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ABSTRACT

Metagenomics is the study of all genomic content
contained in given microbial communities. Metage-
nomic functional analysis aims to quantify pro-
tein families and reconstruct metabolic pathways
from the metagenome. It plays a central role in
understanding the interaction between the micro-
bial community and its host or environment. De
novo functional analysis, which allows the discov-
ery of novel protein families, remains challenging
for high-complexity communities. There are currently
three main approaches for recovering novel genes
or proteins: de novo nucleotide assembly, gene call-
ing and peptide assembly. Unfortunately, their in-
formation dependency has been overlooked, and
each has been formulated as an independent prob-
lem. In this work, we develop a sophisticated work-
flow called integrated Metagenomic Protein Predic-
tor (iMPP), which leverages the information depen-
dencies for better de novo functional analysis. iMPP
contains three novel modules: a hybrid assembly
graph generation module, a graph-based gene call-
ing module, and a peptide assembly-based refine-
ment module. iMPP significantly improved the exist-
ing gene calling sensitivity on unassembled metage-
nomic reads, achieving a 92–97% recall rate at a
high precision level (>85%). iMPP further allowed
for more sensitive and accurate peptide assembly,
recovering more reference proteins and delivering
more hypothetical protein sequences. The high per-
formance of iMPP can provide a more comprehen-
sive and unbiased view of the microbial communi-

ties under investigation. iMPP is freely available from
https://github.com/Sirisha-t/iMPP.

INTRODUCTION

Microbial communities are ubiquitously present in many
environmental niches on earth, including soil (1), water
(2) and air (3). They are a critical component of the hu-
man system, playing important roles in maintaining hu-
man health and wellbeing (4–6). Human microbiome dys-
biosis can lead to various diseases, such as obesity (7–10),
diabetes (11,12) and inflammatory bowel disease (13–15).
On the other hand, human microbiome intervention has
recently been explored as a meaningful non-invasive treat-
ment. For example, Salmonella, Escherichia, and Clostrid-
ium are used as anticancer agents with highly promising
effects in cancer therapeutics (16–18). Certain microbes
are correlated with the response and toxicity from cancer
treatments (19,20). Advances in next-generation sequencing
(NGS) enable metagenomics, the study of the genomic con-
tent of a microbial community as a whole (21,22). Metage-
nomic sequencing data allows one to examine the taxo-
nomic composition of the microbial community (23–25).
More importantly, it further enables protein family profiling
(26–28) and metabolic pathway reconstruction (29,30). This
information is critical to unlocking the functional potential
of the microbial community and elucidating its interactions
with the environment.

Metagenomic functional analysis usually begins with
homology search, such as aligning the sequencing reads
against functionally annotated genomes (e.g. NCBI Ref-
Seq) or protein databases (NCBI NR or UniProt (31)) using
BLAST (32). However, due to the incompleteness of current
databases, this approach may overlook functional elements
encoded by previously-unseen microbial species and novel
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Figure 1. The informational dependency among de novo nucleotide assembly, gene calling and peptide assembly. Solid arrows indicate dependencies that
have been utilized by iMPP to improve metagenomic functional annotation.

protein families, yielding a biased view of the community’s
function. Alternatively, a reference-independent approach
first assembles the sequencing reads into complete or near-
complete genome sequences using de novo genome assem-
blers such as Meta-IDBA (33), MEGAHIT (34), MetaVel-
vet (35,36) and metaSPAdes (37). Then, it attempts to find
open reading frames (ORFs) directly from the assembled
genomes based on signals such as gene length, GC-content,
and codon usage that characterize most protein-coding
genes. The so-called de novo gene calling step can be handled
by software packages like Glimmer (38), GeneMark (39),
and Prodigal (40). When long enough genomic sequences
with stable and complete ORF signals are available, de novo
gene calling is often reliable. However, this step becomes
more challenging on fragmented sequences (e.g. unassem-
bled reads). More sophisticated computational models and
algorithms are thus required to solve this problem. Soft-
ware packages that support fragmented gene calling in-
clude MetaGeneAnnotator (41), FragGeneScan (42), Or-
phelia (43), Glimmer-MG (44), MetaGeneMark (45) and
MetaProdigal (46). Despite being less accurate than their
genome-scale counterparts (42,43), fragmented gene callers
can detect low-abundance protein-coding reads that are dif-
ficult to assemble. They output the detected protein-coding
reads, whose corresponding peptide sequences can be fur-
ther assembled into peptide contigs using de novo peptide
assemblers such as SPA (47,48), PLASS (49) and MetaPA
(50).

The three de novo functional analysis approaches dis-
cussed above, i.e. de novo nucleotide assembly, gene call-
ing, and peptide assembly, strongly depend on each other
(Figure 1). First, nucleotide assembly reconstructs longer

genomic sequences with stronger and more stable ORF sig-
nals, which is expected to improve gene calling (42,43). For
example, Graph2Pro (51) explicitly couples nucleotide as-
sembly and gene calling by searching ORFs from paths in
the nucleotide assembly graph. Second, gene calling can
benefit downstream peptide assembly by providing refined
short peptide sequences as input. The peptide assembler
SPA (47) showed a higher performance when fed with pep-
tide sequences predicted by FragGeneScan (42) compared
to those predicted by MetaGeneAnnotator (41). We will
further show (in this work) that peptide assemblers that
accept all six-frame translations as input can also benefit
from a refined input set. Conversely, peptide assembly ex-
plores the overlap information among the input short pep-
tide sequences and can improve gene calling by rescuing
false-negative predictions. Specifically, if a candidate ORF
significantly overlaps with other peptides and is assembled
into a long-enough contig, the candidate ORF is likely to be
correct. The peptide overlap information is independent of
the traditional ORF signals (e.g. codon frequency) and can
further contribute to gene calling. Finally, peptide assembly
reconstructs longer peptide contigs or even complete pro-
tein sequences that can serve as guides to nucleotide assem-
bly. The so-called gene-centric assembly demonstrates bet-
ter performance than its model-free counterparts (52–54).

