 0.0243–0.2241)) and a unique

contribution from MoCA (U2 = 0.0245 (95% CI = 0.0001–0.1157) with-

out any suppressor effects.

3.8 | Brainnetome atlas

The entire analysis was repeated using the 246 ROI Brainetomme

Atlas (Fan et al., 2016). This was done to investigate the influence of

brain parcellation on the results of the CA. The results of this analysis

can be found in the Supplementary Materials (Supplementary Result I,

Supplementary Tables 3-5, and Supplementary Figures 1-4).

4 | DISCUSSION

In this study, we applied CA to the functional connectome in PD to

investigate the unique and common influence of neuropsychiatric,

cognitive, and motor impairment on connectivity of a subnetwork

lying at the interface of these symptom domains. We performed the

same analysis using two brain parcellations, with different levels of

resolution. We focus our discussion on the 78 ROI atlas, given this

was our primary analysis. However, a discussion of the influence of

brain parcellation is included for completeness.

4.1 | Overall model

The overall model assessed, for every edge in the connectome, the

amount of variance which could be explained by a multiple regres-

sion model including global measures of neuropsychiatric (MBI-C),

cognitive (MoCA), and motor impairment (UPDRS-III) in a group of

PD subjects. Thus, we did not expect this model to capture the

entire neuropsychiatric, cognitive, and motor symptomatology net-

works, but instead capture a subset of these networks which are at

the interface of the domains. The model identified a network involv-

ing distributed cortical and subcortical regions, with a strong pre-

dominance of connections involving the caudate nucleus. The

caudate nucleus has been previously identified as an interface for

emotional and cognitive processing (Graff-Radford et al., 2017), and

has been implicated in both cognitive and neuropsychiatric symp-

toms in PD (O'Callaghan et al., 2014). One study found that baseline

bilateral caudate dysfunction was associated with an increased risk

of developing cognitive impairment, depression, and gait problems

over the course of four years (Pasquini et al., 2019). Our results sup-

port and extend this literature, placing the caudate nucleus as the

primary substrate for the shared neural representation of impairment

across symptom domains in PD. The subsequent CA decomposed

the explained variance in this network, thereby allowing further

insight in the unique and common contribution of each symptom

domain.

4.2 | Commonality analysis

In total, MBI-C uniquely contributed to 90%, MoCA to 50%, and

UPDRS-III to 10% of edges in the overall network. Two edges showed

complete dominance of a single partition, as determined by direct

pairwise comparisons using bootstrapped difference distributions.

Neuropsychiatric impairment completely accounted for the explained

variance in the caudate-dACC and caudate-right DLPFC connections.

Normal dACC function has been linked to a range of behavioral and

cognitive functions, including reward based decision making (Bush

et al., 2002), fear expression (Milad et al., 2007), behavioral adaptation

(Sheth et al., 2012), and cognitive valuation and control (Shenhav,

Cohen, & Botvinick, 2016). Consistently, the striatal-dACC pathway

has been proposed to be central to the neurobiology of apathy across

disease conditions, including in PD (Le Heron, Apps, & Husain, 2018).

The current results suggest that variability in this connection in PD

subjects is explained primarily by the unique influence of neuropsychi-

atric impairment and is not related to global cognitive impairment

(as measured by the MoCA). Variability in the connectivity between

the caudate and the right DLPFC was also identified as being

explained primarily and uniquely by neuropsychiatric impairment. The

DLPFC is another region, along with the dACC and caudate, which

has been implicated broadly in both cognitive and behavioral func-

tions. Specifically, the DLPFC is involved in cognitive control (Miller &

Cohen, 2001), working memory (Barbey, Koenigs, & Grafman, 2013),

attention (Bishop, 2009), and goal maintenance (Wagner, Maril,

Bjork, & Schacter, 2001), while also being associated with depression

(Koenigs & Grafman, 2009), anxiety (Schmidt, Khalid, Loukas, &

Tubbs, 2018), psychosis (Colibazzi et al., 2016) and addiction

(Goldstein & Volkow, 2011). Moreover, functional connectivity of the

DLPFC to striatum predicts treatment response of depression to

transcranial magnetic stimulation (Avissar et al., 2017), suggesting a

direct role of this pathway in depressive symptomatology. In PD, fron-

tostriatal connectivity has been implicated in deficits of executive

functioning (Owen, 2004), often manifesting as a dysexecutive cogni-

tive syndrome (Kehagia, Barker, & Robbins, 2012; Williams-Gray

et al., 2009). Our results suggest that the variability in connectivity of

the caudate and right DLPFC can be accounted primarily by the

unique effect of global neuropsychiatric impairment, as measured by

the MBI-C. Speculatively, a potential clinical implication of these find-

ings is that the MBI-C is a more sensitive measure of early neurode-

generative changes in frontostriatal “executive function” circuits as

compared to the MoCA. MBI is thought to be a good predictor of cog-

nitive decline and dementia in non-PD subjects (Creese et al., 2019;

Taragano et al., 2009; Taragano et al., 2018), and our results suggest

that this might also be true for PD. However, we also found evidence

that the MoCA captures at least some variability in frontostriatal cir-

cuitry. Specifically, we found a unique influence of both the MBI-C

and the MoCA on caudate-dorsal medial prefrontal cortex connectiv-

ity, suggesting that both symptom domains are reflected depending

on the circuit interrogated.

