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ABSTRACT
Purpose Glioblastoma (GBM) patients suffer from a 
dismal prognosis, with standard of care therapy inevitably 
leading to therapy- resistant recurrent tumors. The 
presence of cancer stem cells (CSCs) drives the extensive 
heterogeneity seen in GBM, prompting the need for novel 
therapies specifically targeting this subset of tumor- driving 
cells. Here, we identify CD70 as a potential therapeutic 
target for recurrent GBM CSCs.
Experimental design In the current study, we identified 
the relevance and functional influence of CD70 on 
primary and recurrent GBM cells, and further define 
its function using established stem cell assays. We 
use CD70 knockdown studies, subsequent RNAseq 
pathway analysis, and in vivo xenotransplantation to 
validate CD70’s role in GBM. Next, we developed and 
tested an anti- CD70 chimeric antigen receptor (CAR)- T 
therapy, which we validated in vitro and in vivo using our 
established preclinical model of human GBM. Lastly, we 
explored the importance of CD70 in the tumor immune 
microenvironment (TIME) by assessing the presence of its 
receptor, CD27, in immune infiltrates derived from freshly 
resected GBM tumor samples.
Results CD70 expression is elevated in recurrent GBM 
and CD70 knockdown reduces tumorigenicity in vitro 
and in vivo. CD70 CAR- T therapy significantly improves 
prognosis in vivo. We also found CD27 to be present 
on the cell surface of multiple relevant GBM TIME cell 
populations, notably putative M1 macrophages and CD4 
T cells.
Conclusion CD70 plays a key role in recurrent GBM cell 
aggressiveness and maintenance. Immunotherapeutic 
targeting of CD70 significantly improves survival in 
animal models and the CD70/CD27 axis may be a viable 
polytherapeutic avenue to co- target both GBM and its 
TIME.

INTRODUCTION
Glioblastoma (GBM) is the most common 
malignant brain tumor in adults accounting 
for approximately 14.6% of all brain 

tumors.1 Despite an aggressive standard 
of care (SoC) including maximal surgical 
resection and chemoradiotherapy, GBM 
patients have a median survival time of 
less than 15 months, and a 5- year survival 
rate of less than 6.8%.2–4 GBM often recurs 
7–9 months after resection of the primary 
tumor, at which point the tumor is often 
non- resectable, and poorly responsive to 
chemoherapy and/or radiotherapy, leaving 
patients with therapeutic options limited to 
clinical trial enrollment.5

In the past three decades, survival rates 
across several cancers have improved signifi-
cantly, due in part to major advances in tech-
nology allowing for early detection, as well as 
significant leaps in targeted and novel ther-
apeutic strategies.6 However, despite these 
advances, little to no improvement has been 
made in prognosis for GBM patients, who 
continue to suffer from dismal outcomes.

Therapeutic failure, in part, is due to 
extensive intratumoral heterogeneity at the 
cellular, genetic, and functional levels.7–9 
This heterogeneity may be explained by a 
distinct subset of cells coined cancer stem 
cells (CSCs),8 10 11 which possess stem cell- like 
traits such as self- renewal, therapy evasion 
and multilineage differentiation.12–14 It is 
believed that this subpopulation of CSCs, 
after undergoing selective pressures from 
primary GBM (pGBM) SoC therapy, become 
chemotherapy and radiotherapy resistant, 
and seed formation of the therapy- resistant 
recurrent tumors.15 16 Expression of GBM 
CSC markers such as CD133, CD15, and 
CD44 are generally associated with worse clin-
ical outcome.17 Thus, novel therapeutic inter-
ventions to target not only the tumor bulk, 
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but the treatment resistant CSC population that seeds 
recurrence is necessary.

Immunotherapy holds great promise in cancer treat-
ment, and recent studies in gliomas provide encour-
aging results.18–20 Among various immunotherapeutic 
approaches are adoptive T cell therapies, including 
chimeric antigen receptor (CAR)- T therapy. CAR- Ts are 
T- cells expressing a recombinant cell- surface receptor that 
directs these cells to specific tumor associated antigens 
(TAAs). On binding to the TAA, T- cells undergo major 
histocompatibility- independent activation and induce 
apoptosis of the target cell.21 22 However, to develop safe 
and effective CAR- T cells, novel tumor- specific antigens 
with a sufficient therapeutic window are required.

Genomic and proteomic data from a multiomic target 
development pipeline revealed CD70 as a suitable thera-
peutic target in recurrent GBM (rGBM). Our data show 
that CD70 is more highly expressed in rGBM samples 
compared with pGBM samples. Moreover, CD70 is absent 
on normal human astrocytes and neural stem cells, as is 
supported by the literature,23 thereby presenting a novel 
opportunity to target rGBM. CD70 is a transmembrane 
glycoprotein and a member of the tumor necrosis factor 
(TNF) superfamily, and is the only known ligand for 
CD27. While CD70 is transiently expressed on activated 
T- B- cells, as well as mature dendritic cells, it is minimally 
expressed in most normal tissues.24 25 Similarly, CD27 is 
primarily only expressed on specific subsets of T- cells 
B- cells, and NK cells.26–28 The CD70/CD27 signaling axis 
leads to differentiation, proliferation, and T- and B- cell 
survival and proliferation.29–31 Prolonged expression of 
CD70 has been shown to elicit lethal immunosuppression 
in mice,32 and result in exhaustion of effector memory 
T- cells in B- cell non- Hodgkin’s lymphoma.33

CD70 displays aberrant constitutive expression in 
a variety of cancers, include renal cell carcinoma, 
leukemia, non- small cell lung cancer, melanoma, GBM, 
and others.24 34–39 In 2005, researchers showed that in 
B- cell lymphoma, CD70 and CD27 are mutually overex-
pressed, resulting in increased proliferation and survival 
of tumor cells via amplified signaling through the CD70/
CD27 axis.40 In the context of GBM, CD70 has been 
shown to promote tumor progression and invasion.41 
While in healthy individuals CD70 plays a role in elic-
iting an immune response, its role in the tumor micro-
environment is far more multi- faceted. Within the GBM 
microenvironment, CD70 mediates immune escape,42 
and its overexpression leads to recruitment and activa-
tion of immunosuppressive T regulatory cells (Tregs)43 
and tumor associated macrophages (TAMs).41 Together, 
these studies suggest that CD70 plays a major role in the 
recruitment and maintenance of the GBM immunosup-
pressive microenvironment, while promoting protumor-
igenic processes.

The soluble form of CD27 (sCD27) is detected at high 
levels in the blood of cancer patients.44 45 Currently, 
there are multiple therapeutic strategies targeting CD70- 
expressing malignancies,46–48 however, the prevalence 

of the CD70/CD27 interaction provides a rationale for 
synergistic therapeutic opportunities targeting both 
tumor cells and the immune microenvironment.

To our knowledge, this is the first time CD70 has been 
identified as an immunotherapeutic target on CSCs from 
patient- derived GBM samples. In the presented work, we 
conduct a systematic study evaluating the efficacy of CD70 
CAR- T cells in using our established patient- derived 
GBM mouse model, illustrating the potential of a CD70- 
directed CAR- T therapy to offer hope to GBM patients 
suffering from a dismal prognosis.

MATERIAL AND METHODS
Dissociation and culture of pGBM tissue
Human GBM samples (online supplemental table S1) 
were obtained from consenting patients, as approved by 
the Hamilton Health Sciences/McMaster Health Sciences 
Research Ethics Board. Brain tumor samples were dissoci-
ated in phosphate buffered saline (PBS) (ThermoFisher, 
Cat#10010049) containing 0.2 Wunsch unit/mL Liberase 
Blendzyme 3 (Millipore Sigma, Cat#5401119001), and 
incubated in a shaker at 37°C for 15 min. The dissoci-
ated tissue was filtered through a 70 µm cell strainer 
(Falcon, Cat#08- 771- 2) and collected by centrifugation 
(475 g, 3 min). Red blood cells were lysed using ammo-
nium chloride solution (STEMCELL Technologies, 
Cat#07850). GBM cells were resuspended in Neurocult 
complete (NCC) media, a chemically defined serum- free 
neural stem cell medium (STEMCELL Technologies, 
Cat#05751), supplemented with human recombinant 
epidermal growth factor (20 ng/mL: STEMCELL Tech-
nologies, Cat#78006), basic fibroblast growth factor 
(20 ng/mL; STEMCELL Technologies Cat#78006), 
heparin (2 mg/mL 0.2% Heparin Sodium Salt in PBS; 
STEMCELL technologies, Cat#07980), antibiotic- 
antimycotic (1X; Wisent, Cat# 450- 115- EL), and plated on 
ultra- low attachment plates (Corning, Cat#431110) and 
cultured as neurospheres. GBM8 and GBM4 was a kind 
gift from Dr. Hiroaki Wakimoto (Massachusetts General 
Hospital, Boston, MA, USA), RN1, S2b2 and WK1 were 
gifts from Dr Andrew Boyd (QIMR Berghofer Medical 
Research Institute, Australia).

