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Abstract

Drosophila segmentation is a well-established paradigm for developmental pattern forma-

tion. However, the later stages of segment patterning, regulated by the “pair-rule” genes,

are still not well understood at the system level. Building on established genetic interactions,

I construct a logical model of the Drosophila pair-rule system that takes into account the

demonstrated stage-specific architecture of the pair-rule gene network. Simulation of this

model can accurately recapitulate the observed spatiotemporal expression of the pair-rule

genes, but only when the system is provided with dynamic “gap” inputs. This result suggests

that dynamic shifts of pair-rule stripes are essential for segment patterning in the trunk and

provides a functional role for observed posterior-to-anterior gap domain shifts that occur

during cellularisation. The model also suggests revised patterning mechanisms for the para-

segment boundaries and explains the aetiology of the even-skipped null mutant phenotype.

Strikingly, a slightly modified version of the model is able to pattern segments in either simul-

taneous or sequential modes, depending only on initial conditions. This suggests that funda-

mentally similar mechanisms may underlie segmentation in short-germ and long-germ

arthropods.

Author summary

Segmentation in insects involves the division of the body into several repetitive units. In

Drosophila embryos, all segments are patterned rapidly and simultaneously during early

development, in a process known as “long-germ” embryogenesis. In contrast, many insect

embryos retain an ancestral or “short-germ” mode of development, in which segments are

patterned sequentially, from head to tail, over a period of time. In both types of embryo,

the patterning of segment boundaries is regulated by a network of so-called “pair-rule”

genes. These networks are thought to be quite divergent due to the different expression

patterns observed for the pair-rule genes in each case: regularly spaced arrays of transient

stripes in Drosophila, and dynamic expression within a posterior “segment addition zone”

in short-germ insects. However, even in Drosophila, a clear understanding of pair-rule

patterning has been lacking. Here, I make a computational model of the Drosophila pair-
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rule network and use simulations to explore how segmentation works. Surprisingly, I find

that Drosophila segment patterning relies on pair-rule gene expression moving across cells

over time. This conclusion differs from older models of pair-rule patterning but is consis-

tent with the subtly dynamic nature of pair-rule stripes in real embryos, previously

described in quantitative studies. I conclude that long-germ and short-germ segmentation

involve similar expression dynamics at the level of individual cells, even though they look

very different at the level of whole tissues. This suggests that the gene networks involved

may be much more conserved than previously thought.

Introduction

Like other arthropods, the fruit fly Drosophila melanogaster has a segmented body plan. This

segmental pattern is laid down in the embryo during the first 3 hours of development. During

this time, the anteroposterior (AP) axis of the blastoderm is progressively patterned down to

cellular-level resolution by an elaborate, multi-tiered network of genes and their encoded tran-

scription factors [1,2]. These genes were first identified in a landmark genetic screen [3,4], and

their regulatory interactions have subsequently been dissected by 3 decades of genetic experi-

ments. Along the way, this body of research has revealed many fundamental principles of

transcriptional regulation [5], and Drosophila segmentation remains a central model for devel-

opmental systems biology today.

Much of the “heavy lifting” of segment patterning is carried out by the so-called “pair-rule”

genes, which make up the penultimate tier of the Drosophila segmentation cascade. The pair-

rule genes are the first genes to be expressed in spatially periodic patterns in the Drosophila
embryo and are collectively responsible for patterning the expression of the “segment-polarity”

genes, which organise and maintain segmentally reiterated compartment boundaries termed

“parasegment boundaries”. Notably, this involves transducing a double segment pattern of

early pair-rule gene expression, in which each set of stripes is offset slightly from the others,

into a single-segment pattern of segment-polarity gene expression, in which most genes are

expressed in discrete, non-overlapping domains [6–8].

There are 7 canonical pair-rule genes: hairy [9], even-skipped (eve) [10], runt [11], fushi
tarazu (ftz) [12], odd-skipped (odd) [13], paired (prd) [14], and sloppy-paired (slp) [15]. 5 of

these genes (hairy, eve, runt, ftz, and odd) are known as the “primary” pair-rule genes

because they are expressed earlier than the 2 “secondary” pair-rule genes, prd and slp [16].

(Note that these terms have a somewhat tortuous history, and older literature will classify

the genes differently.)