Nevertheless, consistent with the interpretation that MBI-C bet-

ter reflects variability in executive functioning circuitry, we found
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explained variability in the connectivity between the right DLPFC and

right inferior parietal lobe was almost completely accounted for by

the unique influence of MBI-C. The right inferior parietal lobe has

complex, multidimensional functions, with a hypothesized role in both

maintaining attentive control on current task goals, as well as in

responding to salient new information in the environment (Singh-

Curry & Husain, 2009). In particular, the right inferior parietal lobe

allows for the flexible reconfiguration of behavior between these two

modes (Singh-Curry & Husain, 2009). Overall, our results suggest that

in PD subjects, the complex cognitive and behavioral control functions

of the right DLPFC-right inferior parietal circuit is captured to a

greater degree by MBI-C scores than by the MoCA. Indeed, the

explanatory power of the MBI-C was improved by the addition of the

MoCA in the model, despite the MoCA having no relationship with

the connectivity of this edge. In this case the MoCA acted as a partial

suppressor, removing irrelevant variance from the MBI-C. However,

this relationship is complex, as the overlap between the MoCA and

the UPDRS-III also contributed to a small portion of the explained var-

iance in this connection.

This same pattern was seen in the connectivity between the

right calcarine cortex and both the left precuneus/superior parietal

region and left occipital/inferior parietal region. Specifically, most of

the explained variability in connectivity was accounted for by the

unique effect of the MBI-C (with a suppression effect of the MoCA)

with a smaller portion of variance explained by the overlap of motor

and cognitive symptoms. Meanwhile, connectivity between the left

inferior occipital-temporal region and the right inferior occipital

region was accounted for primarily through the unique influence of

UPDRS-III, with some variability explained by the unique influence

of MBI-C and the overlap between UPDRS-III and MoCA. However,

a portion of the unique effect of the MBI-C can be attributed to the

partial suppression of irrelevant variance in the UPDRS-III, thereby

improving the latter's explanatory power. Overall, our results suggest

that posterior cortical connectivity reflects an interplay of neuropsy-

chiatric, motor and cognitive impairment, with some connections pri-

marily reflecting neuropsychiatric symptoms (right calcarine-left

precuneus/superior parietal, right calcarine-left occipital/inferior

parietal) some cognitive (caudate-left inferior occipital), and others

motor symptoms (left inferior occipital temporal- right occipital).

Along with these unique influences, this posterior cortical connectiv-

ity reflects, at least partly, a common substrate of cognitive and

motor impairment. Consistent with our findings, structural and func-

tional abnormalities in posterior cortical regions have previously

been shown to contribute to motor (Bohnen, Minoshima, Giordani,

Frey, & Kuhl, 1999; Lord, Archibald, Mosimann, Burn, &

Rochester, 2012; Tessitore et al., 2012), cognitive (Dubbelink

et al., 2014; Hanganu et al., 2014) and neuropsychiatric symptoms

(Pagonabarraga et al., 2014; Shine et al., 2015). It is possible these

pathways represent part of the network underlying complex phe-

nomena such as freezing of gait, which is associated with impairment

across symptom domains (Ehgoetz Martens et al., 2018), and likely

involves dysfunction in visual and cognitive networks (Tessitore

et al., 2012).

Lastly, variability in the caudate-precuneus connection reflected

the overlap between MBI-C and MoCA, suggesting a shared neural

substrate for global cognitive and neuropsychiatric symptoms.

Caudate-precuneus connectivity has previously been shown to be

related to cognitive impairment (Anderkova, Barton, &

Rektorova, 2017), while precuneus atrophy has been related to vari-

ous neuropsychiatric symptoms such as depression (Liang et al., 2016)

and apathy (Shin et al., 2017).

4.3 | Brain parcellation

The results from the 246 ROI atlas suggest that the choice of brain

parcellation has a substantial effect on the overall model and subse-

quent CA. First, consistent with the 78 ROI atlas, the caudate nucleus

was a hub in the network at the interface of the symptom domains.

With the improved resolution of the Brainnetome Atlas, it was found

that the right dorsal caudate nucleus was the primary subregion of the

caudate involved. Also consistent with the main analysis, it was found

that connectivity between the caudate (right dorsal) and the cingulate

gyrus (caudodorsal area 24) was completely explained by the MBI-C.

Additionally, the connectivity of the right dorsal caudate to the parie-

tal lobe appeared to reflect a common substrate of impairment in each

symptom domain, given that the overlap of the MBI-C, MoCA, and

UPDRS-III (C4) significantly contributed to explaining variability

between the right dorsal caudate and four ROIs clustered in the supe-

rior and inferior parietal region.