Propagation of brain tumor stem cells
Neurospheres derived from minimally cultured 
(<20 passages) human GBM samples were plated on 
polyornithine- laminin coated plates for adherent growth. 
Adherent cells were replated in low- binding plates and 
cultured as tumorspheres, which were maintained as 
spheres on serial passaging in vitro. As shown before, 
compared with commercially available GBM cell lines, 
patient derived 3D cultures represent the variety of 
heterogeneous clones present within patient samples.49 
These models recapitulate the key GBM morphological, 
architectural and expression features that are present in 
pGBM. These cells retained their self- renewal potential 
and were capable of in vivo tumor formation.
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Glycocapture proteomics
Briefly, cells were lysed in PBS:TFE (trifluoroethanol) 
(50:50) using pulse sonication and by incubating the 
lysates at 60°C for 2 hours (lysates were vortexed every 
30 min). Protein concentration was determined using the 
BCA assay (Pierce). Cysteines were reduced with DTT 
(5 mM final concentration) at 60°C for 30 min and alkyla-
tion was performed by adding iodoacetamide (25 mM final 
concentration) to the cooled lysates and subsequent incu-
bation at room temperature for 30 min. Trypsin was added 
at a 1:500 dilution and protein digestion was performed 
overnight at 37°C. Tryptic peptides were desalted on C18 
Macrospin columns (Nest Group), lyophilized and resus-
pended in coupling buffer (0.1M Sodium Acetate, 0.15M 
Sodium Chloride, pH 5.5). Glycan chains were oxidized 
using 10 mM NaIO4 for 30 min in the dark and peptides 
were again desalted. Lyophilized peptides were resolu-
bilized in coupling buffer and oxidized glycopeptides 
were captured on hydrazide magnetic beads (Chemicel, 
SiMAG Hydrazide) for 12 hours at room temperature. 
The coupling reaction was catalyzed by adding aniline 
(50 mM) and the reaction was allowed to continue for 
3 hours at room temperature.

Hydrazide beads containing the covalently coupled 
oxidized glycopeptides were thoroughly washed (2 × 
coupling buffer; 5×1.5M NaCl; 5 × HPLC H2O; 5 × meth-
anol; 5×80% acetonitrile; 3 × water; 3×100 mM NH4OH, 
pH 8.0) to remove non- specific binders. N- glycopeptides 
were eluted off the hydrazide beads using 5U PNGase F in 
100 mM ammonium bicarbonate at 37°C overnight. The 
deglycosylation reaction converts the asparagine residue, 
covalently linked to a glycan chain, to aspartic acid, the 
process carrying a signature mass shift of 0.98 Da.

Eluted (ie, deamidated) glycopeptides were recovered 
and the hydrazide beads were additionally washed 2× with 
80% acetonitrile solution. Glycopeptides were desalted 
using C18 stage tips, eluted using 80% acetonitrile, 0.1% 
F.A. and lyophilised. The purified glycopeptides were 
dissolved in 21 µL 3% acetonitrile, 0.1% F.A. Peptide 
concentration was determined using a NanoDrop 2000 
(Thermo) spectrophotometer.

RNA sequencing and Gene Set Enrichment Analysis/cytoscape 
analysis
Total RNA was extracted using the Norgen Total RNA 
isolation kit (Cat #48400) and quantified using a Nano-
Drop Spectrophotometer ND- 1000. The RNA was 
sequenced using single- end 50 bp reads on the Illumina 
HiSeq platform (Illumina, San Diego CA, USA). FASTQ 
files were filtered to remove reads with length less than 
36 bp using a bespoke Perl script. Filtered reads were then 
mapped to the human reference genome (GRCh38/
hg38) and Gencode transcript models (V.25) using the 
STAR short- read aligner (V.2.4.2a).50 Gene- level read 
counts were exported by STAR, and merged with the 
Ensembl gene annotations into a count matrix in R. The 
count data matrix was then filtered to remove genes whose 
expression did not exceed a ‘counts per million’ (cpm) 

threshold of 0.5 in at least two samples. Filtered gene 
count data was depth- normalized using the calcNorm-
Factors() function from edgeR (V.3.30.3),51 prepared for 
linear modeling using the voom() function from limma 
(V.3.44.3),52 and the main differential expression effect 
(shCD70) between cell lines was determined using the 
limma functions lmFit() and eBayes(). Individual cell 
line comparisons were subsequently performed using the 
exactTest() function from edgeR.

Differential gene expression profiles were generated by 
DESeq2 using the Galaxy online suite () and as imput of 
the Gene Set Enrichment Analysis (GSEA). Gene sets were 
randomized at 2000 permutations per analysis against 
Oncogenic (C6), Curated (C2) and Hallmark MSigDB 
collections of gene sets (https://www.gsea-msigdb.org/ 
gsea/msigdb/index.jsp).

Secondary sphere formation assay
Tumorspheres were dissociated using 5–10 µL Liberase 
Blendzyme3 (0.2 Wunsch unit/mL) in 1 mL PBS for 5 min 
at 37°C. Based on each cell line’s growth kinetics, cells 
were plated at 200–1000 cells per well in 200 µL of NCC 
media in a 96- well plate. Cultures were left undisturbed 
at 37°C, 5% CO2. After 4 days, the number of secondary 
spheres formed were counted.

Limiting dilution analysis
GBM cells (CD70+/CD70- or Control/CD70 Knockout 
cells) were plated at varying densities (1, 3, 5, 10, 15, 25, 
50, 75, 100, 125, 150, 200 cells/well) were flow- sorted 
onto a low- binding 96- well plate. Cells were cultured in 
200 µL of media and incubated for 4 days at 37°C and 5% 
CO2. Following incubation, spheres formed were counted 
by microscopy. For each sample, the frequency of sphere- 
forming cells in each cell line was determined using the 
elda() function from statmod (V.1.4.36). A single- hit 
model with a log- log binomial regression was applied to 
determine CIs for sphere- forming cell frequency. A χ2 
likelihood ratio test statistic was applied to signify differ-
ence between samples.

Cell proliferation assay
Single cells were plated in a 96- well plate at a density of 
200–1000 cells/200 µL (based on each cell line’s growth 
kinetics) per well in quadruplicate and incubated for 
5 days. 20 µL of Presto Blue (ThermoFisher, Cat#A13262), 
a fluorescent cell metabolism indicator, was added to 
each well approximately 4 hours prior to the readout 
time point. Fluorescence was measured using a FLUO-
star Omega Fluorescence 556 Microplate reader (BMG 
LABTECH) at excitation and emission wavelengths of 
535 nm and 600 nm, respectively. Readings were analyzed 
using Omega analysis software.

Receptor internalization and antibody drug conjugate assay
For detection of internalization, 200,000 cells were being 
used for each condition, where both were incubated with 
antibody 30 min on ice, rinsed twice and left toincubate 
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for 2 hours either at 37°C or at 4°C, before being analyzed 
under flow cytometry.

GBM CSCs expressing CD70 on their cell surface were 
seeded and incubated for 30 min with different concen-
trations of he- Lm- Fab’2 anti- CD70, followed by addition 
of 13 nM of 2ºADC α-HFab- NC- MMAF (conjugated with 
Monomethyl auristatin F) (Moradec, Cat# AH- 121- AF) 
and proliferation was measured after 5 days (n=3 for 
BT241s and n=2 for HEK293s). The manufacturer’s 
protocol was followed directly, with the exception of 
using twice the initial amount of recommended antibody 
(40 nM).