Despite the strong informational connection and depen-
dency of de novo nucleotide assembly, gene calling, and
peptide assembly in metagenomic functional analysis, they
have largely been considered and solved independently. Ex-
amples include many dedicated metagenome assemblers
(33–37), dedicated metagenomic gene callers (41,42,44,45),
and dedicated metagenomic peptide assemblers (47–50).
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Figure 2. The iMPP workflow overview. Yellow arrows indicate nucleotide assembly information flow; green arrows indicate gene calling information flow
using FGS or MPD as the core gene-caller; and blue arrows indicate peptide assembly information flow. The bolded operations, i.e. ‘graph merging’, ‘iMPP
gene calling’, and ‘PLASS refinement’ are unique contributions of iMPP and discussed in detail in the Materials and Methods section. ‘MG reads’ stands
for metagenomic reads.

While Graph2Pro (51) explicitly couples nucleotide assem-
bly with gene calling, it expects metaproteomic data to
validate its protein prediction and lacks a peptide assem-
bly component. To the best of our knowledge, no func-
tional annotation method exists that considers the infor-
mation dependency among these three approaches and
integrates them into a single functional analysis frame-
work. It remains unclear whether doing so is feasible
and by how much it can improve metagenomic functional
analysis.

We integrate nucleotide assembly, gene calling and pep-
tide assembly into a de novo metagenomic functional analy-
sis workflow called integrated Metagenomic Protein Predic-
tor (iMPP). Instead of being a simple sequential execution,
iMPP is empowered with three novel modules to fully lever-
age the information dependency. iMPP constructs a hybrid
assembly graph by merging a de Bruijn graph and an over-
lap graph. The de Bruijn graph information increases graph
connectedness, while the overlap graph information retains
minor sequence variations. It further contains a novel gene
calling module that operates on the merged hybrid graph.
The gene calling module is computationally efficient by ap-
plying heuristics to eliminate unnecessary graph traversals.
Finally, iMPP employs a protein reconstruction module
with a two-pass peptide assembly, correcting the gene call-
ing results in the first pass and reconstructing peptide con-
tigs in the second pass. Due to computational efficiency con-
cerns, the current implementation of iMPP does not contain
a gene-centric nucleotide assembly module that guides nu-
cleotide assembly with the assembled peptide contigs (Fig-
ure 1, the broken gray line).

We benchmarked the performance of iMPP in terms of
both de novo gene calling and peptide sequence assembly
on a mock community, four real metagenomic datasets,
and one metatranscriptomic dataset from different environ-
ments: human gut, soil, marine, cow rumen and sugarcane
rhizosphere. While the performance of the existing gene
calling methods is already as high as 80–90%, iMPP fur-
ther improved it by another ∼5%, reaching 85–92% of F-
measure. For peptide assembly, we further compared iMPP
with two other strategies: one as a sequential integration of
gene calling and peptide assembly, and the other as pep-
tide assembly alone. Our evaluations using both real and
simulated metagenomic datasets showed that iMPP out-
performed both strategies in most assembly statistics, in-
cluding assembly rate, the number of assembled reads, as-
sembled contig length, N50, reference coverage, and speci-
ficity. iMPP successfully recovered ∼40–3500 more known
protein sequences than the second-best method and recon-
structed ∼400–434 000 more novel peptide sequences over
60aa. Taken together, iMPP has demonstrated the feasibil-
ity and benefit of integrating de novo nucleotide assembly,
gene calling, and peptide assembly in metagenomic func-
tional analysis.

MATERIALS AND METHODS

The iMPP algorithm

iMPP overview. Figure 2 summarizes the iMPP workflow.
iMPP first runs FragGeneScan (42) or MetaProdigal (46)
on the unassembled metagenomic (MG) or metatranscrip-
tomic (MT) reads to perform fragmented gene calling. In
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Figure 3. A schematic illustration of the iMPP hybrid graph generation and iMPP gene calling modules. (A) iMPP aligns terminal edges of the assembly
overlap graph components (blue) against the de Bruijn graph contigs (purple), and attaches the aligned overlap graph components to the de Bruijn graph
contigs. (B) iMPP predicts the protein-coding potential of each edge of the resulted hybrid graph and marks them as either protein-coding (green) or
noncoding (gray). iMPP selects the noncoding edges (gray) as anchors and performs depth-first-search from the anchors towards both directions to
generate candidate paths.

the rest of this article, we refer to FragGeneScan as FGS and
MetaProdigal as MPD for short. In order to leverage se-
quence overlap information to improve gene calling, iMPP
uses nucleotide assemblers SGA (55) and SPAdes (37) to
generate assembly overlap graph and de Bruijn graph con-
tigs, respectively. It then merges them into a hybrid graph
(see the ‘Assembly Graph Merging’ section). iMPP per-
forms the second pass of gene calling on the edges and paths
of the hybrid graph (see the ‘iMPP Gene Calling’ section).
Subsequently, iMPP refines the gene calling results by ex-
ploiting sequence overlap information among the peptide
reads (see the ‘Gene Calling Refinement’ section). Finally,
all predicted short peptides are assembled using PLASS
(49). Below we focus on the three modules uniquely con-
tributed by iMPP (Figure 2, bolded operations). Note that
iMPP is a generic framework that can integrate other op-
tions of gene callers, de novo genome assemblers, and de
novo peptide assemblers; the options are not limited to
FGS, MPD, SGA, SPAdes, and PLASS as have been tested
here. More detailed method descriptions, including the cho-
sen parameters and command lines, are available from Sup-
plementary Methods.

Assembly graph merging. iMPP employs a hybrid graph
generation module that combines a nucleotide assembly
overlap graph and a set of contigs generated by de Bruijn
graph assemblers (Figure 3A). de Bruijn graph assembly
breaks down the reads into k-mers and models sequence
overlap via shared k-mers among reads. It can identify se-
quence overlaps with a greater sensitivity and often pro-
duces more complete assemblies. However, it may overlook
minor local sequence variations due to its more aggressive
graph simplification strategy. Overlap graph, in contrast,
preserves raw sequence variation information but is more
fragmentary. Therefore, by merging information from both
graphs, we expect to preserve the raw sequence information
from the overlap graph and improve the graph connected-
ness. The idea is similar to hybrid assembly, where longer
reads (e.g. PacBio SMRT or Oxford Nanopore MinION)
are used to connect short reads (56–58) to improve the over-
all assembly.

