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SUMMARY

Circadian rhythms are a hallmark of physiology, but how such daily rhythms organize cellular 

catabolism is poorly understood. Here, we used proteomics to map daily oscillations in autophagic 

flux in mouse liver and related these rhythms to proteasome activity. We also explored how 

systemic inflammation affects the temporal structure of autophagy. Our data identified a globally 

harmonized rhythm for basal macroautophagy, chaperone-mediated autophagy, and proteasomal 

activity, which concentrates liver proteolysis during the daytime. Basal autophagy rhythms could 

be resolved into two antiphase clusters that were distinguished by the subcellular location of 

targeted proteins. Inflammation induced by lipopolysaccharide reprogrammed autophagic flux 

away from a temporal pattern that favors cytosolic targets and toward the turnover of 

mitochondrial targets. Our data detail how daily biological rhythms connect the temporal, spatial, 

and metabolic aspects of protein catabolism.
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Graphical Abstract

In Brief

How circadian rhythms contribute to cellular quality control is poorly understood. Ryzhikov et al. 

mapped proteome-wide biological rhythms in liver autophagy and identified synchronous daily 

oscillations in autophagic and proteasomal activity. Diurnal rhythms play a role in autophagy 

substrate selection based on subcellular location and inflammation status.

INTRODUCTION

Autophagy represents a collection of catabolic pathways that deliver proteins and other 

cellular material to lysosomes for disposal (Kaur and Debnath, 2015). The most intensely 

studied form of autophagy, macroautophagy, is distinguished by a specialized vesicle called 

an autophagosome that forms around cytoplasmic material intended for removal (Kaur and 

Debnath, 2015). The degradative process is completed when autophagosomes fuse with 

endosomes and lysosomes. Another key form of autophagy, called chaperone-mediated 

autophagy (CMA), operates by directly translocating protein targets across the lysosomal 

membrane (Dice, 1992). Regardless of the specific mechanism, genetic interference with 

autophagy disrupts cellular quality control and leads to the accumulation of dysfunctional 

mitochondria, reactive oxygen species, metabolic defects, and faster cellular aging (Ezaki et 

al., 2011; Nakahira et al., 2011; Schneider et al., 2015).

Autophagy is usually conceptualized as a homeostatic process, operating at a constant rate 

unless modulated by external stimuli such as starvation. However, the activity of one 

autophagic mechanism, macroautophagy, is not constant but rather oscillates according to a 

circadian rhythm (Ma et al., 2011; Pfeifer, 1971). Circadian rhythms are daily variations in 

biological function that depend upon a group of conserved transcription factors called clock 

genes (Green et al., 2008). Clock gene deletion also leads to defects in cellular quality 

control, metabolism, and aging, similar to macroautophagy disruption (Cho et al., 2012; 
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Gong et al., 2015; Kondratov et al., 2006). This suggests that circadian rhythms may 

optimize proteostasis by providing a temporal organization to cellular catabolism. However, 

the dynamics of protein turnover and its relation to cellular function remain poorly 

understood. This is partly because rhythms in macroautophagy have yet to be detailed at the 

protein level, and it is unknown whether these rhythms extend to other degradative pathways 

such as CMA or the ubiquitin-proteasome system.

Here, we used proteomics to examine daily oscillations in macroautophagic flux in mouse 

liver and related these rhythms to proteasome activity. We also explored how systemic 

inflammation induced by lipopolysaccharide (LPS) affects the temporal structure of 

autophagy. Our data identified a globally harmonized rhythm for basal macroautophagy, 

CMA, and proteasomal activity that coordinates the temporal, spatial, and metabolic aspects 

of protein catabolism.

RESULTS

Rhythms in Basal Macroautophagy

Macroautophagic activity (or flux) is typically measured in vivo using a turnover assay 

(Haspel et al., 2011; Klionsky et al., 2016) (Figure 1A). Mice are injected with leupeptin to 

suppress cathepsin activity within lysosomes, leading to an accumulation of protein 

substrates. This buildup can be quantified by fractionating lysosomes and using western 

blots to calculate the increase in the abundance of macroautophagy marker proteins like 

LC3b-II or p62 (Figure 1B). Collected as a time series, turnover assays can visualize 

circadian rhythms in macroautophagic flux (Ma et al., 2011).

Using this approach, we estimated that rhythms in basal LC3b-II and p62 turnover have a 

periodicity of 20.3 ± 1.7 and 22.6 ± 1.2 h, respectively (Figure 1C). The amplitude of these 

rhythms in flux was estimated at 0.80 ± 0.16 of the mean for LC3b-II and 0.76 ± 0.10 of the 

mean for p62, suggesting that, on average, macroautophagy undergoes daily swings in 

proteolytic activity of about 7- to 9-fold (Figure 1D). The time of maximum turnover (or 

acrophase) for LC3b-II and p62 turnover occurred around lights off, but there was a slight 

but consistent phase lag between the two marker proteins, suggesting the dynamics of these 

two proteins may be different (Figure 1E).

Rhythms in macroautophagic flux are generally regarded as cell intrinsic and directly 

coupled to the function of circadian clock genes (Ma et al., 2011). Consistent with this, we 

found that rhythms in the steady-state level of liver LC3b-II persist in the absence of light 

cues and food availability (Figures S1A and S1B). However, we found that the master clock 

gene bmal1 was genetically dispensable for maintaining rhythms in macroautophagic flux 

(Figure S1C), which contrasts with one prior report (Ma et al., 2011). Our bmal1−/− mice 

were maintained on a 12-h light-dark cycle that preserves normal feeding and activity 

rhythms in these animals (Storch et al., 2007). Thus, daily rhythms in liver macroautophagy 

might not directly arise from the molecular circadian oscillator but instead may be indirectly 

coupled to the molecular clock via feeding or other normally circadian-gated behaviors.

Ryzhikov et al. Page 3

Cell Rep. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LPS Dissociates the Temporal Profile of LC3b-II and p62 Turnover

LPS is an inflammatory molecule that is known to disrupt clock gene expression (Haspel et 

al., 2014; Okada et al., 2008). We therefore examined how acute LPS challenge would affect 

diurnal rhythms in macroautophagic flux (Figure 1F). A single 12 mg/kg dose of LPS was 

enough to disrupt the normal circadian protein expression of Clock, RORα, and 

phosphorylated RS6 in mouse liver, as well as expression of the clock genes bmal1 and dbp 
(Figures S1D and S1E). However, the effect of LPS on the turnover of macroautophagy 

marker proteins was target specific. In the case of LC3b-II, LPS disrupted the temporal 

profile of its turnover, but the overall daily rate of degradation changed little (Figure 1G). In 

contrast, LPS produced delayed inhibition in p62 flux (Figure 1H). The differing patterns of 

LC3b-II and p62 turnover exemplified the need for proteome-wide data to define the global 

architecture of daily variations in macroautophagy, in health, and during inflammation.

A Proteomic Method for Analyzing Diurnal Rhythms in Autophagy

To examine daily rhythms in liver macroautophagy on a proteome-wide scale, we 

constructed a time series analysis of mice in the basal state and after treatment with LPS 

(Figure 2). Diurnal rhythms in macroautophagic flux were clearly demonstrated on western 

blots by oscillations in p62 turnover in the livers of basal mice, and this was suppressed in 

LPS-treated mice (Figure 2A). A flux composite score (FCS), defined as the difference in 

spectral counts between leupeptin and sham-treated livers adjusted for apparent protein 

abundance, was used to estimate turnover rate using proteomics data (see STAR Methods). 

FCS values for p62 strongly correlated with flux measurements obtained via western blot 

and successfully captured its diurnal rhythm (Figures 2A and 2B).

Using a false detection rate (FDR) < 5% (see STAR Methods), we identified as autophagy 

substrates 343 of 3,885 proteins (8.8%) in basal livers and 241 of 4,083 proteins (5.9%) in 

LPS-treated livers (Figure 2C; Data S1 and S2). Several known macroautophagy targets 

were detected in basal livers, including p62 (Ichimura et al., 2008), NBR1 (Lamark et al., 

2009), FASN (Shpilka et al., 2015), and the ferritinophagy marker FTH1 (Mancias et al., 

2014) (Data S1), thus validating our approach. In addition, hundreds of novel substrates 

were identified, two of which, FABP1 and CHI3L3, we validated by western blot (Figure 

S2A). However, LC3b-II turnover was not detected in this dataset, potentially because of 

low apparent protein abundance (5 spectral counts across all basal samples) (Data S1). In 

addition to macroautophagy-associated proteins, we detected the turnover of CMA 

substrates, including GAPDH, PK, and MDH1 (Agarraberes and Dice, 2001; Schneider et 

al., 2014) (Data S1). This was logical, because our approach used lysosome-enriched 

preparations for proteomic analysis, rather than purified autophagosomes.