In vivo intracranial injections and H&E/immunostaining of 
xenograft tumors
Animal studies were performed according to guidelines 
under Animal Use Protocols of McMaster University 
Central Animal Facility. Intracranial injections in 6–8 week 
NOD/SCID gamma (NSG) mice were performed as previ-
ously described53 using either BT241, GBM8 or GBM4 
cells (1 00 000 cells/mouse). Briefly, a burr hole is drilled 
at the point located 2 mm behind the coronal suture, and 
3 mm to the right of the sagittal suture and GBM cells 
suspended in 10 µL PBS are intracranially injected with a 
Hamilton syringe (Hamilton, Cat#7635- 01) into the right 
frontal lobes of 6–8 weeks NSG mice. For CAR- T treat-
ment, ConCAR- T or CD70CAR- T cells were injected intra-
tumorally once a week for 2 weeks (for BT241, 1M first 
week then 0.5M; for GBM8 0.75M first week then 1M for 
GBM8). For tumor volume evaluation, animals were sacri-
ficed when control mice reached endpoint. When mice 
reached endpoint, they were perfused with 10% formalin 
and collected brains were sliced at 2 mm thickness using 
a brain- slicing matrix for paraffin embedding and H&E 
staining. Images were captured using an Aperio Slide 
Scanner (Leica Biosystems) and analyzed using ImageS-
cope v11.1.2.760 software (Aperio). For survival studies, 
all the mice were kept until they reached endpoint and 
number of days of survival were noted for Kaplan- Meier 
analysis. CD3 stained slides were scanned and captured 
using an Aperio Slide Scanner and analyzed using Imag-
eScope V.11.1.2.760 software (Aperio). Tumor areas were 
generated using Aperio Membrane Algorithm.

Generation of knockdown/knockout Lentivirus
Guide RNAs (gRNAs) targeting AAVS1 (5’- GGGG-
CCACTAGGGACAGGAT- 3’) and CD70 (A: 
5’-  GCTGAGCCTGTGCGAAGCGC- 3’; B: 5’- ATGGGAC-
CAAAGCAGCCCGC- 3’ were obtained from TKOv354 
and cloned into a single- gRNA lentiCRISPRv2 construct 
(Addgene 52961). Sequences were verified using Sanger 
sequencing. Lentiviral vectors shCD70- 1 and shCD70- 2, 
expressing short hairpin RNA (shRNAs) targeting 
human CD70 (5’  CCAT CGTG ATGG CATC TACAT3’ 
and 5’ TGGC ATCT ACAT GGTA CACAT3’, respectively), 
and the control vector, shGFP (5’ ACAA CAGC CACA 
ACGT CTATA 3’), were gifts from Dr. Jason Moffat. Each 
construct was packaged independently into lentivirus 

using second- generation packaging constructs. Briefly, 
HEK293T cells were seeded into T75 cm2 flasks at a 
density of 10 million cells per flask and cultured in high- 
glucose DMEM with 2 mM L- glutamine and 1 mM sodium 
pyruvate supplemented with 1% non- essential amino acid 
solution and 10% fetal bovine serum. The following day, 
the HEK293T media was replaced with viral harvesting 
media (HEK culture media supplemented with 10 mM 
HEPES and 1 mM sodium butyrate). Next, 15 µg of 
transfer plasmid (lentiCRISPRv2, AAVS1, crCD70- A or 
crCD70- B), 7.2 µg of psPAX2 (Addgene), and 4.8 µg of 
pMD2.G (Addgene) were mixed with polyethylenimin at 
a 1:3 ratio (m:v) in 1.3 mL of Opti- MEM. After complexing 
for 15 min at room temperature, the PEI/DNA mixture 
was transferred dropwise into the HEK293T- containing 
flasks. Viral supernatants were collected 24 and 48 hours 
after transfection and then concentrated using ultracen-
trifugation (41 832 g for 2 hours at 4°C) before being 
aliquoted and stored at −80°C.

Generation of CAR lentivirus
Human anti- CD70 (he_L and he_Lm) scFv sequences 
were synthesized with a 5’ leader sequence and 3’ Myc 
tag by Genescript. The scFv was cloned into the lentiviral 
vector pCCL ΔNGFR (kindly provided by Dr. Bramson, 
McMaster University, Hamilton, ON, Canada) downstream 
of the human EF1α promoter leaving ΔNGFR intact down-
stream of the minimal cytomegalovirus promoter. Empty 
pCCL ΔNGFR was used as a control vector. Replication- 
incompetent lentiviruses were produced by cotransfec-
tion of the CAR vectors and packaging vectors pMD2G 
and psPAX2 in HEK293FT cells using Lipofectamine 3000 
(ThermoFisher, Cat#L3000075) as recommended by the 
manufacturer. Viral supernatants were harvested 24 and 
48 hours after transfection and concentrated by ultracen-
trifugation at 41 832 g for 2 hours at 4°C. The viral pellet 
was resuspended in 1.0 mL of T cell media, aliquoted and 
stored at −80°C.

Generation of CAR-T cells
Peripheral blood mononuclear cells (PBMCs) from 
consenting healthy blood donors were obtained using 
SepMate (STEMCELL technologies, Cat#85450). This 
research was approved by the McMaster Health Sciences 
Research Ethics Board. 1×105 cells in XSFM media (Irvine 
Scientific, Cat#91141) were activated with anti- CD3/CD28 
beads at a 1:1 ratio (Dynabeads, GIBCO, Cat#113.31D) 
in a 96- well round bottom plate with 100 U/mL rhIL- 2 
(Peprotech, Cat#200- 02). Twenty- four hours after activa-
tion, T cells were transduced with lentivirus at an MOI~1. 
CAR- T cell cultures were expanded into fresh media 
(XSFM media supplemented with 100 U/mL rhIL- 2) as 
required for a period of 6–8 days prior to experimentation.

Evaluation of cytokine release
NGFR+ sorted CAR- T cells (CD70CAR or ConCAR) 
were co- incubated with GBM cells at a 1:1 ratio for 24 
hours. Supernatants were collected in duplicate for each 
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condition and stored at 80°C for analysis of cytokines. 
Human TNF-α DuoSet ELISA kit (R & D Systems, Cat #: 
DY210- 05) and IFN-γ DuoSet ELISA kit (R & D Systems, 
Cat #: DY285B- 05) were used for quantification of the 
two cytokines by ELISA, according to manufacturer’s 
recommendation.

Flow cytometric analysis and sorting
GBM cells and T cells in single cell suspensions were resus-
pended in PBS+2 mM EDTA. GBM cells were stained with 
he_L or he_Lm IgG (0.064–1000 nM) or by IgG control 
AffiniPure Goat Anti- Human IgG, F(ab’)2 fragment 
specific, Jackson ImmunoResearch, Cat#109- 005- 006) or 
APC- conjugated anti- CD70 antibody (Miltenyi Biotech, 
REA 292) and incubated for 30 min on ice. CAR- T cells 
were stained with fluorescent tagged anti- CD3 (BD 
Biosciences, Cat#557851), anti- NGFR (Miltenyi Biotech, 
Cat#130- 112- 790) and anti- c- Myc (Miltenyi Biotech, 
Cat#130- 116- 653). Samples were run on a MoFlo XDP 
Cell Sorter (Beckman Coulter). Dead cells were excluded 
using the viability dye 7AAD (1:10; Beckman Coulter, 
A07704). Compensation was performed using mouse IgG 
CompBeads (BD Biosciences, Cat#552843).

Cytotoxicity assays
Luciferase- expressing GBM cells at a concentration of 
30 000 cells/well were plated in 96- well plates in tripli-
cates. In order to establish the BLI baseline reading and to 
ensure equal distribution of target cells, D- firefly luciferin 
potassium salt (15 mg/mL) was added to the wells and 
measured with a luminometer (Omega). Subsequently, 
effector cells were added at 4:1, 3:1, 2:1, 1:1, and 0:1 
effector- to- target (E:T) ratios and incubated at 37°C for 
4–8 hours. BLI was then measured for 10 seconds with a 
luminometer as relative luminescence units (RLU). Cells 
were treated with 1% Nonidet P- 40 (NP40, Thermofisher, 
Cat#98379) to measure maximal lysis. Target cells incu-
bated without effector cells were used to measure spon-
taneous death RLU. The readings from triplicates 
were averaged and percent lysis was calculated with the 
following equation:

Isolation and evaluation of immune cells from brain tumor 
samples
EasySep human CD45 Depletion kit II (Stem Cell Tech-
nology, Cat#: 17898) was used to extract immune cells 
from freshly dissected patient tumors, according to the 
manufacturer’s protocol but with slight modifications. A 
single- cell suspension from the tumor is first prepared 
and resuspended at 108 cells/mL in EasySep Buffer (Cat#: 
20144). A 12.5 µL of EasySep Human CD45 Depletion 
Cocktail II (Cat#: 17 898C) is then added to the suspen-
sion and incubated at room temperature for 5 min. 20 µL 
of EasySep Dextran RapidSpheres (Cat #: 50101) is then 
added to the suspension and incubated at room tempera-
ture for 3 min. The final volume of the mixture is then 
brought up to 2.5 mL using EasySep Buffer, and placed 
in an EasySep Magnet (Cat #: 18000) for 5 min to allow 

for separation of bead- bound CD45+ cells. The solution 
containing CD45- cells is then poured off, and the CD45+ 
cells remaining in the tube are harvested for future exper-
imentation. For optimal CD45+ cell recovery, the separa-
tion should be performed twice.