Specifically, iMPP attempts to connect the isolated over-
lap graph components using de Bruijn graph contigs as a

bridge. iMPP generates an assembly overlap graph using
SGA (55) and simplifies the overlap graph by collapsing
all unbranched unipaths into single paths (Figure 3A, the
blue graph). iMPP then uses SPAdes (under ‘meta’ mode
(37)) to generate de Bruijn contigs (Figure 3A, the pur-
ple sequence). Denote a vertex with an in- or out-degree
of 0 as a dead end and an edge containing at least one
dead end as a terminal edge. iMPP collects all terminal
edges from the overlap graph and maps them against all de
Bruijn graph contigs. It discards the alignments in which
the dead-end sequences are clipped. iMPP then attaches
the overlap graph components onto the aligned de Bruijn
graph contigs (Figure 3A). iMPP includes all unaligned
overlap graph components and de Bruijn graph contigs
into the hybrid graph without any modification. This mod-
ule is similar to the hybrid graph construction module in
DRAGoM (59).

iMPP gene calling. Given the hybrid graph, iMPP per-
forms the second pass of gene calling on the paths of the
hybrid graph (recall that the first pass of gene calling is
performed directly on unassembled reads). Since paths in
the hybrid graph contain sequences longer than individual
reads, they may contain more complete and stable ORF sig-
nals (26,60). However, as the number of paths grows expo-
nentially w.r.t the traversal depth, iMPP employs an ‘anchor
and extend’ heuristic to reduce the running time. Specifi-
cally, iMPP first runs FGS or MPD on the edges of the hy-
brid graph. Since microbial genomes are dense in protein-
coding genes, the graph usually contains significantly fewer
unpredicted edges (i.e. noncoding) than predicted edges.
Consequently, iMPP only selects the unpredicted edges as
anchors to avoid traversing a large proportion of the graph
(Figure 3B). Intuitively, if many predicted edges surround
an unpredicted edge, the unpredicted edge is likely to be
protein-coding and should also be predicted. iMPP per-
forms a depth-first search (DFS) towards both directions
from each anchor (Figure 3B). The DFS terminates after
reaching a certain depth, which further bounds the num-
ber of paths that need to be reinvestigated. Finally, iMPP
reperforms gene calling on the collected paths using FGS
(42) or MPD (46). The predicted edges and paths are both
considered as protein-coding; the MG reads that can be
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Table 1. A summary of benchmark datasets. ‘#Reads’ indicates the total number of reads for the complete dataset; ‘#Genomes’ indicates the number
of reference genomes used for subsampling, ‘#Sampled Reads’ corresponds to the number of subsampled reads. ‘Type’ indicates if the sample belongs to
Metagenome (MG) or Metatranscriptome data (MT)

Dataset Accession Type Description Len. #Reads #Genomes #Sampled reads

DS1 SRR341583 MG Human gut 75 23.4M 3499 9M
DS2 SRR350919 MG Soil 75 43.9M 65 356 2.9M
DS3 SRR5720229 MG Marine 150 61.1M 27 216 11.3M
DS4 ERR2027889 MG Cow rumen 150 109.8M 8980 7.8M
DS5 SRR606249 MG Mock 102 53.6M 64 49.4M
DS6 SRR14614185 MT Rhizosphere 101 25.3M 4007 2.3M

mapped to the protein-coding edges and paths are consid-
ered as protein-coding reads.

Gene calling refinement. iMPP further refines the gene
calling results by utilizing the overlap information in pep-
tide space. Note the difference between this stage and the
previous stage, which relies on overlap information in nu-
cleotide space. Due to codon redundancy, reads that cannot
be overlapped in nucleotide space (because of synonymous
mutations) may be overlapped in peptide space (47). Hence,
ORF signals that are missed during nucleotide assembly
could be captured by peptide assembly. Specifically, iMPP
collects the remaining unpredicted reads and performs all
six-frame translations to convert them into pseudo peptides.
Note that each nucleotide read can associate with up to
six pseudo peptides. Then, the pseudo peptides are assem-
bled with the predicted peptides using PLASS (49). Reads
with at least one of their pseudo peptides assembled into
long-enough contigs are considered as protein-coding; the
pseudo peptides contained in the longest contigs are used
to determine the frame.

Benchmark datasets

We used six real datasets from different environments (from
human gut (61), soil (62), marine (63), cow rumen (64),
a mock community, and sugarcane rhizosphere) to bench-
mark iMPP. We named them DS1–6 respectively. To obtain
the ground truth for each dataset, we collected the corre-
sponding taxonomy information from NCBI, and mapped
the reads against these reference genomes. The reference
genomes and their relative abundances for DS1–6 are avail-
able from Supplementary Tables S16–S21, respectively. We
compiled all the mapped reads into so-called subsampled
datasets. We also used the entire set of reads to benchmark
the software’s performance on real data; we refer to them as
the complete datasets. Detailed information is summarized
in Table 1 and is available in Supplementary Methods.

We also benchmarked using three simulated datasets,
where the first two comprised of reads generated in silico
from reference genomes, and the third was a CAMI dataset
(65). Please see Supplementary Methods and Results as well
as Supplementary Table S7 for more information regarding
these simulated datasets.

Performance metrics

We benchmarked iMPP with three other strategies in terms
of both de novo gene calling and peptide assembly. The first

strategy corresponded to the fragmented gene calling di-
rectly on the unassembled reads using either FGS or MPD.
We refer to the iMPP pipeline that takes FGS as the core
gene caller as ‘iMPP(FGS)’, and the MPD-based iMPP as
‘iMPP(MPD)’. The second strategy was to assemble the
reads using SGA and then perform gene calling on the as-
sembled contigs. Depending on the gene caller used, we
denote this strategy as ‘SGA + FGS’ or ‘SGA + MPD’.
The third strategy was similar to the second one, but with
SPAdes as the assembler, denoted as ‘SPAdes + FGS’ or
‘SPAdes + MPD’.

We measured the gene calling performance using preci-
sion and recall. For the subsampled datasets, we referred
to RefSeq (66) for the protein-coding genes in the reference
genomes. We defined true positives (TP) as the predicted
reads with >60% of their total lengths mapped to the coding
regions in the reference genomes, false positives (FP) as the
predicted reads that are not mapped to the coding regions,
and false negatives (FN) as the unpredicted reads that can
be mapped to the coding regions. Then, we computed the
recall, precision, and F-score as:

recall = T P
T P + F N

, precision = T P
T P + F P

,

F = 2 ∗ recall ∗ precision
recall + precision

Since no ground truth was available for the complete
datasets, we only reported the number of predicted protein-
coding reads.