To confirm our experimental approach, we used an orthogonal method to immunoaffinity 

isolate autophagosomes for proteomic analysis. GFP-LC3-expressing transgenic mice were 

injected with lysosome inhibitors, and vesicles were purified using an anti-GFP resin (Figure 

S2B). Electron micrographs of the eluted material showed a heterogeneous mixture of 

vesicular structures that included classical autophagosomes with double-unit membranes 

(Figure S2C). Analysis of these GFP-LC3+ structures confirmed the turnover of 

macroautophagy substrates LC3b-II, p62, and the GFP-LC3 fusion protein, as well as the 
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suppression of their turnover by LPS. As before, proteomic estimates of macroautophagic 

flux correlated tightly with flux quantification by western blot (Figures S2D and S2E). The 

novel autophagic substrates FABP1 and CHI3L3 that we validated in our time series 

experiment could similarly be validated via western blot of affinity-purified GFP-LC3+ 

structures (Figure S2F). Applying an FDR threshold of less than 5% (see STAR Methods), 

we classified 282 of 3,407 proteins detected in GFP-LC3+ vesicles (8.3%) as basal 

autophagic substrates and 101 of 3,038 proteins (3.3%) as targets of LPS-associated 

autophagy (Figure S2G; Data S2 and S3). Comparing the basal substrate proteomes derived 

from lysosome-enriched fractions and immunoaffinity-purified autophagosomes, there was 

45.3% overlap between the datasets at the previously established thresholds, which rose to 

more than 70% when higher-stringency thresholds were applied (Figure S2H; Data S2). This 

implied that observations of autophagic flux in lysosome-enriched material and in affinity-

purified autophagosomes referred to the same biological phenomenon and should arrive at 

qualitatively similar conclusions.

We next asked what proportion of the autophagic substrates detected by our experimental 

approach could be ascribed specifically to macroautophagy. To this end, we compared our 

data with a macroautophagy dataset generated in cultured fibroblasts by Zhang et al. (2016), 

who used isotopic labeling to identify proteins whose half-life was increased when the 

macroautophagy genes atg5 and atg7 were deleted. Of the 343 proteins identified in our time 

series as basal autophagy substrates, 165 had decay rates measured by Zhang et al. (2016), 

of which 135 (81.2%) had half-lives sensitive to atg5 and atg7 deletion (Data S1). Based on 

this genetic standard, most of the autophagy substrates we identified are likely clients of 

macroautophagy, with a sizable minority dependent on CMA or other means to reach the 

lysosome. Thus, we defined a panel of several hundred macroautophagy and CMA 

substrates, which we then used to analyze the daily dynamics of autophagy in mouse liver.

Basal Autophagy Is Universally Rhythmic

To examine global temporal patterns in autophagy, we generated a heatmap of autophagic 

flux over time for all 403 substrates identified by proteomics (Figure 3A). In basal livers, all 

343 substrates had observable temporal variations in protein turnover. Statistically, this 

variation was significant in 62.6% of substrates by one-way ANOVA (p < 0.05), 49.0% of 

substrates by COSOPT (FDR < 5%), 62.1% of substrates by Student’s t test of peak versus 

trough turnover (p < 0.05), and 88.9% of substrates by at least one method (Data S1). 

However, these statistics likely understate the prevalence of rhythmic autophagic flux given 

our sampling, and we found no clear evidence that any autophagic substrate was degraded at 

a constant rate in basal livers. Such a result could be explained through one of two scenarios: 

by direct oscillations in proteolytic activity or by oscillations in protein abundance that 

would lead to passive rhythms in protein removal. To differentiate between these two 

possibilities, we cross-referenced our basal autophagy substrate proteome with 4 datasets 

that report circadian rhythms in mouse liver protein abundance (Mauvoisin et al., 2014; 

Reddy et al., 2006; Robles et al., 2014; Wang et al., 2018). Of the 343 basal autophagy 

substrates identified in our time series, only 101 (29.4%) exhibited diurnal rhythms in 

steady-state abundance in the preceding datasets (Data S1). Therefore, rhythms in 

Ryzhikov et al. Page 5

Cell Rep. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



autophagic flux are unlikely to be a passive reflection of substrate abundance and more 

likely to be due to rhythmic modulation of proteolysis.

Rhythms in basal autophagic flux were highly consolidated and could be divided into 2 

patterns. The main group (cluster 1) contained 308 of 343, or roughly 90%, of the substrates 

and had a sharp nadir in autophagic flux at zeitgeber time (ZT) 19 (equivalent to 1:00 a.m. 

local time). Basal turnover of known macroautophagy and CMA substrates were 

congregated in cluster 1 (Figure 3A; Data S1). To our surprise, there was no obvious 

distinction in temporal profile between selective macroautophagy substrates like p62 

(Ichimura et al., 2008) and proteins like TAT or LDHa that prior literature identified as 

clients of nonselective bulk sequestration (Figure 3A) (Kopitz et al., 1990). The second 

group of temporal profiles (cluster 2) was composed of the remaining 10% of substrates and 

was characterized by peak levels of autophagic flux at or near ZT19. Overall, LPS 

dampened the turnover of basal autophagy substrates while promoting the degradation of a 

smaller, novel set of proteins analogous to the reprogramming effect seen in lung circadian 

gene expression (Haspel et al., 2014) (Figures 3A and 3B).

The changes that LPS imposed on autophagic flux occurred within the context of a 

metabolic realignment that accompanies severe inflammatory states (Pool et al., 2018). Such 

changes include mitochondrial dysfunction and a Warburg effect, in which glycolytic flux 

and lactate production increase despite oxygen availability (Pool et al., 2018). To understand 

how LPS affects the physiological contributions of autophagic flux, we performed 

unsupervised functional enrichment pathway analysis on the basal and LPS-associated 

autophagy substrate proteome (Figure S3). We noted that the top enriched Kyoto 

Encyclopedia of Genes and Genomes (KEGG) annotation terms were largely metabolic and 

included the glycolysis pathway (Figure S3A). In the basal state, the turnover of glycolytic 

enzymes by autophagy was highly organized as part of cluster 1, and turnover of these 

enzymes became disorganized after LPS challenge (Figure S3B). The net effect of LPS was 

to reduce the average daily turnover of most glycolytic enzymes, including LDHa and the 

terminal rate-limiting glycolytic enzyme PKLR (Figures S3B and S3C). Because reduced 

autophagic turnover should stabilize or augment levels of these enzymes, the suppression of 

the basal autophagy program by LPS would be predicted to support enhanced glycolytic 

activity and lactate production.

In summary, we found that daily rhythms are a near-universal feature of basal 

macroautophagy and basal CMA in mouse liver and can be separated into 2 distinct 

temporal profiles. In addition, LPS reprograming of autophagic flux likely supports the 

energetic shifts that occur during severe inflammation.

The Temporal Profile of Basal Autophagic Flux Correlates with Subcellular Location

Autophagosome formation in mammalian cells occurs in multiple locations throughout the 

cytoplasm (Kaur and Debnath, 2015). However, cytoplasm is not homogeneous but is 

instead composed of numerous ultrastructural and functional subdomains. We therefore 

examined whether temporal profiles in autophagic flux might be connected to the subcellular 

location of substrates. To this end, we performed a frequency analysis of the basal autophagy 

proteome using UNIPROT annotation terms for subcellular localization (Data S4). For the 
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dominant temporal profile (cluster 1), autophagy substrates localized primarily to the 

cytoplasm, with nucleus and mitochondria being the next most prevalent addresses (Figure 

S4A). Adjusting for the overall prevalence of each annotation term in our proteomics data, 

cluster 1 substrates were statistically over-enriched for proteins of likely cytosolic, nuclear, 

and extracellular location, while mitochondrially localized substrates were under-

represented (Figure S4B; Data S4). In contrast, autophagy substrates belonging to the cluster 

2 temporal profile were most frequently associated with mitochondria (Figure S4A). 

Moreover, mitochondrial, endoplasmic reticulum (ER), and peroxisome-associated proteins 

were over-represented in the cluster 2 autophagy substrate proteome, while nucleus and 

cytosol exhibited a trend toward under-enrichment (Figure S4B). These data raised the 

possibility that temporal patterns of basal autophagic flux may map to specific subcellular 

domains. To examine this theory, we analyzed the temporal profiles of proteins that had an 

exclusive UNIPROT subcellular localization. The temporal profiles of autophagic flux for 

nuclear and cytosolic proteins were highly correlated and were stereotypical of cluster 1 

(Figure 3C). Meanwhile, mitochondrial and ER-specific substrates had similar rhythmic 

patterns in autophagic flux, which were characteristic of cluster 2. These conclusions were 

supported by hierarchal clustering analysis that organized nucleus-cytosol, ER-

mitochondria, and secreted-extracellular substrates into distinct temporal groups (Figure 

3D). Regardless of subcellular localization, LPS suppressed the turnover of basal autophagy 

targets (Figures 3C and 3D). At the same time, LPS induced the turnover of different 

proteins that as a group were biased toward a mitochondrial localization, both in the time 

series experiment and in immunoaffinity-purified autolysosomes (Figures S4C–S4F; Data 

S4). Altogether, our data suggest a relationship between the physical location of proteins 

within the cell and the temporal dynamics of autophagic turnover. Moreover, LPS shifts 

autophagy substrate preferences toward proteins associated with mitochondria, again 

consistent with the broader metabolic context of mitochondrial dysfunction that occurs 

during inflammation (Pool et al., 2018).