To identify individual tumor immune microenviron-
ment (TIME) immune cell populations, CD45+ cells were 
thawed and used immediately to run a panel of antibodies 
in order to identify individual immune cell populations. 
Antibodies used are as follows and were used according to 
manufacturer’s protocol: PE- Cy7 Mouse Anti- Human CD3 
(Cat 563423; BD Pharmingen), PE Mouse Anti- Human 
CD4 (Cat555347; BD Pharmingen), APC Mouse Anti- 
Human CD8 (Cat555369; BD Pharmingen), PE- CF594 
Mouse Anti- Human CD68 (Cat564944; BD Horizon), 
APC- H7 Mouse Anti- Human HLA- DR (Cat561358; 
BD Pharmingen), BV421 Mouse Anti- Human CD27 
(Cat562514; BD Horizon).

CAR-T fratricide
Jurkat human T lymphocytes (Cedarlane Cat#: TIB- 
152) were expanded and grown in RPMI 1640 (Gibco 
Cat#:11 875- 093) with 10% FBS (Multicell Cat#:08105), 
1% Penicillin- Streptomycin (Gibco Cat#:15 140- 122) and 
10 mM HEPES (Gibco Cat#: 15 630- 080). Jurkat cells were 
then transduced with either an shGFP or shCD70 lenti-
viral construct and selected for by puromycin selection. 
shGFP Jurkat cells were sorted by flow cytometry to isolate 
a CD70hi shGFP population, and untransduced Jurkat 
cells were sorted to isolate a CD70hi population. shGFP 
and shCD70 Jurkat cells were then transduced with either 
Control CAR or CD70 CAR virus and allowed to expand. 
At 4 and 8 days after transduction, each population 
(shGFP ConCAR; shGFP CD70CAR; shCD70 ConCAR; 
shCD70 CD70CAR) was assessed by flow cytometry for the 
following markers: NGFR, CD70, CD69, viability.

SciRNA sequencing analyses
Data source
Single- cell RNAseq (scRNAseq) data from Neftel et al was 
obtained from Gene Expression Omnibus (GEO; acces-
sion number GSE131928)55; Richards et al from the Broad 
Institute Single- Cell Portal56; Ochocka et al (2021) from 
GEO (accession number GSE136001)57, Cao et al from 
GEO (accession number GSE156793)58; and Zeisel et al 
from http://mousebrain.org/downloads.html.59

Data preprocessing
ScRNAseq data sets were normalized, scaled, 
dimensionally- reduced and visualized on a UMAP using 
the Seurat (V.4.0.4) workflow. In brief, count matrices 
were loaded into a Seurat object and normalized using 
NormalizeData(…,  normalization. method = ‘LogNor-
malize’,  scale. factor= 10 000). Variable features were iden-
tified using FindVariableFeatures (…,  selection. method 
= ‘mvp’,  mean. cutoff= c( 0. 1, 8),  dispersion. cutoff= c( 
1, Inf)) and then data were scaled using ScaleData(). 
Principal component analysis and UMAP embedding 

http://mousebrain.org/downloads.html
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was performed using RunPCA() and RunUMAP(…, 
dims=1:30), respectively. Metadata from original publica-
tions were used to annotate cell types.

GBM subtype classification
To assign GBM subtypes to scRNAseq data from Neftel 
et aland Richards et al,55 56 the AddModuleScore() func-
tion in Seurat was used to compute gene signature scores 
for each gene panel, and for each cell, the signature with 
the highest score was taken as the subtype. The Neftel 
subtypes included MES1 (mesenchymal type 1), MES2 
(mesenchymal type 2), NPC1 (neural projenitor type 
1), NPC2 (neural progenitor type 2), OPC (oligodendro-
cyte progenitor cells), and AC (astrocyte- like), whereas 
the Richards subtypes included Developmental and Injury 
Response.

Expression analysis
To visualize the expression of CD70 and CD27 in the public 
scRNAseq datasets, cell- level expression was projected 
onto a UMAP using the FeaturePlot() function in Seurat. 
To evaluate CD70 and CD27 expression stratified by 
cell type, Neftel subtype or Richards subtype, the mean 
normalized expression and expression fraction for each 
subgroup was computed and visualized using barplots 
and dotplots overlaid on a common axis. Subgroups were 
arranged based on hierarchical clustering performed on 
normalized expression and expression fraction values.

Statistical analysis
Biological replicates from at least three patient samples 
were compiled for each experiment, unless otherwise 
specified in figure legends. Respective data represent 
mean±SD, n values are listed in figure legends. Student’s 
t test analyses were performed using GraphPad Prism 
V.5, p>0.05=n.s., p<0.05=*, p<0.01=**, p<0.001=***, 
p<0.0001=****.

RESULTS
CD70 expression is a unique marker of rGBM
Between the underrepresentation of rGBM samples 
in biobanks, due to the relatively low reoperation rate 
at GBM recurrence, and the variable presence of CSCs 
within bulk tumor samples, rGBM targets are often over-
looked.60 In this study, we leveraged an RNA sequencing 
platform using four in- house, low- passage CSC- enriched 
cell lines, derived from pGBM or rGBM patient samples 
in a way previously described by our lab.61

Using sequencing data from unmatched bulk tumor 
samples from the Cancer Genome Atlas (TCGA) GBM 
repository62 we identified genes over- represented in CSC- 
enriched populations. We uncovered upregulation of 
TNF superfamily member CD70, which was also found 
to be highly expressed in patient- derived pGBM and 
rGBM CSCs that were propagated in stem- cell enriching 
conditions (figure 1A, online supplemental figure 1A). 
In light of the growing body of evidence around sexual 

dimorphism in GBM,63 64 analysis of our patient- derived 
GBM samples yielded no significant differences in CD70 
expression between male and female derived samples 
(data not shown). To further investigate the relevance of 
CD70 as a rGBM marker, we used six primary/recurrent 
pairs from patient- matched GBM samples present in the 
TCGA database to evaluate CD70 expression. In silico 
analysis of CD70 mRNA expression revealed increased 
levels in rGBM samples compared with their matched 
primaries for the majority of the pairs available, however 
this trend did not reach significance (figure 1B). Addi-
tionally, these same matched pairs exhibited a Classical 
(TCGA- CL) to Mesenchymal (TCGA- MES) subtype 
transition from primary to recurrence, indicating a shift 
towards a more aggressive and therapy- resistant subtype 
with poorer prognosis.65 66 Further in silico analysis using 
the Chinese Glioma Genome Atlas,67 TCGA and Ivy 
Glioma Atlas Project68 was performed to assess expres-
sion, correlation with prognosis, regional distribution 
within the tumor, and any age/sex differences in expres-
sion that may be present (online supplemental figure 2). 
Given that mRNA expression does not necessarily trans-
late directly to cell- surface protein expression, we inter-
rogated cell- surface CD70 protein levels on two in- house 
matched primary/recurrent patient derived CSC lines. 
We observed an increase in CD70 surface expression 
in both pairs by flow analysis (figure 1C) and a switch 
from the CL to MES subtype as seen in our bulk RNA 
sequencing samples (BT594/BT972, data not shown). We 
next screened a variety of unmatched primary and rGBMs, 
as well as normal human cells lines (neural stem cells 
and astrocytes) for CD70 expression. We demonstrate a 
clear trend towards increased CD70 expression in rGBM 
compared with pGBM in our CSC- enriched cell popula-
tions; though not statistically significant, bulk tumor data 
also demonstrates a trend toward increased CD70 expres-
sion in recurrent vs primary samples69 (figure 1D, online 
supplemental figure 1B). RGBMs displayed significantly 
higher CD70 expression than normal human cell lines 
(figure 1D). We identified a therapeutic window with 
normal human brain cells, which minimally express CD70 
on their cell surface, in accordance with the existing liter-
ature.20 27 Single- cell RNA sequencing of publicly available 
GBM and non- malignant datasets yielded no significant 
expression of CD70 in non- malignant cells, with some 
residual expression on lymphoid- lineage cells, likely to 
be T cells (online supplemental figure 8). Lastly, using 
our BT594/BT972 matched- pair, we performed N- Glyco-
capture Proteomics which ranked CD70 among the top 
upregulated cell surface markers in rGBM compared 
with pGBM (figure 1E). This data led us to further inqui-
ries about the functional role that CD70 plays in GBM 
progression and maintenance.