For peptide assembly benchmark, we benchmarked
iMPP(FGS) and iMPP(MPD) with two other strategies.
The first strategy corresponded to the assembly of FGS (42)
or MPD (46) predicted reads using PLASS (49). We refer
to this strategy as ‘FGS + PLASS’ or ‘MPD + PLASS’, re-
spectively. This strategy was similar to SPA (47,48), which
expected the input to be selected by gene callers. The sec-
ond strategy was to use the entire set of unfiltered reads,
which was the expected input of PLASS. We refer to this
strategy as ‘PLASS’. We measured the total number of
assembled reads, the number of output contigs, the total
length of output contigs, N50, assembly rate (the number
of assembled reads over the total number of reads), and
chimera rate. To evaluate the correctness of the assembly,
we further aligned (using DIAMOND (67)) the contigs
against the proteins encoded in the reference genomes (for
the subsampled datasets) and the UniProt (31) database (for
the complete datasets). A contig was considered true if its
aligned proportion was above a certain threshold. We re-
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Figure 4. The ROC curves for the de novo gene calling performances of iMPP(FGS), SGA + FGS, SPAdes + FGS and FGS on the six subsampled datasets.
(A) DS1, (B) DS2, (C) DS3, (D) DS4, (E) DS5 and (F) DS6.

ported contig-level specificity as the total length of the true
contigs over the total contig length, and read-level speci-
ficity as the total number of reads constituting the true
contigs over the total number of assembled reads. Finally,
to measure sensitivity, we reported reference coverage as
the percentage of reference genes covered by the assembled
contigs.

All experiments were run on an in-house Linux server
equipped with an Intel Xeon E7-4850 CPU and 1T of phys-
ical memory. All software with run time reported were exe-
cuted with 16 threads.

RESULTS

Gene calling benchmark

The gene calling performances of iMPP(FGS) and the
other strategies on the six subsampled datasets are sum-
marized in Figure 4. The results were broadly consistent
among all datasets, where iMPP(FGS) demonstrated the
highest performance, followed by FGS, SPAdes + FGS and
SGA + FGS. Specifically, the peak F-scores of iMPP(FGS)
were between 84.97% and 92.16% among the six datasets
(Supplementary Table S1). The second-best strategy,
FGS, showed F-scores of between 80.03% and 90.24%.
iMPP(FGS) showed F-score improvement over FGS by
1.92% (DS5)–9.39% (DS2). The minimum improvement
was observed from DS5, a low-complexity mock commu-
nity that contains only 64 microbial species. Given the
already-high performance baseline of >80% F-score of
FGS, the improvement was significant. Strategies that per-
form gene calling on assembled reads, i.e. SGA + FGS and
SPAdes + FGS, performed worse than FGS, potentially be-

cause many reads were not assembled into contigs and were
not considered.

Similarly, iMPP(MPD) also showed improvement over
MPD on these six datasets (Supplementary Figure S1).
iMPP(MPD) showed peak F-scores between 83.04% and
92.69%, while MPD was between 77.12% and 90.61% (Sup-
plementary Table S2). iMPP(MPD) outperformed MPD on
F-score by 2.08% (DS5) and 11.76% (DS2). Overall, the per-
formances of iMPP(FGS) and iMPP(MPD) are highly sim-
ilar, and they both improved the corresponding core gene
callers FGS and MPD. The results shows that the improve-
ment brought by the iMPP framework is likely independent
of the core gene caller it integrates.

For the gene calling performance on the complete
datasets, we only report the raw prediction counts be-
cause no ground truth is available (Figure 5). iMPP(FGS)
and FGS predicted more protein-coding reads than the
assembly-based strategies SGA + FGS and SPAdes + FGS.
This is likely due to the low assembly rate on these datasets.
iMPP(FGS) also predicted more reads than FGS, especially
on DS1, DS2, and DS6 (14.60%, 18.69% and 15.92% more,
respectively). The improvement was marginal on DS3, DS4,
and DS5 (2.00%, 3.06% and 5.09% more respectively). The
results are consistent with the observations made from the
subsampled datasets (Figure 4), where iMPP(FGS) showed
the highest recall rate among all strategies. The benchmark
results with MPD as the core gene caller also showed a
similar trend (Supplementary Figure S2). iMPP(MPD) re-
mained the best method that predicts significantly more
protein-coding reads than MPD on DS1, DS2, DS5 and
DS6 (18.99%, 11.97%, 13.18% and 32.81% more, respec-
tively) and marginally more on DS3 and DS4 (0.31% and
4.27% more, respectively).
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Figure 5. The number of protein-coding reads predicted by iMPP(FGS), SGA + FGS, SPAdes + FGS and FGS on the six complete datasets. Panels from
left to right: DS1, DS2, DS3, DS4, DS5 and DS6.

Table 2. Peptide assembly statistics of iMPP(FGS), FGS + PLASS and PLASS on the subsampled datasets. The highest performance in each category is
bolded

Dataset Metrics iMPP(FGS) FGS + PLASS PLASS

DS1 (subsampled) # Contigs 28 851 25216 27826
Assembly rate (%) 29.14 29.17 25.93
Total contig length 2.19M 1.95M 2.09M
N50(bp) 75 75 75
Chimera rate (%) 0.033 0.018 0.02

DS2 (subsampled) # Contigs 13 529 10795 13490
Assembly rate (%) 8.57 7.16 7.32
Total contig length 1.21M 956K 1.21M
N50(bp) 90 89 89
Chimera rate (%) 0 0 0

DS3 (subsampled) # Contigs 759K 720K 758K
Assembly rate (%) 59.97 51.01 58.19
Total contig length 79.72M 77.08M 79.54M
N50(bp) 121 118 117
Chimera rate (%) 0.009 0.012 0.011

DS4 (subsampled) # Contigs 2.27M 2.23M 2.27M
Assembly rate (%) 85.54 82.35 79.39
Total contig length 353.23M 350.73M 353.12M
N50(bp) 179 177 176
Chimera rate (%) 0.097 0.099 0.091