Selective Targeting of Proteasomes by Autophagy Is Explained by Subcellular Location

Proteasomal subunits were significantly enriched in the basal autophagy substrate proteome, 

constituting roughly 7% of all substrates identified (Figures 4A and 4C; Data S4). A total of 

35 proteasome subunits were represented, derived from both the 20S catalytic particle and 

the 19S and 11S regulatory caps (Figure 4B). Autophagic flux of proteasome subunits had 

highly synchronous rhythms in the basal state as part of cluster 1, and the temporal profile of 

these subunits was similarly blunted by LPS (Figure 4B). This synchrony and the even 

distribution of hits among the 20S, 19S, and 11S complexes suggested that entire 

proteasomes were being targeted for autophagy. To confirm autophagic degradation of 

proteasomes, we separated total liver homogenates by density centrifugation and confirmed 

that the proteasomal subunits PSMB2 and PSMD11 accumulated in dense autophagosome-

containing fractions after injecting mice with leupeptin (Figure 4D).

The enrichment of proteasomes among basal autophagy substrates stood in contrast to 

ribosomal proteins, which were significantly under-represented (Figure 4C). This occurred 

even though ribosomes are large, multi-subunit complexes that, like proteasomes, are highly 

abundant in the cytoplasm. A similar contrast between proteasome and ribosome turnover 
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via autophagy was noted by Zhang and colleagues in immortalized human fibroblasts but 

was unexplained by their data (Zhang et al., 2016). Given our observation that autophagy 

substrate dynamics track with subcellular location, we asked whether the relative abundance 

of proteasomes among autophagy substrates could have a topological explanation. Because 

ER membranes are believed to be the primary site of autophagosome formation (Axe et al., 

2008) and both proteasomes and ribosomes attach to ER membranes (Kalies et al., 2005), 

we separated rough and smooth ER by density centrifugation to segregate ribosome-rich 

from ribosome-poor ER subdomains (Figure 4E). As expected, ribosomes congregated in 

high-density fractions as indicated by RS3 protein abundance. In contrast, we found that the 

autophagosome initiation protein ATG9a, as well as the autophagosome marker LC3b-II, 

migrated in low-density ER fractions (Figure 4E). These same fractions were enriched in 

proteasome subunits PSMB2 and PSMD11 relative to the ribosomal subunit protein RS3 

(Figures 4E and 4F). Thus, both the selective abundance of proteasomes and the scarcity of 

ribosomes among autophagy substrates can be explained by a preference for initiating 

autophagosome formation on smooth ER membranes.

Rhythms in Autophagic Flux and Proteasomal Flux Run in Tandem

Low-amplitude rhythms in proteasome activity were demonstrated in immortalized tissue 

culture cells using model peptide substrates (Desvergne et al., 2016). We asked whether 

similar rhythms in proteasomal activity could be detected in mouse liver and, if so, what 

temporal relationship exists between autophagic and proteasomal activity. To this end, we 

modified our turnover assay to measure proteasomal, rather than autophagic, degradation. 

We found that intraperitoneal (i.p.) injection of the proteasome inhibitor bortezomib could 

induce quantifiable cytosolic accumulation of proteasomal substrates like Lys48-linked 

polyubiquitinated proteins (K48-Ub) within the same 2-h time frame used to assay 

autophagic flux (Figures S5A and S5C). In addition, bortezomib induced a dose-dependent 

accumulation of p62 and LC3b-II in lysosome-enriched fractions (Figures S5B and S5D). 

Although induction of LC3b-II by proteasome inhibition was previously interpreted as 

induction of macroautophagy (Korolchuk et al., 2010), other research showed that LC3b is a 

direct proteasomal substrate, as well as a macroautophagy substrate (Gao et al., 2010). Using 

model peptides, we determined that a 1.6 μg/g i.p. dose of bortezomib was enough to reduce 

chymotrypsin-like and caspase-like proteasomal activities by 50%, while leupeptin 

administration had no effect (Figure S5E). To summarize, we adapted our turnover assay to 

enable parallel measurement of autophagic and proteasomal flux.

With this assay in hand, we performed simultaneous time series analyses of autophagic and 

proteasomal flux in mouse liver using western blotting as a readout (Figure 5A). Diurnal 

variation in macroautophagic flux was evident in leupeptin-treated animals using lysosome-

associated p62 and LC3b-II as markers (Figure 5B). In parallel, rhythms in proteasomal 

activity were observed in bortezomib-treated mice using cytosolic K48-Ub (Figure 5C). As 

alternative markers of proteasomal flux, we measured turnover using p62 and LC3b-II in the 

setting of bortezomib in the lysosome-enriched fraction (Figure 5B). Proteasomal flux 

exhibited strong diurnal rhythms in basal mouse liver, with an amplitude of 5.6-fold based 

on K48-Ub turnover (Figures 5C and 5D). In contrast, in vitro proteasome activity assays 

using small peptide substrates in molar excess did not capture the high-amplitude rhythms 
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seen with endogenous substrates, perhaps because this assay is more a reflection of 

maximum degradative capacity in a sample than proteasome flux occurring in vivo (Figures 

S6A–S6C). However, the rate of K48-Ub protein turnover via the proteasome did correlate 

with the steady-state abundance of these proteins (Figure S6D and S6E). Altogether, these 

data suggested that rhythms in proteasomal substrate turnover may be driven by the 

availability of ubiquitinated substrates, ratherthan by autophagic pruning of proteasome 

capacity. In bmal1-null mice, rhythms in K48-Ub turnover were disturbed, suggesting clock 

gene sufficiency is important for proteasomal rhythms even under standard lighting and 

nutrition conditions (Figures S6F). Estimates of the temporal relationship between 

macroautophagic and proteasomal flux varied somewhat depending on what combination of 

substrates were used to construct best fit curves, with an absolute phase difference ranging 

from 2.2 to 4.6 h. The prevailing impression, regardless of marker protein, was that rhythms 

in macroautophagic and proteasomal flux roughly covaried. Because autophagy and the 

proteasome jointly account for the bulk of cellular proteolytic activity, our results suggest a 

global rhythm for basal protein catabolism in mice, in which overall protein turnover is 

elevated in the liver during the day and low at night.

If autophagic and proteasomal flux were coordinated, one might expect that an inhibitor of 

autophagic activity would also suppress proteasomal activity. We therefore measured 

autophagic and proteasomal flux in the setting of LPS challenge (Figure 6). As before, LPS 

suppressed macroautophagic flux, as indicated by lysosome-enriched p62 content ± 

leupeptin (Figures 6A and 6B). LPS treatment caused β-actin to more efficiently associate 

with the lysosome-enriched fraction, likely reflecting the known effect of LPS on actin 

polymerization and cytoskeletal structure (Kleveta et al., 2012). LPS also reduced 

proteasomal flux, as shown by cytosolic K48-Ub content ± bortezomib and p62 content ± 

bortezomib (Figures 6C and 6D). The results support our interpretation that proteasomal and 

autophagic flux are subject to coordinated, rather than reciprocal, regulation and that 

decreased flux through one catabolic pathway is not necessarily compensated for by 

increased flux through the other.

DISCUSSION

Our data show how daily biological rhythms provide a framework for connecting the 

temporal, spatial, and meta-bolic aspects of protein catabolism. In the temporal domain, 

diurnal rhythms act to synchronize the proteolytic activity of autophagy and the ubiquitin-

proteasome system in healthy liver, such that the bulk of protein catabolism occurs during 

the daytime. This is a period when food intake is low in mice and when hepatocytes contract 

their cytoplasmic volume (Echave Llanos et al., 1971; Sinturel et al., 2017). Basal protein 

turnover is conventionally assumed to be homeostatic: occurring at a constant rate that can 

be adjusted up or down in response to stimuli. However, our data suggest that this paradigm 

does not accurately describe protein catabolism in vivo, in which coherent biological 

rhythms pervade cellular physiology.