CD70 is a key player in GBM maintenance and tumor 
formation
Given the upregulation of CD70 in GBM, specifically in 
rGBM, we sought to explore the role that CD70 expression 
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Figure 1 CD70 expression is a relevant marker of rGBM. (A) Manhattan plot of the top upregulated RNAseq genes in the 
recurrent patient- derived GBM cancer stem cells (rGBM CSCs) BT241, compared with the publicly available the Cancer 
Genome Atlas database, identified CD70 (circled) as a target candidate upregulated in the CSC subpopulation, compared with 
tumor bulk. (B) Analysis of CD70 mRNA levels in the five TGCA primary/recurrent patient matched GBM pairs depicts an CD70 
increase in three pairs on recurrence, alongside a switch towards the Mesenchymal subtype (GBM subtype classification: C, 
classical; P, proneural; M, mesenchymal). (C) Among GBM CSCs from figure 1C, the two in- house matched p/rGBM CSCs 
pairs display an increase of CD70 cell surface expression on tumor recurrence. (D) Dot plot representation of CD70 cell surface 
expression in rGBM CSCs compared with primary (p-) GBM CSCs and normal brain cells (astrocytes, neural stem cells), 
assessed by flow cytometry (Singh lab brain tumor database). (E) Volcano plot of the top up- and down- regulated cell surface 
proteins of pair two from figure 1D, as assessed by glycocapture proteomics. CSC, cancer stem cell; GBM, glioblastoma; 
rGBM, recurrent GBM.
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plays in GBM maintenance and progression. We sorted 
pGBM and rGBM cells as CD70 positive or CD70 nega-
tive using FACS analysis and carried out a PrestoBlue cell 
viability assay. CD70 positive cells showed an increased 
signal compared with CD70 negative cells in the cell 
viability assay (PrestoBlue) that uses the reducing power 
of living cells to quantitatively measure the prolifera-
tion of cells (figure 2A, online supplemental figure 3A). 
Moreover, by limiting dilution analysis (LDA), CD70+ 
cells showed an increase in in vitro self- renewal capacity 
when compared with CD70negative cells in both GBM4 
(frequency of 1/14 cells compared with 1/70 cells) and 
BT241 (frequency of 1/37 cells compared with 1/71 
cells) (figure 2B). We aimed to determine the function 
of CD70 in tumorigenesis by shRNA mediated silencing. 
In order to exclude the possibility of off- target effects, we 
used two independent shRNA vectors and found both of 
them to be effective in reducing proliferation of GBM 
cells (online supplemental figure 3B). We moved forward 
using the shCD70- 1 construct, which gave us better knock-
down efficiency, for our further in vitro and in vivo studies.

We next aimed to assess the role of CD70 in sphere 
formation, a stem- like trait that is typical of CSCs and 
correlates with self- renewal capacity in vitro and tumor-
igenesis in vivo.53 70 In both CD70HIGH CSC cell lines, 
silencing of CD70 using shRNA knockdown vector led 
to a significant decrease in sphere formation capacity 
compared with controls (figure 2C,D). We further vali-
dated the functional role of CD70 in contributing to stem-
ness by performing LDA on rGBM cells that were either 
knocked out for CD70 and control cells that were trans-
duced with a construct targeting the safe harbor locus, 
AAVS1. We found that AAVS1- transduced control cells 
had significantly higher self- renewal capacity (frequency 
of 1/5 cells) compared with CD70 knockout cells using 
either construct A or construct B (frequency of 1/25 cells 
and 1/26 cells, respectively). These data demonstrate the 
importance of CD70 expression in rGBM cells’ capacity 
for de novo tumor formation (online supplemental figure 
3C).

Given the correlation of sphere formation with tumor-
igenesis in vivo, we investigated whether CD70 silencing 
limits GBM tumor formation in our patient- derived 
orthotopic xenograft animal model. We generated CD70 
knockdown (shCD70) and control lines (shGFP) of 
three GBM CSC lines that naturally express high levels 
of CD70 (figure 2C), and intracranially injected these 
into immunodeficient mice, as previously described.53 
We observed a significant decrease in the size of tumors 
formed by shCD70 cells compared with shGFP controls, 
as determined by H&E staining (figure 2E,F, online 
supplemental figure 3D) and MRI imaging (figure 2I). 
This was further reflected in a significant survival advan-
tage for mice engrafted with shCD70 cells compared with 
controls (figure 2G,H, online supplemental figure 3E). 
These findings demonstrate that CD70 plays a key role in 
rGBM proliferation, tumor formation and survival both 
in vitro and in vivo.

CD70 plays a crucial role in cellular programs implicated in 
tumorigenesis
Previous studies have emphasized the function of CD70 
in GBM as it contributes to T- cell apoptosis, and mediates 
tumor cell migration and invasion, a feature character-
istic of mesenchymal- like cells.41 71 72 To further investi-
gate the role of the CD70 signaling network in GBM, we 
investigated transcriptional changes and their predicted 
networks after CD70 silencing using RNA sequencing and 
subsequent GSEA. Using three GBM lines transduced with 
shCD70 or shGFP, wex observed strong downregulation of 
FOSL1, a gene recently discovered to play a pivotal role in 
stemness, migration, and epithelial- to- mesenchymal tran-
sition (EMT) (online supplemental figure 4A).73 74 Other 
slightly downregulated genes included CDH2 (N- Cad-
herin), PLAUR, and CXCR4; genes known to be associ-
ated with the Mesenchymal subtype in GBM and a worse 
overall prognosis.75–77 OLIG2, a transcription factor 
commonly associated with the proneural subtype and 
tumor recurrence,78 79 showed upregulation following 
CD70 knockdown, while expression of the proangiogenic 
factor vascular endothelial growth factor alpha (VEGFA) 
was depressed, indicating that CD70 may play a role in 
GBM angiogenesis, a characteristic previously docu-
mented in other pathologies, but not in cancer.80 81

GSEA was performed using Gene Ontology82 and 
MSigDB C2 and C6 gene sets,83 84 to gain a deeper 
understanding of the cellular programs associated with 
CD70 expression (online supplemental figure 4A). Top 
modulated pathways showed that silencing CD70 results 
in downregulation of EMT and hypoxia signatures, and 
upregulation of Interferon type I/interleukin- 1 proin-
flammatory signatures85 (online supplemental figure 
4A,B). Hypoxia and EMT pose major hurdles in GBM, 
as they promote migration of tumor cells further into 
the brain tissue, while proinflammatory signals are often 
depressed in GBM.86–88 While these data are limited, they 
do further implicate the role of CD70 in various processes 
linked to invasiveness, immunosuppression, and poor 
prognosis in GBM, as well as angiogenesis and stem- like 
characteristics of GBM CSCs.