DS5 (subsampled) # Contigs 15.31M 13.95M 15.30M
Assembly rate (%) 96.20 95.91 95.99
Total contig length 2.04B 1.88B 2.04B
N50(bp) 147 142 147
Chimera rate (%) 2.42 2.23 2.42

DS6 (subsampled) # Contigs 14 909 13095 14700
Assembly rate (%) 23.63 18.65 22.7
Total contig length 1.56M 1.35M 1.55M
N50(bp) 108 105 107
Chimera rate (%) 0 0 0

Peptide assembly benchmark

We summarize the peptide assembly benchmark results on
the subsampled datasets in Table 2. We only considered pep-
tide contigs that are ≥60aa long. iMPP(FGS) assembled
the largest number of contigs and total contig length for all
datasets. It outperformed FGS + PLASS by 0.71–27.17%
of the total contig length, but with a less significant im-
provement over PLASS (0.03–4.88%). Note that the pep-
tide assembly module of iMPP only accepted the predicted
protein-coding reads as input, which is less than the en-
tire dataset accepted by the PLASS strategy (DS1: 8.65M
versus 9.0M, DS2: 2.09M versus 2.9M, DS3: 10.59M ver-

sus 11.3M, DS4: 7.54M versus 7.8M, DS5: 49.29M versus
53.6M and DS6: 2.17M versus 2.3M). However, even with
fewer input reads, iMPP(FGS) assembled more contigs in
terms of both the quantity and total length. It suggests that
eliminating noncoding reads from the input can potentially
benefit peptide assembly. On the other hand, iMPP(FGS)
also outperformed the FGS + PLASS approach that also
refined the input. It suggests that true protein-coding reads
should not be excluded from the input or it might harm
peptide assembly. By using the most accurate input sets,
iMPP(FGS) had the highest assembly rate overall. Al-
though it slightly underperformed FGS + PLASS on DS1
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Table 3. The contig- and read-level specificity (%) for the peptide assemblies made by iMPP(FGS), FGS + PLASS, and PLASS at different length
thresholds on the subsampled datasets. The highest performance in each category is bolded

Dataset iMPP(FGS) FGS + PLASS PLASS

Len contig read contig read contig read

DS1 (subsampled) 60% 83.69 89.90 79.29 86.00 83.60 89.81
70% 83.39 89.43 79.00 85.61 83.30 89.39
80% 82.77 88.66 78.36 84.88 82.69 88.55
90% 81.41 87.08 76.74 83.09 81.36 86.81

DS2 (subsampled) 60% 98.35 99.47 98.44 99.71 98.22 99.43
70% 98.12 99.21 98.34 99.60 98.02 99.24
80% 97.87 98.75 97.98 99.11 97.73 98.92
90% 97.15 98.22 97.05 98.14 96.50 97.95

DS3 (subsampled) 60% 73.12 69.20 71.99 66.31 69.89 61.35
70% 72.82 68.35 70.98 63.38 68.83 58.16
80% 71.23 65.73 68.93 58.96 66.84 53.02
90% 66.21 61.26 60.77 51.04 58.86 50.86

DS4 (subsampled) 60% 84.24 97.12 83.60 96.89 83.00 96.15
70% 83.88 96.68 83.34 96.43 82.73 95.66
80% 82.35 95.48 82.78 95.82 82.16 94.92
90% 81.29 94.66 81.02 94.64 80.58 93.70

DS5 (subsampled) 60% 89.82 94.96 88.95 94.13 89.60 94.94
70% 86.52 94.12 86.36 93.82 86.31 94.03
80% 84.48 92.82 84.02 92.49 84.50 92.75
90% 82.44 91.08 82.18 90.87 82.13 90.98

DS6 (subsampled) 60% 87.83 95.73 86.39 95.92 87.12 96.18
70% 86.94 94.74 85.16 95.02 86.87 95.21
80% 85.43 93.97 84.00 94.29 85.42 93.83
90% 82.43 92.87 80.44 92.13 82.85 92.67

(∼0.03%), iMPP(FGS) showed a significantly higher as-
sembly rate than FGS + PLASS on the rest of the datasets
by 0.29% (DS5) to 8.96% (DS3). iMPP (FGS) also consis-
tently showed the highest N50, although it remained sim-
ilar to the other strategies. Finally, iMPP(FGS) showed
a slightly higher chimera rate than the other methods
by 0.19% in the worst-case scenario (DS5). As expected,
the MPD-based benchmark results showed a similar trend
(Supplementary Table S3).

We aligned the resulted contigs against the ground-
truth reference proteins to investigate the accuracy of the
peptide assemblies. The contig- and read-level specifici-
ties of iMPP(FGS), FGS + PLASS and PLASS are sum-
marized in Table 3. All three strategies had similar lev-
els of performance, with most of the differences <3%.
iMPP(FGS) showed the highest assembly accuracy on DS1,
DS3, DS4 and DS5, while FGS + PLASS was the best
for DS2. Both methods performed similarly on DS6. For
the comparison between iMPP(MPD), MPD + PLASS and
PLASS, iMPP(MPD) showed the highest assembly accu-
racy on DS3–6, while PLASS was the best for DS1 and
MPD + PLASS for DS2 (Supplementary Table S4).

We further calculated the proportion of reference pro-
tein sequences recovered by the assemblies generated by
difference strategies (Figure 6). iMPP(FGS) consistently
showed the highest reference coverages at all sequence
length thresholds on all six benchmark datasets. The aver-
age improvement over the second-best PLASS strategy was
0.96%. The results were in line with the observation that
iMPP(FGS) generated more contigs and total contig length
than PLASS (Table 2). Similar improvements were also ob-
served for iMPP(MDP) (Supplementary Figure S3). Taken
together, iMPP(FGS) and iMPP(MPD) both improved de

novo peptide assembly sensitivity and accuracy on the sub-
sampled datasets.

We also performed similar analyses on the complete
datasets. The results summarized in Table 4 were largely
consistent with what had been observed for the subsam-
pled datasets (Table 2). Specifically, iMPP(FGS) assem-
bled significantly more contigs (2.29–21.24%) and longer
total contig length (1.83–24.03%) than FGS + PLASS,
and performed similarly as PLASS (0.00–1.43% more as-
sembled contigs, 0.00–0.69% longer total contig length).
iMPP(FGS) consistently showed the highest assembly rate
and N50 among all datasets, although with marginal im-
provements. All strategies had the same low chimera rate.
The same conclusion can also be made from the MPD-
based benchmark results (Supplementary Table S5).