In the spatial domain, we found that diurnal rhythms influence where in the cell the 

substrates are obtained for autophagy. At the proteome-wide level, basal autophagy rhythms 

in mouse liver could be resolved into two clusters. In the dominant group (cluster 1), 
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autophagy substrate preferences were directed toward cytosolic, nuclear, and secreted 

proteins. The dynamics of cluster 1 turnover were consistent in autophagosome number with 

previously published rhythms (Ma et al., 2011). However, proteomics revealed a second 

autophagy rhythm (cluster 2), in which substrate preferences were directed toward 

mitochondria, ER, and peroxisomes, all ROS-generating structures that are known to 

physically interact (Yoboue et al., 2018). Although these structures are thought to be targets 

of selective autophagy, the dynamics of cluster 2 protein degradation were not explained by 

known selective autophagy adaptor molecules (such as p62 and NBR1), whose turnover 

follows cluster 1. However, cluster 2 rhythms could be explained if different sites of 

autophagosome formation were subject to independent temporal control. In the basal state, 

autophagosomes are thought to arise from ER membranes at multiple sites throughout the 

cell (Axe et al., 2008; Polson et al., 2010). However, under starvation conditions, a second 

site of autophagosome assembly has been observed on mitochondria in proximity to ER-

mitochondrial contact sites (Hailey et al., 2010). Our data argue for the existence of a 

separate site for basal autophagosome formation proximate to mitochondrial-ER-

peroxisomal contacts that is temporally offset from other locations and is responsive to 

circadian regulation.

Structurally distinct locations for autophagosome assembly can explain a mysterious finding 

that basal autophagy selectively degrades proteasomes but seems to exclude ribosomes 

(Zhang et al., 2016). Both proteasomes and ribosomes are highly abundant, and both interact 

with ER membranes, which are believed to be the primary site of autophagosome formation. 

If autophagosomes targeting cluster 1 substrates were to form on smooth ER membranes, it 

would automatically give advantage to the sequestration of ER-bound proteasomes while 

simultaneously placing the sequestration of ribosomes at a disadvantage. Thus, a bias toward 

proteasome degradation would be achieved without the need for selective autophagy adaptor 

molecules. In support of this idea, we found that the early autophagosome assembly protein 

ATG9a associates with proteasome-containing smooth ER membranes, but not ribosome-

rich rough ER. If the goal of macroautophagy were merely to sequester cytosolic contents in 

bulk, one would expect autophagosome formation to equally advantageous at any point on 

the ER surface. However, localizing a major site of autophagosome formation to smooth ER, 

as our data suggest, could confer benefits to cellular quality control, because it would orient 

macroautophagy toward the digestion of misfolded proteins that are interacting with 

proteasomes through the Sec61 translocation pore but cannot fully transit to the cytoplasm 

as part of normal ER-associated degradation.

Proteasomes were previously shown to be degraded in lysosomes (Cuervo et al., 1995), and 

this was theorized to represent a form of cross-talk that would enable downturns in 

autophagic activity to be compensated for by increased proteasome activity (Rubinsztein, 

2007; Wang et al., 2013). However, we found that rhythms in proteasomal and autophagic 

activity were roughly synchronous rather than reciprocal, at least in the basal state. 

Paradigms of proteasome regulation do not place proteasome number as the key factor in 

controlling degradation via this process (Collins and Goldberg, 2017). Moreover, 

proteasomes are highly abundant (Tanaka and Ichihara, 1989), they have a half-life of 12-15 

days (Tanaka and Ichihara, 1989), and only a minority of proteasomes engage in degradation 

at any one time (Asano et al., 2015), all of which make it difficult for 24-h rhythms in 
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proteasome breakdown via autophagy to be a major determinant of hour-to-hour activity. 

Although our data do not support bulk cross-talk between basal autophagic and proteasomal 

activity as previously theorized, it may be possible for rhythms in autophagic flux to impart 

a temporal structure to proteasome function at specific subcellular compartments, such as 

the ER. More research will be needed to investigate this possibility.

Finally, our observations of LPS-associated autophagic flux suggest that diurnal rhythms 

align autophagic activity with the energetic and metabolic needs of the cell. After LPS 

challenge, liver autophagic activity shifted to target mitochondria-associated proteins while 

simultaneously downregulating the turnover of glycolytic enzymes. Both actions are 

predicted to support cardinal metabolic changes that accompany inflammation and sepsis: 

namely, the need to manage mitochondrial dysfunction and increased aerobic glycolysis. 

While our data by themselves do not prove that autophagy is critical to these metabolic 

changes, our conclusions are supported by studies in quiescent cells, in which 

macroautophagy gene depletion resulted in the accumulation of dysfunctional mitochondria 

and increased glycolysis (Nakahira et al., 2011; Watson et al., 2015). Our data also suggest 

that basal rhythms in liver CMA are suppressed after LPS treatment. Genetic disruption of 

CMA was found to induce hepatic steatosis in mice (Schneider et al., 2014). Fatty liver 

disease is also a cardinal feature of systemic inflammation and sepsis (Koskinas et al., 

2008). Collectively, these observations explain how autophagy reprogramming can mediate 

the metabolic phenotype of sepsis.

In summary, we report a proteome-wide view of autophagy dynamics that captures its 

diurnal variation and its relationship to proteasomal function during health and 

inflammation. Future advances in proteomics technologies will shed further light on the 

relationships among circadian regulation, protein catabolism, and cellular housekeeping.

STAR*METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jeffrey A. Haspel (jhaspel@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—Male C57BL/6J mice (4-8 weeks old, 20-25 g) were obtained from Jackson 

Laboratories and acclimatized for two weeks before use. GFP-LC3 transgenic mice 

(Mizushima, 2009) were obtained from RIKEN labs (Strain number RBRC00806). Bmal1 
null mice were generated by crossing Jackson Laboratory strains B6.129S4(Cg)-

Arntltm1Weit/J and B6.C-Tg(CMV-cre)1Cgn/J. Heterozygote progeny were mated to each 

other to obtain wt and bmal1 null littermates as described (Ehlers et al., 2018). To maximize 

sample size for circadian time series analysis, equal numbers of male and female bmal1−/− 

and bmal1+/+ littermates were used, but for all other experiments only male mice were 

employed. Mice were housed in a standard 12-hour light-dark cycle (lights-on at 6:00 AM 

and lights-off at 6:00 PM local time), with food and water available ad libitum. We followed 

the convention of expressing time of day in “Zeitgeber Time” (ZT), where ZT0 indicated 
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lights-on and ZT12 lights-off. In some experiments mice were injected with 12 mg/kg LPS 

(E. coli. lipopolysaccharide O127:B8, Sigma Cat# L3129 Lot# 029K4055). All experiments 

were approved by the Washington University School of Medicine and the Harvard Medical 

School Animal Care and Use Committees.

METHOD DETAILS

Autophagic flux measurement—Our method for measuring LC3b-II and p62 

autophagic turnover was reported previously (Haspel et al., 2011). Briefly, mice were i.p. 

injected with 40 mg/kg leupeptin (Sigma) in sterile PBS and were euthanized for analysis 2 

hours later by isoflurane anesthesia followed by cervical dislocation. For time series analysis 

of autophagic flux, this process was repeated every 4 hours for 24-32 hours, with each set of 

samples time stamped based on when the mice were euthanized. The left lobe of the liver 

was manually dissected and Dounce homogenized in 7 mL homogenization buffer (HB; 10 

mM Tris, 250 mM sucrose, 5 mM EDTA, 1 SigmaFast protease inhibitor tablet/100mL 

(Sigma-Alrdrich)). The fractionation strategy used in experiments is summarized in Figure 

S7. Briefly, samples were centrifuged at 700 × g for 10 minutes at 4°C to remove debris, and 

the protein concentration of the supernatant (termed the total homogenate fraction) was 

normalized to 2.1 mg/mL with HB. For data in Figure 1, we adhered to our original 

published protocol by centrifuging 1.5 mL of total homogenate fraction at 20,000 × g for 20 

minutes (Haspel et al., 2011). The pellet was washed twice with cold HB, resuspended in 

200 μL NuPAGE LDS sample buffer (Life Technologies), and boiled at 95°C for 5 minutes.

For data presented in all other figures, we modified our protocol by centrifuging 1.5 mL total 

homogenate at 3,000 × g for 15 minutes to produce a “3KP“ fraction (Figure S7A). The 3KP 

fraction was then washed and used for autophagic flux analysis by western blot or 

proteomics (see below). The change in this sedimentation step enabled us to reduce the 

protein complexity of our samples, which affects the sensitivity of label-free proteomics. 

The 3KP fraction was chosen because: (1) most of the leupeptin-inducible LC3b-II and p62 

protein content in a leupeptin-treated protein sample was recoverable in this fraction, 

particularly the high MW forms of p62 (Figure S7B); (2) Enrichment of LC3b-II, p62, and 

the lysosomal marker LAMP2 was similar in the 3KP fraction and after pelleting lysates at 

20,000 × g (20KP fraction) (Figure S7C); (3) most of the of the rhythmic turnover of LC3b-

II and p62 segregated with the 3KP fraction (Figure S7D) and produced similar temporal 

profiles compared to time series generated via our original protocol (Figure 1), and; (4) pilot 

proteomic analysis demonstrated that the turnover of 5 known autophagy substrates was 

more easily detected in the 3KP fraction than in the 20KP fraction (Figure S7E). Thus, we 

confirmed that the 3KP fraction allowed us to reduce the sample complexity of liver 

homogenates in advance of proteomics without altering the detection of autophagic flux 

rhythms.