Generation and characterization of CD70-directed CAR-T cells
Adoptive cell therapies have shown great promise in over-
coming therapy resistance and providing a more specific 
targeted therapy in multiple cancers, including in GBM.89 
However, despite significant global efforts to develop 
these therapies, they have only been approved for B cell 
malignancies thus far, and have yet to show efficacy in 
solid tumors such as GBM.90 It is believed that this lack of 
progress is in part due to the immunosuppressive micro-
environment of solid tumors, particularly GBM, as well as 
antigen escape.91

Given our data implicating CD70 as a key factor in 
GBM functionality, we tested two distinct in- house frag-
ments antigen- binding (Fabs) for their ability to bind 
cell- surface CD70, and compared these to commercially 
available CD70 antibody (figure 3A). The Fab he- Lm was 
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Figure 2 CD70 is a dedicated player in GBM maintenance and tumor formation. (A) GBM CSCs were sorted into positive and 
negative populations and proliferation was assessed by PrestoBlue assay (B) Limiting dilution analyses of CD70 positive and 
negative cells in pGBM (GBM8) and rGBM (BT241). (C) Cell surface CD70 expression after shRNA knockdown in three CD70HIGH 
GBM lines, as assessed by flow cytometry. (D) Silencing of CD70 expression by shRNA (shCD70) knockdown and sphere 
formation ability was assessed compared with shGFP (control shRNA). (E–I) Immunocompromised mice (NSG, a minimum 
of six mice per condition) were intracranially injected with shGFP or shCD70 CSCs. (E, F) Tumor area of CD70- silenced 
CSCs compared with control knockdown CSCs was measured using formalin- fixed, H&E- stained mouse brain slices (right, 
representative image). (G, H) Kaplan- Meier survival curves comparing mice engrafted with shCD70 CSCs compared with shGFP 
CSCs. The two remaining BT241 shCD70 mice at the end of experiment showed an absence of tumor by H&E staining at 
experimental endpoint (data not shown). (I) MRI images representative of xenografts from shGFP and shCD70 transduced GBM 
CSC line BT241. Images on the right are control images of normal mouse brain. (*P<0.05; **p<0.01; ***p<0.001; ****p<0.0001). 
CSCs, cancer stem cells; GBM, glioblastoma; pGBM, primary GBM; NSG, NOD/SCID gamma; shRNA, short hairpin RNA.
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used to develop a non- covalently conjugated therapeutic 
antibody- drug conjugate (ADC) (figure 3B), which 
we postulated would be advantageous due to the rapid 
internalization of CD70 on ligand binding25 92 (online 

supplemental figure 5A). We incubated CD70HIGH 
GBM cells for 72 hours with our ADC, and observed a 
dramatic cytotoxic effect; an effect not seen in HEK293 
control cells, indicating that our ADC is both specific 

Figure 3 Generation and in vitro characterization of CD70- Specific CAR- T Cells. (A) Binding curve comparing CD70- specific 
Fabs to commercial standard antibody. (B) Anti- CD70 Fab’2 is specific against CD70, assessed by cytotoxicity assay under 
combination treatment with 2ºADC, against GBM cells expressing high (GBMCSC BT241) or no (HEK293) CD70. (C) Schematic 
representation of CAR structure. (D) Successful transduction of CAR- T vectors as observed by NGFR+ cells in ConCAR- T 
cells and NGFR+Myc+ cells in CD70 CAR- T cells, displayed as a representative flow plot. (E) Testing of CAR- T cell activation; 
IFN-γ and TNF-α cytokine release during coculture of GBM CSC BT241 with CD70 CAR- T, compared with ConCAR- T cells, as 
analyzed by ELISA (n=3). (F) Cytotoxicity assay to assess CD70CAR killing capacity compared with ConCAR after coculturing 
for 24 hours, tested at various effector to target (E:T) ratios (n=3). (***p<0.001; ****p<0.0001). CAR, chimeric antigen receptor; 
CSCs, cancer stem cells; GBM, glioblastoma; MFI, mean fluorescence intensity.
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and cytotoxic, and is suitable for developing adoptive cell 
therapies. Thus, we cloned the scFv region of he- Lm into 
a second- generation CAR linked to a truncated c- Myc 
tag (figure 3C), and achieved moderate CAR cell- surface 
expression 9 days post- transduction in human T- cells 
(figure 3D). To determine the efficacy of these anti- 
CD70 CAR- T (CD70CAR- T) cells, we cocultured them 
with CD70HIGH GBM cells. CD70CAR- T cells cocultured 
with CD70HIGH GBM cells released significantly more 
IFN-γ and TNF-α into culture supernatants compared 
with a control CAR- T (ConCAR- T) (figure 3E, online 
supplemental figure 5B,C). Additionally, CD70CAR- Ts 
demonstrated significant cytotoxicity against numerous 
CD70HIGH GBM cells at E:T ratios as low as 1:1 (figure 4F, 
online supplemental figure 5D). Together, these data 
indicate that CD70CAR- T cells are capable of mounting 
a robust and specific immune response against CD70- 
expressing GBMs.

Lastly, we assessed the antitumor potential of our 
CD70CAR- T cells in orthotopically xenografted 
NODSCID mice, using CD70HIGH BT241 rGBM CSCs. 
After confirming tumor engraftment using the in vivo 
imaging system, we intracranially injected 1M CD70CAR- T 
or ConCAR- T cells weekly over 2 weeks. Mice treated with 
CD70CAR- T cells displayed significantly lower tumor 
burden, as observed by bioluminescence signal, and a 
significant decrease in tumor volume as shown by H&E 
staining, confirming that CD70CAR- T cell- treated mice 
experience far less tumor growth compared with controls 
(figure 4A,B). Unsurprisingly based on our previous data, 
CD70CAR- T cell- treated animals had a significant survival 
advantage compared with control mice (figure 4C). Of 
note is that fact that the majority of animals (five out of 
nine) did not display any tumor- related symptoms post- 
treatment, nor did H&E staining display any presence 
of tumor at the end of study (figure 4B, representative 
image on the right). To further validate our CD70CAR- T 
cell therapy, we reproduced this with another GBM cell 
line, and observed similar results, indicating that this 
approach is efficacious in multiple CD70HIGH cell lines 
(online supplemental figure 6A- C).

CD70 and its role in the GBM TIME
CD70 is the only known ligand for the receptor CD27, 
a TNF receptor superfamily member, and is known to 
trigger T cell apoptosis and induce exhaustion,93 as 
well as recruit TAMs to the GBM microenvironment, 
contributing to the immunosuppressive nature of GBM.41 
However, as far as its role in immune system function-
ality, no evidence has been found to date indicating it is 
essential.94 Thus, we elected to investigate the interaction 
between CD70- expressing GBM cells and CD27- expressing 
T cells, to see whether there would be any observed effect 
on T cell viability.95 Additionally, CD70 cleaved from the 
cell surface and present in the supernatant may act simi-
larly to cell- surface CD70.96 We co- cultured CD70HIGH 
BT241 cells with CD27+ T cells, and observed a decrease 
in CD27+ T cell populations, an effect that was not seen 

when coculturing with CD70 knockdown BT241 cells, 
indicating that CD70/CD27 interaction between T cells 
and GBM cells may initiate T cell signaling programs, 
adding to the immunosuppressive capacity of GBM, as 
previously observed97 (online supplemental figure 7A). 
We then cultured CD27+ T cells with supernatant from 
CD70HIGH GBM cells to observe whether soluble CD70 
cleaved into the supernatant could bind CD27+ T cells 
and initiate downstream apoptotic effects, however, we 
observed no decrease in CD27+ T cell populations (online 
supplemental figure 7A).

As seen in the literature,98 we observed increased expres-
sion of CD70 on activated T cells (figure 5A,B) and a subse-
quent decrease in CD70CAR- T cells count and viability, 
compared with ConCAR- T cells (data not shown). This 
insinuated that we could be observing fratricide between 
CAR- T cells, as seen previously with other targets.99 Thus, 
we elected to create a CD70 knockdown CD70CAR- T cell 
to overcome this problem. For this preliminary model we 
utilized Jurkat T cells due to their robustness compared 
with donor- derived T cells, and sorted them by flow 
cytometry to obtain a CD70HIGH Jurkat cell population. 
We also created an shCD70 knockdown Jurkat cell popu-
lation. Both CD70HIGH and shCD70 Jurkats were trans-
duced with CD70CAR construct or ConCAR construct, 
after which we examined any change in viability and pres-
ence of the activation marker CD69 (figure 5C). We were 
able to demonstrate that CD70HIGH CD70CAR Jurkat cells 
had decreased viability and increased expression of the 
activation marker CD69, compared with both ConCAR 
and shCD70 CD70CAR Jurkats. This indicates that 
silencing of CD70 may be a viable option for overcoming 
CD70CAR- T fratricide, improving viability of CD70CAR- T 
cells. However, as recent investigation noted the impact 
of CD70 deficiency on the function of CD8 T cells,100 the 
possibility of selectively expanding CD4+ CAR- T cells, 
already shown to be more effective against GBM,101 would 
be even more relevant.