As we did not have the ground truth reference proteins
for the complete datasets, we aligned the assembled peptide
contigs against the UniProt database (31) to benchmark as-
sembly accuracy. The corresponding contig- and read-level
specificities for iMPP(FGS), FGS + PLASS and PLASS
are summarized in Table 5 The results were again consis-
tent with the subsampled datasets, with iMPP(FGS) lead-
ing in most of the metrics. All accuracies were lower than
those for the subsampled datasets, as the complete dataset
may contain more novel proteins that cannot be aligned. In-
terestingly, the second-most accurate strategy appeared to
be PLASS for the complete datasets, unlike FGS + PLASS
for the subsampled datasets. The reason could be that the
ORF model used by FragGeneScan was trained on known
protein families and therefore might miss true protein-
coding reads from the novel protein families in the com-
plete datasets. The less complete input further led to frag-
mentary assemblies, where many short contigs failed to be
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Figure 6. Reference coverages by the peptide contigs assembled by iMPP(FGS), FGS and PLASS on the six subsampled datasets. (A) DS1, (B) DS2, (C)
DS3, (D) DS4, (E) DS5 and (F) DS6.

Table 4. Peptide assembly statistics of iMPP(FGS), FGS + PLASS, and PLASS on the complete datasets. The highest performance in each category is
bolded

Dataset Metrics iMPP(FGS) FGS + PLASS PLASS

DS1 (complete) # Contigs 69 760 66341 69288
Assembly rate (%) 25.23 25.19 23.56
Total contig length 5.27M 5.01M 5.23M
N50(bp) 75 74 74
Chimera rate (%) 0 0 0

DS2 (complete) # Contigs 518 842 470011 516296
Assembly rate (%) 9.89 9.57 8.55
Total contig length 56.67M 50.81M 56.37M
N50(bp) 111 110 111
Chimera rate (%) 0 0 0

DS3 (complete) # Contigs 7.32M 7.13M 7.32M
Assembly rate (%) 41.78 39.63 36.27
Total contig length 884.79M 868.91M 884.79M
N50(bp) 131 130 131
Chimera rate (%) 0 0 0

DS4 (complete) # Contigs 30.86M 30.17M 30.43M
Assembly rate (%) 66.47 65.79 60.58
Total contig length 950.88M 880.12M 950.30M
N50(bp) 205 205 205
Chimera rate (%) 0 0 0

DS5 (complete) # Contigs 16.23M 14.83M 16.23M
Assembly rate (%) 95.91 95.62 95.67
Total contig length 2.03B 1.99B 2.03B
N50(bp) 146 141 146
Chimera rate (%) 2.42 2.23 2.42

DS6 (complete) # Contigs 172 970 142663 172009
Assembly rate (%) 32.78 29.49 32.36
Total contig length 19.39M 15.63M 19.33M
N50(bp) 115 111 115
Chimera rate (%) 0 0 0
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Table 5. The contig- and read-level specificity (%) for the peptide assemblies made by iMPP(FGS), FGS + PLASS and PLASS at different length thresholds
on the complete datasets. The highest performance in each category is bolded

Dataset iMPP(FGS) FGS + PLASS PLASS

Len Contig Read Contig Read Contig Read

DS1 (complete) 60% 27.74 50.84 26.19 47.3 26.98 49.17
70% 27.24 49.99 25.75 46.84 26.21 48.32
80% 26.24 48.87 24.81 45.97 25.72 47.15
90% 24.04 48.28 22.02 43.91 25.13 46.77

DS2 (complete) 60% 46.95 54.72 45.78 54.12 45.91 54.4
70% 46.28 53.95 45.16 53.39 45.22 53.58
80% 44.83 52.43 44.81 51.94 43.8 52.05
90% 41.28 49.03 41.15 48.48 40.18 48.68

DS3 (complete) 60% 45.01 54.29 44.82 53.41 44.06 52.58
70% 44.39 53.71 44.04 52.49 43.29 51.58
80% 42.96 52.19 42.25 50.65 41.52 49.59
90% 38.51 49.23 36.57 46.16 35.93 44.78

DS4 (complete) 60% 42.29 42.26 41.72 40.75 41.68 41.29
70% 41.67 41.13 41.45 40.12 41.42 40.22
80% 40.88 39.54 40.87 38.24 40.85 38.84
90% 40.1 36.29 39.42 36.21 39.71 36.02

DS5 (complete) 60% 56.34 62.97 55.10 61.67 55.84 62.44
70% 53.73 61.22 53.56 59.09 53.93 61.79
80% 52.31 59.43 52.20 58.91 52.31 59.41
90% 51.17 57.53 51.12 56.43 51.17 57.38

DS6 (complete) 60% 32.26 31.59 30.8 28.64 26.98 30.1
70% 31.78 30.65 30.24 28.39 26.46 29.82
80% 30.44 29.79 29.11 27.74 25.39 29.12
90% 28.28 28.16 26.44 26.02 23.07 27.26

reliably aligned to references. The results for iMPP(MPD),
MPD + PLASS, and PLASS benchmark are available from
Supplementary Table S6, where iMPP(MPD) was again the
best.

Finally, Figure 7 summarizes the number of pep-
tide contigs that were reconstructed by iMPP(FGS),
FGS + PLASS and PLASS and could be aligned to the
UniProt database (31), under different reference length
thresholds. iMPP(FGS) was able to recover the largest
number of known protein sequences from UniProt, fol-
lowed by PLASS (∼40–3500 more peptides). Similarly,
iMPP(MPD) predicted ∼400–4500 more peptides com-
pared to PLASS (Supplementary Figure S4). These results
reconfirmed iMPP’s high peptide assembly sensitivity on
real datasets.

Benchmark results on simulated datasets

In addition to the real datasets DS1–6, we also bench-
marked the iMPP framework on three simulated datasets
(Supplementary Table S7). We generated two in-house
datasets in silico, one from 28 marine microbial genomes
and one from 8 Streptococcus genomes. We also included
the CAMI (65) medium-complexity dataset and subsam-
pled it based on the reference genomes provided by the
database. The reference genomes used for subsampling and
their relative abundances are summarized in Supplementary
Tables S22–S24. More details regarding benchmark results
on the simulated datasets can be found from Supplementary
Methods and Results, Supplementary Figures S5–S8, and
Supplementary Tables S8–S13. For all datasets, because of
their relatively low complexity, all methods performed sim-
ilarly well.