The post-3KP supernatant was further clarified by centrifugation at 20,000 × g for 20 

minutes. The pellet (20KP fraction) was resuspended in 100 μL LDS sample buffer as above, 

while the supernatant (“Cyto” fraction), was brought up in sample buffer to a 1× final 

concentration. To analyze macroautophagic flux by western blot, 12 μL of the lysosome 

enriched pellet was separated via SDS-PAGE alongside 1:3 serial dilutions of purified p62 
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(Novus) and GST-LC3 (Abnova) protein as described (Haspel et al., 2011). To allow data to 

be combined across multiple gels (to accommodate the large number of samples in a given 

time series) each individual gel contained its own standard curve generated from the same 

stock of purified p62 and LC3b. Protein was transferred to PVDF membrane and probed 

with LC3b, p62, or β-actin antibodies. Over the duration of this project, western blots were 

imaged on a LiCOR Odyssey LCx, a BioRad Gel Doc XR, or on Fuji Medical X-Ray film 

using a Kodak X-OMAT 2000 processor. Densitometric analysis of western blots was done 

using Image Studio 4.0 Software (LiCOR). For p62 densitometry we included all bands 

ranging from the monomeric form (which migrates at approximately 50-60 kDa) to the top 

of the gel as described (Haspel et al., 2011). For each protein, densitometric units were 

converted to ng of purified protein by extrapolating from the purified protein standard curve 

run in each individual gel (Haspel et al., 2011). For conversion to molar equivalents, we 

assumed a MW of 16 kDa for LC3b-II, 62kDa for p62, and 14 kDa for Lys48-linked poly-

ubiquitin (K48-Ub). As quantified by western blots, autophagic flux was defined as the 

quantity of LC3b-II or p62 (expressed as ng, pmol, or normalized values) in the leupeptin 

treated sample minus the average quantity in the sham treated samples (Haspel et al., 2011). 

Although other groups adopt the practice of normalizing densitometric data to β-actin, we 

found that β-actin normalization had only minimal effects on our autophagic flux readouts 

(data not shown).

Proteomic time series—Male C57BL/6J mice were treated with either 0.5mL PBS or 12 

mg/kg LPS i.p (E. Coli O157:B8) at ZT1. At four-hour intervals, mice were injected with 

PBS or leupeptin as above and harvested 2 hours later (n = 4 mice per treatment group 

received leupeptin, and 2 mice were treated with 0.5 mL PBS). Samples were homogenized 

to generate a post-700 × g total protein fraction as above, and then equal protein from n = 2 

samples were pooled to yield 2 leupeptin treated pooled samples and 1 sham control sample 

for each time point. 3KP pellets were prepared as above and analyzed through label-free, 

bottom-up shotgun proteomics. Briefly, 3KP pellets were dried and then solubilized in SDT 

buffer (4% SDS, 100mM Tris-HCl pH 7.6,100 mM DTT) using sonication (Covaris S220X). 

Subsequent sample processing and proteomics was conducted at the NIH / NIGMS 

Biomedical Mass Spectrometry Resource. As negative controls for autophagic flux, each 

sample was first spiked with 100 ng Horseradish peroxidase (Sigma), and yeast Enolase 1 

(Sigma). Samples were trypsin digested as previously described (Wiśniewski et al., 2009). 

Briefly, lysates in SDT buffer were reduced by heating to 95°C for 10 minutes followed by 

buffer exchange into 8M urea/100mM Tris buffer pH 8.5 on top of a 30K filter. Reduced 

proteins were alkylated by addition of 50mM Iodoacetamide and incubation at room 

temperature in the dark for 20 minutes. Buffer was exchanged to 100 mM ammonium 

bicarbonate buffer pH 8 prior to addition of endoprotease trypsin at a ratio of 1:100 trypsin 

to protein. Digestion with trypsin was carried out overnight at 37°C. Peptides were spun 

through the filter and collected in a fresh collection tube. The filter was rinsed once with 0.5 

M NaCl and rinse collected on top of the peptides. Samples were acidified with 5% formic 

acid and desalted on three each Glygen C4 and graphite Nutips. Eluates from the tips were 

combined for each sample, dried and resuspended in water for peptide concentration 

determination by fluorescent peptide assay (Pierce). Peptide concentration was normalized 

to 0.35 μg/mL prior to injection on LC-MS. LC-electrospray ionization tandem MS data 
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acquisition was performed on a TripleTOF 5600+ mass spectrometer (AB SCIEX) coupled 

with a nano LC 2D+ (Eksigent) and nanoflex (Eksigent) dual column setup. Digested 

peptides were chromatographically separated on a 15 cm × 200 μm ChromXP LC column 

(Eksigent) at flow rate 800 nL/min using a linear gradient from 2%–30% B (1% formic acid 

in acetonitrile) in 715 minutes. Column eluates were introduced into the mass spectrometer 

via emitter tip (New Objective) using a Nanospray® III ion source (ABSciex). The mass 

spectrometer was operated in positive ion mode and acquired data in data dependent mode. 

MS1 scan range 350-1250 for 250 msec with 100MS2 spectra for 100 msec each collected 

per cycle.

The samples were run in 8 sessions corresponding to the eight time points in the series. 

Within each MS session, 7 samples were run separated by 1-2 MS runs of blank samples to 

mitigate the possibility of data carryover from one sample to the next. The identity of each 

biological sample was blinded and the order randomized with exception of a “QC” sample 

consisting of mouse total protein, which was run first in each block. The QC sample was 

used to confirm instrument consistency from session to session and to generate a negative 

control distribution (“Control Distribution 1,” see below) that we used to estimate 

experimental error. Tandem mass spectra were analyzed using Mascot (Matrix Science, 

version 2.4.1). Mascot was set up to search a custom database 

(HASPEL_UNI_MOUSE_SOME_HUM_20150805,17065 entries), consisting of the whole 

mouse proteome, plus horse radish peroxidase, yeast enolase, and 156 selected human 

contaminant proteins. Scaffold software (Proteome Software Inc., version 4.4.1) was used to 

validate MS/MS-based peptide and protein identifications. Peptide identifications were made 

if they could be identified with > 90% probability by the Peptide Prophet algorithm (Keller 

et al., 2002) with Scaffold delta-mass correction. Protein identifications were established by 

> 95% probability in at least 1 identified peptide. Protein probabilities were assigned by the 

Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained similar peptides 

and could not be differentiated based on MS/MS analysis alone were grouped. Spectral 

count data that met an FDR threshold of 1% was used for autophagic flux measurement (see 

below). Spectral count data and sample preparation details are presented in Data S1.

Proteomics of GFP-LC3+ vesicles—Our method for isolating GFP-LC3+ vesicles was 

based on Dengjel et al. (Dengjel et al., 2012) but utilized livers from GFP-LC3 transgenic 

mice rather than tissue culture cells as the source material. Briefly, GFP-LC3 mice were 

injected with 0.5 mL PBS or 12 mg/kg LPS at ZT11. The following day autophagic flux was 

measured by injecting mice at ZT4 with PBS or a protease inhibitor cocktail (40 mg/kg 

leupeptin, 100 mg/kg Chloroquine (Sigma)). Three hours later, mice were euthanized, and 

the left lobe of the liver was Dounce homogenized in 7 mL HB as above. Homogenates were 

filtered through 205 μm mesh (Fischer Scientific), and 20KP pellets (see Figure S7A) were 

prepared from the entire volume of homogenate. The 20KP pellet was washed twice and 

resuspended in 2 mL HB to a final protein concentration of 0.6 mg/mL as determined by 

Bradford assay (BioRad). The 20KP slurry was then incubated with 75 μL of anti-GFP 

magnetic beads (Miltenyi Biotec) at 4°C overnight on a rotator. The beads were next 

magnetically immobilized on a MACS LS column, washed twice with 5mL of HB, and then 

eluted into 2mL of HB by removing the magnet. 50 μL of autophagosome-bound beads were 
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then processed for transmission EM imaging as described (Haspel et al., 2011) and the 

remainder were pelleted by centrifugation and resuspended in 200 μL NuPAGE LDS sample 

buffer (Life Technologies). The slurry was boiled, spun at 13,000 × g for 5 minutes to 

sediment the magnetic beads and 30 μL was then separated by SDS-PAGE. The gel was 

stained with Coomassie Brilliant blue (BioRad), and each lane was cut into 8 equal slices, 

de-stained, and alkylated with iodoacetamide. Gel extraction, trypsin-digestion, and 

proteomics analysis of samples was performed at the Harvard Mass Spectrometry and 

Proteomics Resource Laboratory, FAS Center for Systems Biology by reverse-phase HPLC 

nano-electrospray tandem mass spectrometry (mLC/MS/MS) on an LTQ-Orbitrap mass 

spectrometer (ThermoFisher). MS/MS spectra were analyzed using SEQUEST against the 

database uniprotmus_frc as described (Chittum et al., 1998; Eng et al., 1994; Taniguchi et 

al., 2002). Spectral counts that met an FDR threshold of 1%, based on a reverse-sequence 

match strategy, were then used for estimation of autophagic flux (see below). We analyzed 2 

independent experiments in which Basal and LPS conditions were compared and one 

experiment where the basal condition alone was examined. Spectral count data are presented 

in Data S3.