According to the literature, cancer cells may use the 
CD70/CD27 interaction to their advantage to modulate 
both T cells and macrophages to create more immuno-
suppressive or immune- evasive environments.41 72 We 
performed single- cell RNA sequencing analysis on pre- 
existing publicly available datasets55–59 and highlight 
CD70 expression on human GBM CSCs compared with 
bulk GBM cells. Additionally, CD70 expression was partic-
ularly increased for CSCs of the Mesenchymal subtype, as 
well as on cells of the lymphoid- lineage, most likely T cells. 
We also observed that CD27 expression primarily appears 
to be immune- cell specific, particularly within lymphoid 
and microglial cells (figure 6, online supplemental figure 
8). These data support the potential for a CD70/CD27 
signaling axis within the tumor microenvironment.

Due to the absence of an immune system in our immu-
nodeficient mouse models, we elected to interrogate the 
GBM TIME using flow cytometry on CD45+ cells extracted 
from fresh patient- derived tumor samples.). From 
these data, we saw that CD27 had a similar expression 
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Figure 4 CD70 CAR- Ts are efficacious against recurrent GBM tumors in vivo. NSG mice (at least n=6 per group) were 
intracranially implanted with 100,000 human BT241 ffLuc GBM cells. Upon successful engraftment, mice were treated with 
1×106 CD70CAR- T or ConCAR- T cells, delivered intracranially once a week for 2 weeks. (A) CD70 CAR- T treated mice showed 
decreased tumor signal, as assessed by bioluminescence measurement (right, representative image of radiance measurement 
in the region of interest). A lower tumor burden was observed in the CD70 CAR- T group compared with the control group, 
as measured on (B) formalin- fixed, H&E- stained mouse brain slices (representative image on the right), and (C) an extended 
survival (Kaplan- Meier curve) (***p<0.001). CAR, chimeric antigen receptor; GBM, glioblastoma; NSG, NOD/SCID Gamma.
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Figure 5 Modeling of CD70s influence on GBM TIME. (A) CD70 expression kinetics on in- house, activated T cells and (B) 
levels of CD69 and cMyc displayed by CD70CAR or ConCAR- T cells 9 days post- transduction, evaluated by flow cytometry. 
(C) CD70- enriched or -silenced Jurkat cells were transduced with either ConCAR or CD70CAR. After 8 days, CD69 and CD70 
levels were assessed by flow cytometry. (D) TIME cells extracted from patient tumor samples were analyzed by flow cytometry, 
evaluating the pattern of expression of CD27 in non- lymphoid (CD45+CD3-) and M1 populations (CD45+CD3- CD68+HLADR+). 
(E) Average expression of CD27 on CD4/CD8 lymphoid population, and CD70 expression on the lymphoid population (CD3+). 
CAR, chimeric antigen receptor; GBM, glioblastoma; TIME, tumor immune microenvironment.
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Figure 6 CD70 and CD27 expression in GBM and immune cells. (A, B) ScRNAseq profile of human GBM and immune infiltrate 
(Neftel 2019). Cell- type annotated UMAP (A) and expression of CD70 (top) and CD27 (bottom) visualized on UMAP and stratified 
by cell type (all cells included), Neftel GBM subtype (GBM only), and Richards GBM subtype (GBM only) (B). (C, D) ScRNAseq 
profile of human glioblastoma stem cells (Richards 2021). Cell- type annotated UMAP (C) and expression of CD70 (top) and 
CD27 (bottom) visualized on UMAP and stratified by Neftel GBM subtype and Richards GBM subtype (D). (E, F) ScRNAseq 
profile of immune cell infiltrates in murine GL261 tumors (Ochocka 2021). Cell- type annotated UMAP (E) and expression of 
CD70 (top) and CD27 (bottom) visualized on UMAP and stratified by cell type (F). Astrocyte- like, BAM, border- associated 
macrophage; DC, dendritic cell; Develop., Developmental; Expr, expression; GBM, glioblastoma; Injury Resp, injury response; 
MES1, mesenchymal type 1; MES2, mesenchymal type 2; NK, natural killer; NPC1, neural progenitor cell type 1; NPC2, neural 
progenitor cell type 2; OPC, oligodendrocyte progenitor cell.
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pattern among non- T- cell populations (CD3- cells) from 
different tumor samples (figure 5D). Further, CD27 
expression was found on putative ‘M1 proinflammatory’ 
(CD45+CD3- CD68+HLADR+) macrophages to a similar 
extent (figure 5D).102 It is interesting to note that CD27 
expression was increased in this particular ‘M1’ popula-
tion when their corresponding GBM cells were CD70HIGH 
(ie, MBT190); a phenomenon not seen when correspond 
GBM cells were CD70LOW (ie, MBT162). Interestingly, 
MBT190 had far fewer CD8+ cytotoxic tumor infiltrating 
lymphocytes than most samples, including MBT162 
(online supplemental figure 7B). In the CD3+ lymphoid 
population, we found that while CD27 was expressed on 
the majority of these cells, very few of them expressed 
CD70 (figure 5E, online supplemental figure 7B), in 
agreement with existing literature.99 Lastly, we noted that 
CD27 was highly expressed on CD4 helper T cells, poten-
tially making them more sensitive to CD70HIGH GBMs. 
Together, these data indicate that multiple CD27/CD70- 
axis interactions are occurring within the GBM TIME, 
likely contributing to the low immunogenicity of rGBM.

DISCUSSION
Since the creation of the Stupp protocol in 2005, few 
advances have been made in bringing new therapeutics to 
market for GBM. In addition, resistance to SoC treatment 
has begun to direct therapeutic investigation towards 
a small reservoir of cells termed CSCs.103 CSCs display 
enhanced self- renewal properties and are believed to be 
capable of de novo tumor formation, and driving tumor 
recurrence.103 It is believed that SoC therapy helps drive 
recurrent tumors by creating a bottleneck, with cells that 
escape initial chemoradiotherapy driving formation of a 
therapy- resistant recurrent tumor. Thus, recent endeavors 
have sought to identify actionable targets on this subpop-
ulation of cells. Numerous clinical trials against these 
targets have assessed the viability of CAR- T cells against 
different antigens, dendritic cell vaccines and immune 
checkpoint inhibitors, among others. However, despite 
many efforts little progress has been made, and most 
rGBM patients are destined for clinical trials or palliative 
care.

Here, we used a multiomics approach using our 
in- house collection of low- passage, patient- derived CSCs, 
and existing public datasets to identify a GBM cell surface 
marker of treatment- resistant CSCs. Using this approach, 
we identified and validated CD70 as a promising thera-
peutic target in rGBM.

From the literature, CD70 seems to have a confounding 
role in cancer, both stimulating and suppressing immune 
response in various cancers.96 104 With this in mind, we 
sought not only to validate CD70 as a therapeutic target 
in GBM, but also to better understand its role in GBM 
cell maintenance and progression, as well as the TIME. 
We demonstrate that CD70 is vital in sphere formation 
and proliferation of GBM cells, two essential CSC charac-
teristics which correlate with ability to recapitulate GBM 

tumors in vivo. To follow, we show that CD70 silencing 
significantly reduce tumor burden and volume, and 
significantly increases survival time, with some animals 
showing no signs of disease up until the end of the exper-
iment. These data represent similar findings to that seen 
in the literature, indicating that CD70 may play a crucial 
role in tumor- initiating cells in multiple cancers.105 106 To 
better understand the cellular pathways and programs 
involving CD70, we carried out GSEA using RNAseq of 
our CD70- silenced cell lines. We were able to contribute 
to the functional understanding of CD70 by showing that, 
as previously noted in RCC and other cancers, CD70 plays 
a role in controlling hypoxia.107 108 However, this is the first 
time to our knowledge that the regulatory role of CD70 
in hypoxia has been demonstrated in GBM specifically, or 
brain cancer in general. Hypoxia is the consequence of 
poor vascularization, and thus poor blood delivery, within 
the tumor. This often promotes cancer cell spreading via 
invasion so that cells may escape the low- oxygen environ-
ment, thereby rendering the tumor diffuse and far more 
aggressive, a characteristic often seen in rGBM. Based 
on our GSEA, it is possible that the vascularization factor 
VEGF is dependent on CD70 expression and the CD70/
CD27 signaling axis, and tumor neoangiogenesis, a role 
previously established in non- cancer pathologies.80 Our 
analysis also revealed that CD70 silencing appeared to 
depress pathways related to EMT signaling, a program that 
is linked to a more aggressive cancer capable of therapy 
evasion in multiple cancers, including GBM.109–112