Time-performance tradeoff

We investigated the proportion of true protein-coding
reads discovered by different modules of the iMPP(FGS)
pipeline (Figure 8 and Supplementary Table S14). Recall
that iMPP(FGS) can make ORF predictions in three stages:
from the direct application of FGS on unassembled reads,
from the iMPP gene calling module on the hybrid graph,
and finally from the peptide assembly-based refinement.
The most economical way to identify coding reads was to
perform fragmented gene calling, as FGS could find >85%
of the true positives using ∼10% of the total time. The
result was consistent with the high performance observed
for FGS (42). The remaining ∼15% of the protein-coding
reads were more challenging to discover, but the majority
of them could be discovered using the iMPP gene calling
module. It indicates that longer paths from the hybrid as-
sembly graph indeed contain stronger ORF signals and ben-
efit gene calling. However, this module was also the most
time-consuming since it performed both overlap graph as-
sembly and de Bruijn graph assembly. It took up ∼55–80%
of the total runtime of iMPP(FGS). Finally, a very small
proportion (2–3%) of the coding reads could be rescued by
peptide assembly-based refinement, which took ∼15–30%
of the total runtime. The same trend is also observed for
iMPP(MPD) (Supplementary Figure S9 and Supplemen-
tary Table S15).

In comparison between iMPP(FGS) and iMPP(MPD),
iMPP(FGS) runs ∼10% faster than iMPP(MPD) (Supple-
mentary Tables S14 and S15). However, as shown above,
iMPP(FGS) also shows a marginally lower performance.
The choice between iMPP(FGS) and iMPP(MPD) can be
made based on the available computing resources and the
performance need.
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Figure 7. The number of aligned (against UniProt) peptide contigs assembled by iMPP(FGS), FGS and PLASS on the six complete datasets. (A) DS1, (B)
DS2, (C) DS3, (D) DS4, (E) DS5 and (F) DS6.

Pathway analysis of the diabetic human gut dataset (DS1)

To show the biological importance of iMPP, we ana-
lyzed the diabetic human gut microbiome dataset (DS1,
from a Type 2 diabetes patient). We compared the
metabolic pathways reconstructed from the genes predicted
by iMPP(FGS) and FGS. We used MetaCyc (68) as the
pathway database and MinPath (69) as the pathway re-
construction tool (see Supplementary Materials and Meth-
ods). MinPath reconstructed 196 more pathways from
iMPP(FGS)’s prediction in comparison to FGS’s prediction
(see Supplementary Table S25). Among these unique path-
ways, some of them are universal metabolic pathways found
in human gut, and some may relate to the changes induced
by diabetes.

With iMPP(FGS)’s prediction, MinPath revealed some
pathways that are expected to universally exist in human gut
environment but were missed by FGS’s prediction. For ex-
ample, the sulfate activation for sulfonation pathway (Meta-
Cyc ID: PWY-5340) and the spermidine biosynthesis path-
way (MetaCyc ID: BSUBPOLYAMSYN-PWY). Sulfate
activation is a prerequisite step for the degradation of inor-
ganic sulfate by the sulfate-reducing bacteria (SRB), a well-
known integral part of the intestinal microbiota (70). Mean-
while, sulfonation integrates a sulfur-containing group to an
organic molecule, and the process is used in the biosynthe-
sis of sulfur-containing essential amino acids such as cys-
teine (71) and sulfated cell-surface glycosaminoglycans that
are used as receptors by nearly all kinds of bacteria (72).

The second pathway synthesizes spermidine, a major type
of polyamine that is found in both eukaryotic and prokary-
otic cells to carry out a wide range of essential biological
functions such as gene regulation, stress resistance, and cell
proliferation (73). Studies have shown that polyamine found
in human lower intestinal tract is primarily synthesized by
gut microbiota (74,75). Specifically, spermidine biosynthe-
sis has been confirmed in the human gut bacteria Bac-
teroides thetaiotaomicron and Fusobacterium varium (76).

Interestingly, some pathways such as the betaine biosyn-
thesis pathway (MetaCyc ID: PWY-4021) and the ec-
toine biosynthesis pathway (MetaCyc ID: PWY-4021), were
uniquely reconstructed from iMPP(FGS)’s prediction, and
appeared to relate to the osmolarity change in the gut en-
vironment induced by diabetes. Many betaines serve as or-
ganic osmolytes, which are used by cells in response to os-
motic stress and to protect them from dehydration (77).
While the primary source of betaines is known to come
from food, Koistinen et al. recently showed that betaine
can also be synthesized by the gut microbiota using both
mouse and in vitro human gut models (78). As a result,
the identification of betaine biosynthesis pathway may in-
dicate the prevalence of microbes that can protect them-
selves from the osmolarity change in the diabetic gut envi-
ronment, by synthesizing betaine compunds. Similarly, ec-
toine is also known the be synthesized by the gut micro-
biota in response to osmolarity stress (79,80). These os-
molyte transporter biosynthesis pathways tend to be more
active under the diabetic gut environment, believed to buffer
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Figure 8. The breakdown of the running time – true prediction relation for the four main modules involved in iMPP(FGS). Yellow: application of FGS
on reads; Green: assembly graph generation and the application of FGS on assembly graph edges; Blue: candidate path generation and the application of
FGS on candidate paths; Orange: peptide assembly refinement. (A) DS1, (B) DS2, (C) DS3, (D) DS4, (E) DS5 and (F) DS6.

the local osmotic shock induced by the disease, and are
suggested as predictive biomarkers for Type 2 diabetes
(81).