Proteomic estimation of autophagic flux—To develop a proteomics-based estimate of 

autophagic flux we utilized protein spectral counts, since this means of peptide 

quantification is conceptually straightforward and correlates linearly with changes in relative 

protein abundance (Collier et al., 2010). Moreover, spectral counting has been used 

successfully in other proteomic analyses of autophagy where leupeptin was used to enhance 

substrate abundance (Cudjoe et al., 2017; Mancias et al., 2014; Schneider et al., 2014). We 

defined autophagic flux as the increase in spectral counts in the leupeptin-treated animals 

compared to sham injected animals normalized to apparent protein abundance. To this end, 

we defined a flux composite score (FCS) for any given protein ID j as:

FCS j = Flux Delta j × Flux Index j

Where:

Flux Delta j =
Spl j

Spltot
−

SpP j
SpPtot

× 10000

Flux Index j =

Spl j
Spltot

−
SpP j

SpPtot
Spl j

Spltot

Subscript j is any given protein ID, Sp is spectral counts, I is protease inhibitor-treated mice, 

P is pbs-treated mice, and tot is the total spectral counts for a given sample. Note negative 

values were treated as an FCS score of 0.
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Prior proteomic analyses adopted various standards for judging proteins as targets of 

autophagy as opposed to stable constituents of the autolysosome (Cudjoe et al., 2017; 

Mancias et al., 2014; Schneider et al., 2014; Wong et al., 2017). We derived our standard for 

autophagy substrate detection based on the technical variability of our discovery platform, as 

estimated by two negative control datasets. The first dataset (Control Distribution 1, Data 

S5), consisted of FCS scores that were synthetically generated from 8 independent 

proteomics runs of the same biological sample of total liver homogenate. The second dataset 

(Control Distribution 2, Data S5) consisted of human contaminating proteins identified in 

our samples, as well as 2 exogenous proteins (HRPand yeast Enolase, see above) that were 

spiked in equal quantity into each of our biological samples prior to processing. Since FCS 

scores generated from either dataset should ideally equal 0, these distributions provided a 

means of estimating the contribution of technical error to our autophagic flux measurements. 

Applying sensitivity analysis to both control distributions, we determined that a global mean 

FCS score >0.3 plus at least 2 time points with average FCS scores above the 95th percentile 

relative to the control distribution (i.e., Data Consistency Threshold > 1) would produce a 

false detection rate (FDR) of < 5% for identifying autophagic substrates (Data S2). For 

proteomics data derived from GFP-LC3+ vesicles we established a negative control 

distribution consisting of human contaminant proteins and false-positive hits identified from 

a reverse-sequence database (Data S5). In this distribution too, a global average FCS score > 

0.3 plus at least 2 time points with FCS scores above the 95th percentile relative to the 

control distribution (i.e., Data Consistency Threshold > 1) produced a false detection rate 

(FDR) of < 5% for identifying autophagic substrates (Data S2). These thresholds were 

therefore used throughout this paper to identify autophagy substrates. To facilitate 

comparisons of autophagic flux rhythms between different groupings of substrates (Figure 

3), FCS values were normalized by dividing by the global mean FCS value for each 

identified substrate (Basal and LPS groups combined).

Endoplasmic Reticulum isolation—Purified smooth and rough endoplasmic reticulum 

(ER) were isolated from liver microsomes using the Endoplasmic Reticulum Isolation Kit 

(Sigma-Aldrich) according to the manufacturer’s instructions. Briefly, microsomes were 

prepared from Dounce homogenized mouse liver, floated in a discontinuous Optiprep 

gradient and sedimented at 150,000 × g for 3 hours in a Beckman L8-80M ultracentrifuge. 

Fractions were collected from the top of the gradient and analyzed via SDS-PAGE and 

western blot.

In vitro proteasome activity assay—For measuring proteasome activity in vitro from 

liver extracts we utilized fluorogenic model substrates as described (Cui et al., 2014). 

Briefly, liver was Dounce homogenized in proteasome reaction buffer (50 mM Tris, 1mM 

EDTA, 150 mM NaCl, 5 mM MgCl2, 0.5 mM DTT, pH 7.5) and clarified by centrifugation. 

20 μg of liver protein was then incubated with 100 μM of Suc-LLVY-AMC (Fisher 

Scientific), Z-LLE-AMC (Fisher Scientific), or Boc-LSTR-AMC (Sigma) to measure 

chymotrypsin, caspase, and trypsin-like proteasomal activities, respectively, plus freshly 

added 0.1 mM ATP and 0.5 mM DTT. As a negative control duplicate samples were 

incubated with mg132 (Sigma) as described (Cui et al., 2014). The fluorescence 

accumulation was monitored for 2 hours at 37°C and an excitation/emission of 380/460 
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using a BioTek Synergy 4 instrument. Fluorescence was converted to nmol of AMC cleaved 

per minute per mL and normalized by dividing individual activities by the average assay 

activity.

In vivo measurement of proteasomal activity—For measuring proteasome activity in 
vivo, mice were injected with either 0.5 mL PBS or 1.6 μg/g bortezomib (EMD Millipore) in 

PBS, and the left lobe of the liver was harvested 2 hours later. Livers were then processed to 

obtain 3KP and Cyto fractions as described above for measuring autophagic flux (Figure 

S7A). Proteasomal content was quantified by analyzing Lys48-linked poly-Ubiquitin (K48-

Ub) in Cyto fractions as extrapolated from a standard curve of purified protein (Boston 

Biochem). Analogous to autophagy, proteasomal flux was defined as the difference in K48-

Ub content between Bortezomib-treated and control-treated samples. As alternative markers 

for proteasomal flux, p62 content ± bortezomib and LC3b-II content ± bortezomib was 

analyzed in the 3KP fraction.

Quantitative PCR (qPCR)—Measurement of clock gene expression in mouse liver tissue 

via qPCR was conducted as described (Ehlers et al., 2018). Briefly, liver RNA was extracted 

in Trizol, and reverse transcription was carried out using the Applied Biosystems High 

Capacity cDNA Reverse Transcription Kit. Real Time PCR was performed on the ABI 7500 

Fast Real-Time PCR system. For all analyses tbp was used as the housekeeping gene. For 

determining statistical significance, gene expression data were log normalized prior to 

applying the Students 2-tailed t-Test.

Methodological Limitations—Our approach to measuring autophagic flux has several 

limitations. We utilized liver homogenates which means our method does not detect 

variations in autophagy or proteasome activity between cell types (hepatocytes or Kupfer 

cells), or between different anatomical regions within the liver.

Because time must elapse after leupeptin injection to allow lysosomal substrates to 

accumulate, our readout of flux represents mean activity over a 2-hour window rather than a 

point estimate. As a result, there is a limit to the resolution our assay can provide for 

visualizing diurnal rhythms, and the precision of our period and phase estimates should be 

treated as approximations.

In order to ensure the consistent execution of autophagic flux time series experiments, data 

were derived from time series shorter than 48 hours and exclusively under standard lighting 

conditions (LD 12:12, food ad lb.). This choice limited our sensitivity for detecting low 

amplitude rhythms compared to longer periods of observation (> = 48 hours). It also meant 

our proteomics data cannot distinguish between cell intrinsic circadian rhythms in autophagy 

that are independent of environmental cues, and those that are merely “diurnal” (i.e., depend 

on a natural light-dark cycle for expression). For circadian rhythm parameter estimation, we 

utilized COSOPT because of its simplicity and long history of use. However nonparametric 

algorithms such as JTK CYCLE have become more popular for estimating rhythm 

parameters (Hughes et al., 2017). In some of our early time series (Figure 1), datapoints 

were not all evenly spaced across the day, which is incompatible with JTK CYCLE analysis 

(Hughes et al., 2010). Because COSOPT is tolerant of unevenly spaced datapoints and 
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produces similar period and phase estimates to JTK CYCLE we deemed it a reasonable 

choice given our data.

Our analysis does not distinguish between the turnover of proteins bearing covalent 

modifications (such as acetylation) and those that do not. This represents a fertile avenue for 

future research.

Our proteomic approach to measuring autophagic flux detects lysosomal proteolysis in the 

aggregate, and our interpretation of whether a given protein was a client of macroautophagy, 

CMA, or other pathways is dependent on prior published literature. Moreover, many 

proteins arrive at the lysosome via more than one mechanism, and our approach was not 

designed to quantitate what proportion of turnover is dependent on CMA versus 

macroautophagy. However, given our data that rhythms in putative macroautophagy and 

CMA substrates were synchronous, our conclusions are not likely to be affected by this 

limitation.