Inconsistent with the original analysis, we found that the UPDRS-

III played a larger role in explaining the variance in connectivity. For

example, the explained variability in connectivity between the left

postcentral gyrus–right dorsal insular gyrus and the right cingulate

gyrus (caudal area 23)–left insular gyrus was completely accounted

for by the unique influence of UPDRS-III. The unique influence of

UPDRS-III was also the only significant partition in several other

edges, including the right premotor thalamus–right precentral gyrus

area 4, and two other edges involving the insula. These results suggest

that the reason the UPDRS-III was not reflected to major degree in

the 78 ROI analysis was a function of the resolution of the brain

parcellation (rather than, for example, the normalization of motor

related connectivity by continued dopaminergic medication use (Bell

et al., 2014; Szewczyk- et al., 2014; Wu et al., 2009)). While we did

not observe as much symptom related connectivity in the occipital

cortices using the 246 ROI atlas, we did observe relationships

between various symptom domains and the connectivity of subre-

gions of the insula (associated primarily with the unique effect of

UPDRS-III and the overlap of UPDRS-III and MoCA) and the amygdala

(associated primarily with the unique effect of MBI-C), which have

previously been widely implicated across symptom domains in

Parkinson's disease (Christopher, Koshimori, Lang, Criaud, &

Strafella, 2014; Criaud et al., 2016).

Overall, it is clear that the choice of brain parcellation can influ-

ence the specific results of this type of analysis, though many consis-

tencies remain. The choice of what brain parcellation to use is an
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active issue in functional connectomics (Arslan et al., 2018; de Reus &

Van den Heuvel, 2013), and indeed there may not be a single best

choice (Arslan et al., 2018; Salehi et al., 2020). Different cortical

parcellations represent the brain at different levels of spatial resolu-

tion, and the results must be interpreted within this context. We

would recommend that authors employing CA of the functional

connectome report the results from several different cortical

parcellations and report on the consistencies (and inconsistencies).

4.4 | Limitations

Several limitations are present in the current investigation. For exam-

ple, we are unable to determine the influence of medication, as all our

subjects were treated and continued on dopaminergic therapy during

the study. However, by adjusting for the influence of LED on each

predictor variable, we can conclude the results we report are indepen-

dent from medication dose differences between subjects. We also

cannot determine which effects we observe are pathological vs which

are compensatory in nature. Likewise, 29.7% of subjects were taking

antidepressant/anti-anxiety medication (Supplementary Table 6).

These medications can result in confounding effects on functional

connectivity, though these effects are variable (Gudayol-Ferré, Peró-

Cebollero, González-Garrido, & Guàrdia-Olmos, 2015) and may have

complex relationships with disease severity in PD (Borchert

et al., 2019).

Related to the overall model specification, the symptom domains

have been represented by general clinical scores, for which many of

the complexities and subtleties of the actual symptomatology are mis-

sed. This is necessitated by the fact that the complexity of the analysis

increases substantially with increasing predictor variables. For every

predictor variable (x) added to the overall model, the number of com-

monalities is equal to 2x – 1. Therefore, to facilitate the interpretation

and computation of commonalities, we limited the overall regression

model to three predictor variables. It is also important to acknowledge

that our population consisted of a heterogenous group of PD subjects,

and thus the results represent an average effect across motor, cogni-

tive, and neuropsychiatric subtypes. More insight into subtype specific

connectivity profiles could be gained by refining the patient popula-

tion. Finally, commonalities are specific to the specified model, and

the addition or deletion of predictors may change the uniqueness

attributed to some of the variables.

5 | CONCLUSION

In conclusion, this manuscript represents the first application of CA to

the functional connectome. We demonstrate that this method can

determine the amount of variance in the connectome that is unique

and shared amongst motor, neuropsychiatric, and cognitive symp-

toms, thereby improving our ability to interpret the data while gaining

novel insight into the pathophysiology of PD. Amongst these results,

several key features emerge. Specifically, consistent with previous

literature, we find evidence that the caudate nucleus is a major hub in

the network underlying the interface of these symptom domains. We

show that in PD, caudate-dACC, caudate-right DLPFC, and right

DLPFC-right inferior parietal connectivity is driven primarily by neuro-

psychiatric symptoms, measured by the MBI-C. This has potentially

important clinical implications, suggesting the MBI-C might be a more

sensitive screening tool for detecting early pathological connectivity

changes in these executive functioning circuits as compared to the

MoCA. We also show that posterior cortical connectivity represents a

complex interplay of neuropsychiatric, cognitive, and motor impair-

ment. The commonality analysis provides a detailed interrogation of

this circuitry, allowing for insight into the unique and common repre-

sentation of symptom domains. We show that while the results can

be influenced by the resolution of the brain parcellation, many consis-

tencies remain. Further work with refined patient subgroups could

complement and enhance these findings. Finally, this analytical

method could be adapted to other patient groups with correlated

symptom domains.
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