DISCUSSION

In this work, we present a de novo metagenomic func-
tional analysis workflow iMPP. iMPP directly operates on
unassembled raw reads and is capable of discovering novel
proteins or protein families. To the best of our knowl-
edge, iMPP is currently the only method that integrates nu-
cleotide assembly, gene calling, and peptide assembly based
on their informational connection and dependency (Fig-
ure 1). The integration appears to be successful based on
benchmark results. For gene calling, iMPP significantly im-
proves upon the state-of-the-art methods FragGeneScan
and MetaProdigal with a 4–20% higher sensitivity (Figure
4). Notably, iMPP has achieved a near-perfect recall rate
of >90% on all metagenomic datasets (DS1–5), and a re-
call rate of ∼78% on the metatranscriptome dataset (DS6)
at a specificity level of ∼85%. The highly accurate iMPP
gene calling results further benefit downstream de novo pep-
tide assembly, generating more peptide contigs with higher
specificity. The improvements made by iMPP on the up-

stream gene calling and assembly further led to the recon-
struction of meaningful metabolic pathways that are critical
for functional investigation.

Note that iMPP is a generic workflow that can integrate
different third-party software, which is not limited to the
ones that we have tested in this article. For example, we have
shown that iMPP(FGS) and iMPP(MPD) can improve the
performances for FGS and MPD alone, indicating that the
improvement is likely due to information integration, rather
than dependency on a specific software. In this case, it is de-
sirable to have iMPP to support more third-party software.
Recall that iMPP has three main modules: the gene calling
module, the nucleotide assembly module, and the peptide
assembly module (Figure 1). At the current development
stage, we have included FGS and MPD as two alternatives
to the gene calling module. In the future, we further plan
to include IDBA-UD (82) and MetaHit (83), in addition
to the existing software SGA and SPAdes, as alternatives
to the nucleotide assembly module. We also plan include
MetaPA (84) and SFA-SPA (48), together with PLASS, as
alternatives to the peptide assembly module. This effort will
enable the search of a software combination for optimal
performance, and higher flexibility to satisfy project-specific
needs.
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The peptide assembly results point to two seemingly
counterintuitive observations regarding de novo peptide as-
sembly. First, a more specific input set does not necessar-
ily lead to a more specific assembly. As shown in Figure 4,
FragGeneScan had a slightly higher specificity than iMPP
(1–4%, see details in Supplementary Table S1). However,
iMPP assembly showed higher contig- and read-level speci-
ficity than FGS + PLASS assembly (Table 3). The rea-
son could be that the more specific input set generated
by FragGeneScan was less comprehensive, and missing the
true protein-coding reads made the assembly graph more
fragmentary. It further resulted in many ultra short pep-
tide contigs, which were subsequently filtered out, reducing
the true positive rate and specificity. Second, a more com-
prehensive input set does not necessarily lead to a more
complete assembly. Because iMPP only accepted the pre-
dicted coding reads as its input, its input was less complete
than PLASS, which accepted all reads. Surprisingly, the
iMPP assembly was more comprehensive than the PLASS
assembly (Table 2 and Figure 6). The reason could be that
contaminants (false pseudo peptides or mispredicted ORF
from noncoding reads) may overlap with other peptides by
chance, generating more false connections in the assembly
graph. The false connections may confound graph traver-
sal and reduce true positive output. As such, a more refined
input that contains exactly all the coding reads will likely
result in the best assembly. While these observations were
made from peptide assembly, we believe that they also ap-
ply to nucleotide assembly, as most assembly algorithms are
similar. The observation may provide insights to improve de
novo nucleotide and peptide assembly from a different per-
spective: refining the input.

With the novel protein families discovered from the above
analysis, as well as the known protein families, we expect to
develop an algorithm to improve de novo nucleotide assem-
bly. This work will complete the last piece of missing infor-
mation flow from Figure 1 (the gray broken arrow). While it
is possible to improve the assembly of individual genes using
protein family profiles as a guide (26,54), it is unknown by
how much it can improve assembly at the genome level. The
improvement observed on individual genes suggests that a
guided assembly can help resolve branches in the assembly
graph. We shall take advantage of it towards more accurate
genome assembly. With this module, we will further develop
an iterative version of iMPP following the information flow
shown in Figure 1. While the iterative version could be un-
economical given the already high recall rate of the current
iMPP version (80–97%, Figure 4), it is of theoretical inter-
est to investigate the limit of gene calling directly from frag-
mented sequences.

To promote practical applications of iMPP, we expect to
include an additional module for hypothetical protein an-
notation. Note that a significant proportion (60–70%) of
peptide sequences assembled by iMPP from the complete
datasets cannot be aligned to the UniProt database (Table
5). Given the high contig-level specificity (∼80%) observed
from the subsampled datasets (Table 3), most of the assem-
bled peptide contigs likely correspond to true novel pro-
teins. Note that all of these assembled peptides are ≥60aa,
therefore they should contain sufficient information for re-
liable functional prediction. Specifically, we will develop a

hypothetical protein annotation module (85) that includes
physicochemical property characterization, domain analy-
sis, protein subcellular localization analysis, and protein–
protein interaction analysis. We will also include a de novo
clustering module to identify novel protein families and se-
quence motifs (86). Finally, we will also provide the cor-
responding DNA sequences of these proteins to facilitate
their taxonomic analyses and experimental validations.

We also plan to improve the usability and efficiency of
iMPP from a software engineering perspective. Currently,
the iMPP workflow is wrapped with Nextflow (87), which
ensures its reproducibility and facilitates its execution un-
der different software environments. We will further lever-
age the power of Nextflow to modulate different compo-
nents of iMPP to meet flexible needs in performance and
efficiency. For example, the user will be able to eliminate
the peptide assembly refinement step for a speedup with-
out losing a significant number of true positive predictions.
We will also try to speed up iMPP by ‘internalizing’ third-
party software modules as libraries of iMPP. For example,
iMPP first writes the assembly overlap graph and de Bruijn
graph contigs into the hard disk and loads them to generate
the hybrid graph. Internalizing the assembly graph genera-
tion modules can eliminate the hard-disk traffic and make
the entire workflow more efficient. In addition, internaliz-
ing peptide assembly will also allow us to access the pep-
tide assembly graph generated by the first PLASS run (for
gene calling refinement); the information may help to save a
significant amount of time for the second pass (for peptide
contig reconstruction).

In conclusion, we present a novel method called iMPP
for metagenomic functional analysis. iMPP integrates de
novo nucleotide assembly, gene calling, and peptide assem-
bly. iMPP is able to improve both gene calling and pep-
tide assembly and has the potential to improve our current
understanding of the functions of microbial communities.
iMPP was implemented using GNU C++ and Python. It
is freely available from (https://github.com/Sirisha-t/iMPP)
under the Creative Commons BY-NC licence.
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