Finally, we used label-free proteomics and spectral counting to measure autophagy due to its 

comparatively low cost and flexibility. However, this approach likely biased our data toward 

the detection of highly abundant proteins, and low abundance autophagy substrates may 

have been missed. In future studies, newer on-label and multiplexed proteomics systems, as 

well as quantification schemes such as iBAQ, may afford greater sensitivity in detecting low 

frequency autophagy substrates.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics—Circadian rhythm analysis was conducted using COSOPT as described (Haspel 

et al., 2014). COSOPT was set up to return best fit curves within a period range of 18-28 

hours. Statistical tests including ANOVA, Students t-Test, and 2×2 χ2-square contingency 

tables for functional enrichment analyses were done using Microsoft Excel. We used the 

Excel function NORMDIST to determine the probability that the difference in LC3b-II and 

p62 fluxacrophases was 0 (Figure 1E). As a cutoff for assigning temporal profiles to basal 

autophagy substrates, proteins whose FCS scores was above the 60th percentile at ZT19 

were classified assigned to Cluster 2. The rest were classified as Cluster 1. To obtain lists of 

mouse proteins associated with particular annotations, we queried UNIPROT in March, 

2016 with the following terms: Nucleus, Cytosol, Mitochondrion, ER, Golgi, Lysosome, 

Peroxisome, Vesicle, Endosome, Secreted, Extracellular, Exosome, Phagosome, Membrane, 

Transmembrane, Multi-pass Membrane Protein, Cytoskeleton, Aggresome, Insoluble, 

Autophagy, Ribosome, Proteasome, Circadian, Centrosome, Cellular Junction, Lipoprotein, 

Heat Shock, Glycogen Granule, Chaperone, Chaperonin, and Cilium. Hierarchal clustering 

analysis and visualization were done using open source Cluster 3.0 and Java TreeView 

software (de Hoon et al., 2004), available at http://bonsai.hgc.jp/~mdehoon/software/cluster/

software.htm. For KEGG pathway functional annotation enrichment analysis we used 

DAVID version 6.8 (Huangda et al., 2009a, 2009b), available at https://david.ncifcrf.gov/

content.jsp?file=citation.htm. Using a database of 6 independent time series experiments in 

which LC3b-II and p62 turnover was measured, we found statistically significant temporal 

variations in macroautophagic flux could be observed via 1-way ANOVA in 10/12 datasets 

using at least one marker protein, yielding a statistical power of about 83% (data not shown). 
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We employed blinding in the processing of samples for western blot and proteomic readouts 

of autophagic flux.

DATA AND SOFTWARE AVAILABILITY

Proteomics data have been deposited in the MassIVE repository under the accession number 

MSV000083314.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Autophagy exhibits proteome-wide rhythms in activity in mouse liver

• Rhythms globally harmonize autophagic and proteasomal activity

• Biological rhythms inform the subcellular location of autophagy substrates

• Inflammation polarizes autophagy toward the breakdown of mitochondria
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Figure 1. Circadian Characteristics of Macroautophagic Flux in Basal Mouse Liver
(A) Cartoon depicting protocol for measuring macroautophagic flux.

(B) Representative time series analysis of circadian rhythms in macroautophagy in basal 

mouse liver. Tiled images are representative western blots against p62 (top), LC3b-II 

(middle), and β-actin (bottom). Standards are shown to the left, and molecular weight 

markers (in kilodaltons) are depicted to the right of the images. Each lane represents 

lysosome-enriched protein fractions isolated from 126 μg of total liver homogenate (12 μL 

or 6% of the total fraction). Times of tissue harvest are depicted in units of zeitgeber time 
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(ZT), where ZT0 represents lights on (6:00 a.m. local time) and ZT12 represents lights off 

(6:00 p.m. local time). Collection times that occurred during subjective night are highlighted 

in black. −, PBS control-injected animals; +, leupeptin-injected animals.

(C–E) Circadian rhythm parameter analysis of basal macroautophagic flux in mouse liver 

using LC3b-II (blue bars) and p62 (orange bars) as markers.

(C and D) Period duration (C) and amplitude (D) expressed as a fraction of the mean (mean 

± SE, n = 6).

(E) Acrophase (mean ± SE, n = 6). The average phase difference ± SE between LC3b-II and 

p62 turnover is indicated above the graph (n = 6). The p value reflects the likelihood that the 

phase difference between LC3b-II and p62 acrophases is zero.

(F) Western blots depicting macroautophagic flux in livers of LPS-treated mice (12 mg/kg 

i.p. dose given at ZT5). Each lane represents lysosome-enriched fractions isolated from 126 

μg of total liver homogenate (12 μL or 6%of the total fraction) (see STAR Methods). −, PBS 

control-injected animals; +, leupeptin-injected animals. Data are representative of 4 

independent experiments.

(G and H) Quantification of macroautophagic flux using LC3b-II turnover (G) or p62 

turnover (H) as a marker of macroautophagic activity (mean ± SE, n = 3 flux 

measurements). The p values derived by one-way ANOVA are provided in the graph.

Also see Figure S1.
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Figure 2. A Proteomics-Based Approach to Measuring Autophagic Flux
(A) Western blots depicting p62 turnover in samples used for label-free proteomics analysis 

(see STAR Methods). Each lane represents 12 μL or 6% of the total fraction (see STAR 

Methods). Top, basal livers. Bottom, LPS (12 mg/kg given at ZT1). Below each blot, p62 

turnover is calculated using either densitometry from western blotting (in units of picomoles 

of p62 per milligram of total protein per hour, gray values), or using FCSs obtained from 

proteomics (blue values for basal and red values for LPS). These data are depicted 

graphically in normalized form to the right of the blots. See also Figure S2A.
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(B) Correlation between proteomics-based and western blot-based estimates of 

macroautophagic flux using p62 turnover as a marker. Datapoints represent the mean of 2 

turnover measurements obtained at various times of day. Blue circles, basal livers; red 

circles, LPS-treated mice.

(C) Macroautophagy substrates identified in our proteomics time series analysis using an 

FDR cutoff of <5% (see STAR Methods).

See also Data S1 and S2.
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Figure 3. Circadian Analysis of the Liver Autophagic Flux
(A) Heatmap depicting autophagic flux in mouse liver as a function of time of day and 

treatment (basal versus LPS). FCS values were normalized and then expressed as a 

percentile from the mean, with dark blue representing low turnover and yellow representing 

high turnover. Substrates are grouped based on whether turnover was detected in both basal 

and LPS-treated livers (n = 181), basal alone (n = 162), or LPS alone (n = 60). The 

substrates are further subdivided into 2 clusters, based on whether they have a nadir in 

turnover at ZT19 (cluster 1, black bar, n = 308) or not (cluster 2, light brown bar, n = 35). 
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The positions of known selective autophagy, bulk autophagy, and chaperone-mediated 

autophagy (CMA) substrates are depicted in red, black, and green text, respectively. The 

positions of FABP1 and CHI3L3 are noted in blue text.

(B) Circadian rhythms in mean normalized autophagic flux ± SE for different groups of 

substrates. Black circles, basal livers; red squares, LPS-treated livers. Sample sizes are 

specified in parentheses. **p < 0.05 basal versus LPS (Student’s two-tailed t test).

(C) Normalized autophagic flux (mean ± SE) for basal autophagy substrates with UNIPROT 

annotations exclusive for the nucleus (n = 4), cytosol (n = 104), mitochondria (n = 13), and 

ER (n = 5). Black circles, basal livers; red squares, LPS-treated livers. The p values 

calculated by one-way ANOVA are provided. *p < 0.05 basal versus LPS (Student’s two-

tailed t test).

(D) Hierarchal clustering analysis of autophagic flux mapping to specific subcellular 

compartments. Colored bars represent a heatmap of autophagic flux as a function of time of 

day in basal and LPS-treated livers. Low flux, dark blue bars; high flux, bright yellow bars. 

Sample sizes are depicted to the right.

See also Figures S3 and S4 and Data S1.
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Figure 4. The Proteasome Is a Selective Target of Autophagy
(A) Frequency of selected UNIPROT annotation terms in the basal (blue bars, n = 343) and 

LPS-associated (red bars, n = 241) autophagy substrate proteome. The annotation for 

proteasomes is marked by a green arrow.

(B) Stacked line graphs depicting the time structure of proteasome subunit turnover via 

autophagy (n = 24). Top graph, basal livers. Bottom graph, LPS-treated livers. As a visual 

aid, turnover profiles for 11S regulatory subunits are black, those for 19S subunits are green 

and brown, and those for 20S subunits are blue and red.
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(C) Enrichment analysis for the UNIPROT annotation terms depicted in (A). Bars pointed to 

the right denote over-enrichment, and bars pointed to the left denote under-enrichment. See 

Data S4 for a tabular presentation of these data. *p < 0.05 (χ2 contingency table analysis).