By defining the tumorigenic significance of CD70 in 
GBM, we sought to develop potential therapeutic modal-
ities directed against CD70. We developed a CAR against 
CD70 and demonstrated its efficacy both in vitro and in 
vivo, where it displayed high specificity for CD70, and 
conferred significantly extended survival in our orthot-
opically xenografted animal models, with some animals 
experiencing complete remission. CD70CAR- T cell effi-
cacy varied slightly in vivo, which may be due to the exten-
sive heterogeneity of GBM, particularly in early passage 
GBM CSCs which recapitulate intratumoral heteroge-
neity quite well. Changes in associated clonal dynamics 
which arise with therapeutic pressure may generate 
therapy- resistant CD70LOW subpopulations with antigen 
escape, as has been seen in the clinic.113 While antigen 
escape is a major problem at the moment, particularly 
as not all CSCs uniformly express CD70 (online supple-
mental figure 1B) or any other single targetable protein, 
it is may be possible to overcome this issue using a poly- 
therapeutic strategy. Examples of such a combinatorial 
strategy include a bispecific anti- CD70/SIRPα antibody 
which outperforms individually delivered antibodies in 
models of human Burkitt’s lymphoma, allowing for cotar-
geting of both tumor cells and TAMs in the TIME.114 We 
also detected a population of CD27+ proinflammatory 
putative ‘M1’ macrophages in our profiling of patient- 
derived rGBM TIME samples, indicating that while the 
TIME is immunosuppressive, it does contain tradition-
ally antitumor components. CD27 is a marker of highly 

https://dx.doi.org/10.1136/jitc-2021-003289
https://dx.doi.org/10.1136/jitc-2021-003289
https://dx.doi.org/10.1136/jitc-2021-003289
https://dx.doi.org/10.1136/jitc-2021-003289
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immunosuppressive Tregs,115 and it is possible that TAMs 
and other members of the TIME may exert some of their 
immunosuppressive effects through CD27/CD70 inter-
actions, inducing a more immunosuppressive phenotype 
in tumor infiltrating lymphocytes.24 Among the TCGA 
matched pairs, we noticed a trend of subtype switching 
to the mesenchymal subtype on recurrence, as has been 
observed in the literature,106 116 and increased CD70 
expression correlated with the mesenchymal subtype as 
well. The mesenchymal subtype is associated with a more 
aggressive tumor, as well as invasion, therapy evasion and 
a poorer prognosis,36 66 and has been shown to harbor a 
stronger immunosuppressive microenvironment. While 
initially this may seem to be negative as far as the impact 
cell therapies might have, some studies suggest the oppo-
site, and that immunotherapies may have a more drastic 
impact on these tumors.117 118 In accordance with the 
literature, after silencing of CD70 expression in various 
GBM cell lines, we found that CD70 repression results in 
downregulation of IFN-α and IL- 1, both of which play an 
important role in the Th1 lymphocyte response, and are 
known for their proinflammatory role in tumors.119 120 In 
conjunction with other work highlighting CAR- T cells’ 
ability to induce inflammation,121 we see the potential 
for CD70CAR- T cells to convert the GBM microenvi-
ronment from immunologically ‘cold’ to ‘hot’, eliciting 
an antitumor immune response of endogenous effector 
cells. It has previously been shown that certain aspects of 
T cell functionality are dependent on IFN-α and CD70,122 
although to our knowledge this is the first time that this 
dependence has been shown in cancer cells.

Our work, as well as recent work from others,41 maintain 
that CD70 is a promising target for rGBM, and a better 
understanding of the role of CD70 in the GBM TIME is 
needed. In particular, we advocate for determining the 
role that CD70 plays in initiating GBM recurrence and 
potential mechanisms of therapy evasion. While the liter-
ature shows conflicting results regarding whether CD70 
plays a protumorigenic or antitumorigenic effect in 
cancer, we postulate a novel mechanism, through which 
continued stimulation of the CD70/CD27 axis leads to 
continuous T cell activation by GBM cells, and subse-
quent exhaustion within the T- cell compartment, as previ-
ously observed in models of HIV.32

As has been investigated in the literature, CD70 is present 
on the cell surface of T- cells, however, it does not play a func-
tional role, and as a result, other groups have noted frat-
ricide in their CD70 CAR- T cell populations.123 Based on 
these reports, as well as our own observations collected from 
our CD70 CAR- T cell populations, we developed a model 
of CD70CAR- T cell fratricide using Jurkat cells, which may 
be used as a platform for future studies in adoptive cell 
therapy. Reasons for the observed decrease in viability of 
Jurkat cells, though not assessed experimentally here, have 
previously been speculated on by colleagues using CAR- 
transduced Jurkat cells,124 reporting that cell death occurs 
due to prolonged activation- induced paracrine and auto-
crine interactions. Compared with the flow cytometry- sorted 

CD70- enriched Jurkat cells used in our experiments, CD70 
expression is relatively scarce on activated T cells, indicating 
that fratricide would occur to a far lesser extent on natural 
PBMC- derived CD70 CAR- T cells. In our hands, only small 
variations in cell viability were observed in our CD70 CAR- T 
cell experiments. Nonetheless, others recently reported an 
additional fitness benefit in a CD70 knockout CD70 CAR- T 
cell, which conferred various functional benefits including 
increased proliferation and cytotoxicity, and was far more 
advantageous than other obvious knockout targets such as 
PD- 1 and LAG3.125 Thus, we highly encourage future studies 
exploring any potential benefit a CD70KO CD70 CAR- T cell 
may display in GBM, where the TIME is notoriously diffi-
cult to overcome. Targeted delivery of the CAR construct 
directly into the CD70 locus would disrupt CD70 expres-
sion, preventing undesirable stimulation and enhancing 
proliferation and cytotoxicity of CD70 CAR- T cells.126 Strat-
egies involving targeted gene delivery have already been 
applied to an array of other targets to optimize adoptive cell 
therapies.127

Here, we investigated the functional benefit that CD70 
expression confers in GBM cells, and the implied influ-
ence that CD70 expression may have on interactions with 
the immunosuppressive landscape. We employed a reverse 
translational approach128 to determine CD27’s expres-
sion pattern—CD70s only known receptor—in different 
compartments of the GBM TIME. Previous literature has 
identified CD27 expression on subsets of NK cells, B- cells 
and hematopoietic stem cells.129–132 This highlights the influ-
ence that CD70- expressing GBMs may have on the different 
subsets within its microenvironment by leveraging these 
potential interactions and associated blockade. Utilizing a 
dual- targeting therapeutic strategy—targeting both GBM 
cells and immunosuppressive microenvironment cells—
may result in highly potent antitumor activity. Thus, future 
priorities would be to study the impact our CD70CAR- T 
therapy has on the GBM immune microenvironment in a 
murine model engrafted with human CSCs, harboring an 
HLA- compatible human immune system such as huMice, 
with a particular focus on models recapitulating a GBM- 
representative myeloid population.133

Considering our data and that of recent clinical trials 
targeting CD70 by systemic administration,134 we believe 
intracranially delivered CD70 CAR- T therapy holds great 
promise, and should be explored alone and in conjunc-
tion with TIME- targeting therapeutics.

TRANSLATIONAL RELEVANCE
Glioblastoma is the most common adult malignant brain 
tumor, and is characterized by a dismal prognosis and poor 
response to therapy at recurrence. Little- to- no change 
in standard of care therapy in the last 15 years, despite 
numerous potential therapies entering clinical trials. 
Therapeutic failure is largely due to tumor heterogeneity, 
and a lack of unique tumor associated antigens. Here, we 
propose CD70 as an immunotherapeutic target in recur-
rent glioblastoma. CD70 plays a role in key pro- tumorigenic 
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processes and is minimally expressed in normal tissues. We 
develop a CD70- directed CAR- T cell, which we show to be 
highly efficacious in extending survival in our intracranial 
mouse models of recurrent GBM. In addition, we identify 
CD27—the receptor for CD70—on the surface of multiple 
populations within the tumor immune microenvironment, 
implying that CD70/CD27 interactions may play a role in 
the tumor immune microenvironment.
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