(D) Western blot depicting subcellular fractionation of total liver protein using Nycodenz 

density gradient centrifugation (see STAR Methods). LAMP2 and LDH are provided as 

lysosomal and cytosolic markers, respectively. Higher fraction numbers denote increasing 

density. Left, sham (PBS)-treated mice. Right, leupeptin-treated mice. High-density 

fractions containing autophagic substrates are denoted by arrows and yellow highlights. Data 

are representative of 3 independent analyses.

(E) Western blots of mouse liver ER separated by OptiPrep density ultracentrifugation (see 

STAR Methods). Peak fractions for ATG9a and LC3b-II are highlighted yellow. Sec61 is 

provided as an ER marker. Data are representative of 3 independent analyses.

(F) Mean proteasome enrichment relative to ribosomes ± SE (n = 3), as reflected by 

PSMB2/RS3 ratios. Peak fractions for ATG9a and LC3b-II are denoted by a gray bar.
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Figure 5. Diurnal Rhythms in Autophagic and Proteasomal Activity
(A) Protocol for parallel time series analyses of autophagic and proteasomal flux. See STAR 

Methods and Figure S7A for descriptions of sample preparation.

(B and C) Representative western blots of p62 and LC3b-II in the lysosome-enriched (3KP) 

fraction (B) and Lys48-linked polyubiquitin (K48-Ub) chains in the Cyto fraction (C). β-

actin and LDH are shown as loading controls (B and C, respectively). For (B), each lane 

represents 12 μL of the 3KP fraction pooled from n = 3–4 mice, representing the content 

obtained from 126 μg of total protein. For (C), each lane represents 19 μg of protein pooled 
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from n = 3–4 mice. −, PBS-treated animals; L, leupeptin-treated animals; B, bortezomib-

treated animals.

(D–F) Quantification of circadian rhythms in autophagic and proteasomal flux in normal 

mouse liver using various markers (mean ± SE, n = 3–4 measurements). Data presented 

were concatenated from 2 independent time series experiments. For each set of data, a best 

fit cosine curve and rhythm parameters were generated using COSOPT and are listed in the 

graphs. Statistical significance was determined using one-way ANOVA.

(D) Autophagic flux as measured by the increase in p62 with leupeptin in the 3KP fraction 

(orange squares), and proteasomal flux as measured by the increase in K48-Ub with 

bortezomib in the Cyto fraction (blue circles).

(E) Autophagic flux as measured by the increase in p62 with leupeptin in the 3KP fraction 

(orange squares), and proteasomal flux as measured by the uptick in p62 content with 

bortezomib in the 3KP fraction (green circles).

(F) Autophagic flux as measured by the increase in LC3b-II by leupeptin in the 3KP fraction 

(gray squares), and proteasomal flux as measured by the uptick in LC3b-II content with 

bortezomib in the 3KP fraction (purple circles).

Also see Figures S5 and S6.
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Figure 6. LPS Coordinately Represses Autophagic and Proteasomal Flux
(A and C) Western blot analysis of macroautophagic (A) and proteasomal flux (C) in liver 

homogenates from PBS-treated (basal) and LPS-treated mice (12 mg/kg LPS given at ZT3, 

19 h before harvest). −, PBS-treated animals; L, leupeptin-treated animals; B, bortezomib-

treated animals. Data are representative of 2 independent experiments. Each lane in (A) 

represents 3KP fraction protein (12 μL or 6% of the total fraction), and each lane of (C) 

represents 19 mg of cytosolic protein.

(B and D) Quantification of macroautophagic (B) and proteasomal flux (D) using various 

markers depicted on the horizontal axis of each graph. Each bar represents the mean ± SE (n 

= 7 mice pooled from 2 independent experiments). To facilitate comparisons, data were 

normalized to results from basal mice. *p < 0.05 basal versus LPS (Student’s two-tailed t 

test).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

LC3b antibody Novus Cat#NB100-2220; RRID:AB_10003146

LC3b antibody Cell Signaling Technology Cat#2775; RRID:AB_915950

Rabbit Anti-p62/SQSTM1 Sigma-Aldrich Cat#P0067; RRID:AB_1841064

K48-linkage Specific Polyubiquitin (D9D5) 
Rabbit mAb

Cell Signaling Technology Cat#8081S; RRID:AB_10859893

beta Actin Loading Control Monoclonal 
Antibody (BA3R)

Thermo Fisher Scientific Cat#MA5-15739; RRID:AB_10979409

beta-Actin Antibody (AC-15) [HRP] Novus Cat# NB600-501H; RRID:AB_1216153

LDH Antibody (H-160) Santa Cruz Biotechnology Cat# sc-33781; RRID:AB_2134947

LAMP-2 Antibody (M3/84) Santa Cruz Biotechnology Cat# sc-19991; RRID:AB_626855

PSMD11 (D1T1R) Rabbit mAb Cell Signaling Technology Cat#14303

20S Proteasome β2 Antibody (MCP165) Santa Cruz Biotechnology Cat# sc-58410; RRID:AB_785340

FABP1 (D2A3X) XP® Rabbit mAb Cell Signaling Technology Cat#13368

Mouse YM1/Chitinase 3-like 3 Antibody R and D Systems Cat# AF2446; RRID:AB_2079008

IRDye® 800CW Donkey anti-Rabbit IgG (H + L) LI-COR Cat#926-32213; RRID:AB_621848

IRDye 680RD Donkey anti-Mouse IgG (H + L) LI-COR Cat# 926-68072; RRID:AB_10953628

CLOCK (D45B10) Rabbit mAb Cell Signaling Technology Cat# 5157s; RRID:AB_10695411

Phospho-S6 Ribosomal Protein (Ser235/236) 
(D57.2.2E) XP® Rabbit mAb

Cell Signaling Technology Cat# 4858; RRID:AB_916156

Ribosomal Protein S6 Antibody (E-13) Santa Cruz Technology Cat# sc-13007; RRID:AB_655867

RORα (H-65) rabbit polyclonal antibody Santa Cruz Technology Cat# sc-28612; RRID:AB_2180141

Chemicals, Peptides, and Recombinant Proteins

Bortezomib EMD Millipore Cat# 5.04314.0001; CAS: 179324-69-7

Leupeptin Sigma Cat# L2884; CAS: 103476-89-7

Lipopolysaccharides from Escherichia coli 
O127:B8

Sigma Cat# L3129

Chloroquine Sigma Cat# C6628

Histodenz Sigma Cat# D2158; CAS: 66108-95-0

SIGMAFAST Protease Inhibitor Tablets Sigma Cat# S8820

NuPAGE 4-12% Bis-Tris Midi Protein Gels Thermo Fisher Scientific Cat# WG1403BOX

Horseradish peroxidase Sigma Cat# P-6782; CAS: 9003-99-0

Enolase from baker’s yeast (S. cerevisiae) Sigma Cat# E6126; CAS: 9014-08-8

QC Colloidal Coomassie Stain Bio-Rad Cat# 1610803

Suc-LLVY-AMC, fluorogenic substrate Anaspec Cat# AS-63892

Z-Leu-Leu-Glu-AMC (Z-LLE-AMC) R&D Systems Cat# S-230-05M

Boc-Leu-Ser-Thr-Arg-7-amido-4-
methylcoumarin protein C substrate

Sigma Cat# B4636

7-Amino-4-methylcoumarin, 98% Alfa Aesar Cat# A15017-MD

MG132 Sigma Cat# C2211; CAS 133407-82-6
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REAGENT or RESOURCE SOURCE IDENTIFIER

GST-LC3b Novus Cat# H00081631-Q01

P62-his Novus Cat# NBP1-44490

LC3a Boston Biochem Cat# UL-430

rhPoly-Ub WT (2-7) (K48) Boston Biochem Cat# UC-230

Critical Commercial Assays

uMACS GFP Isolation Kit Miltenyi Biotec Cat# 130-091-125

Deposited Data

Proteomics Data This paper MassIVE: MSV000083314

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson Laboratories JAX: 000664

Mouse: GFP-LC3 transgenic mice RIKEN Labs RBRC00806

Mouse: B6.129S4(Cg)-Arntltm1Weit/J Jackson Laboratories JAX: 007668

Mouse: B6.C-Tg(CMV-cre)1Cgn/J Jackson Laboratories JAX: 006054

Oligonucleotides

PrimeTime Std® qPCR Assay for dbp, mouse, 
Assay ID Mm.PT.58.16911772

IDT Cat# Mm.PT.58.16911772

TaqMan® Gene Expression Assay for arntl, 
mouse, Assay ID Mm00500223_m1

ThermoFisher Cat# Mm00500223_m1

PrimeTime Std® qPCR Assay for tbp, mouse, 
Assay ID Mm.PT.39a.22214839

IDT Cat#Mm.PT.39a.22214839

Software and Algorithms

COSOPT Haspel et al., 2014 N/A

Cluster 3.0 de Hoon et al., 2004 http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

Java TreeView software de Hoon et al., 2004 http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

Other

Immobilon-FL PVDF Membrane EMD Millipore Cat# IPFL00010
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