Each of the primary pair-rule genes is initially patterned by spatial inputs from the

upstream tier of transcription factors, encoded by the “gap” genes, which are expressed in

broad, overlapping AP domains during cellularisation [17]. This patterning occurs in an ad

hoc manner, with specific combinations of gap factors regulating the expression of particular

pair-rule stripes through discrete “stripe-specific” enhancer elements [18–21], which act addi-

tively with one another. For certain pair-rule genes, such as eve, this regulation is sufficient to

generate an overall pattern of 7 equally spaced stripes along the future trunk of the embryo

[16,22–24]. For other pair-rule genes, such as odd, the gap-driven pattern is irregular and may

have missing stripes [16]. In these cases, the initial patterns are regularised by cross-regulatory

“zebra” enhancer elements [25–27], which take periodic inputs from other pair-rule factors

and yield periodic outputs. Similar zebra elements are responsible for driving the periodic

Dynamic patterning by the Drosophila pair-rule network

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002439 September 27, 2017 2 / 38

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The author has declared that

no competing interests exist.

Abbreviations: AP, anteroposterior; Cad, Caudal;

en, engrailed; eve, even-skipped; FISH, fluorescent

in situ hybridisation; ftz, fushi tarazu; odd, odd-

skipped; Opa, Odd-paired; prd, paired; SBML,

Systems Biology Markup Language; slp, sloppy-

paired; wg, wingless.

https://doi.org/10.1371/journal.pbio.2002439


expression of the secondary pair-rule genes, which turn on after the primary pair-rule patterns

have refined [16,28].

At gastrulation, the segment-polarity genes turn on, activated by a broadly expressed

transcription factor, Odd-paired (Opa) [29], and spatially regulated by the pair-rule genes

[6,7,30,31]. Opa activity also “rewires” the regulatory interactions between the pair-rule genes,

causing several of their expression patterns to transition dynamically from double- to single-

segment periodicity (i.e., from 7 stripes to 14 stripes) [32]. These pair-rule factors (and/or their

paralogs) then play roles in the segment-polarity network, which also contains several compo-

nents of the Wingless (Wg) and Hedgehog signalling pathways [33–37].

The Drosophila gap gene network has been used frequently in recent years as a case study

for the application of dynamical systems [38–40] and information theory [41–43] approaches

to developmental patterning, but the pair-rule network has received little system-level atten-

tion. Indeed, the most recent models of pair-rule patterning [8,44] date from more than 10

years ago. Since these were published, 3 important discoveries have been made about segment

patterning, all of which challenge established assumptions about the Drosophila segmentation

cascade and all of which concern the pair-rule genes in some way. So long as the pair-rule net-

work remains poorly understood, key questions raised by these findings will go unanswered.

The first discovery is from comparative studies in other arthropod embryos. Drosophila is a

“long-germ” embryo, patterning almost all of its segments simultaneously in the blastoderm

prior to germ-band extension [45]. However, the ancestral mode of arthropod development is

“short-germ” embryogenesis, in which segmentation is sequential and coordinated with germ-

band elongation [46–48]. Orthologs of the pair-rule genes play a key role in segment pattern-

ing in all arthropods studied thus far (for example, [49–52]), but in short-germ embryos, their

expression has been shown to oscillate in a posterior “segment addition zone” throughout

germ-band extension [53–55]. This periodic dynamic expression indicates that in these organ-

isms, they are either components of or entrained by a segmentation “clock” [56]. How the

expression of the pair-rule genes in long-germ embryos such as Drosophila relates to their

expression in short-germ embryos (for example, the model beetle, Tribolium castaneum) is

unclear. It is thus not understood how long-germ segmentation was derived from short-germ

segmentation, an important evolutionary transition that has occurred multiple times indepen-

dently within the higher insects [57].

The second discovery stems from quantitative studies of Drosophila segmentation gene

dynamics. These studies have revealed that the domains of gap gene expression in the trunk of

the embryo shift anteriorly across the blastoderm over the course of nuclear division cycle 14

(cellularisation) [58–60]. The shifts are mirrored downstream in similarly shifting expression

of the pair-rule stripes [59,61], a finding that is at odds with existing models of segment pat-

terning, which assume these stripes to be static domains [6,8,44,62–64]. While we know that

these subtle shifts are ultimately driven by feedback interactions within the gap gene network

[38,39,65–67], their functional role (if any) remains unclear.

The final key finding relates to the structure of the pair-rule network itself. In a recent

paper on the pair-rule network [32], Michael Akam and I showed that many of the regulatory

interactions between the pair-rule genes are temporally regulated (by Opa, as described

above). We argued that the pair-rule network is best viewed as 2 distinct networks, 1 operating

during cellularisation and 1 during gastrulation, each with a specific topology and resultant

dynamics. Analysing the “early” (cellularisation-stage) and “late” (gastrulation-stage) pair-rule

networks separately should lead to a better understanding of pair-rule patterning and might

also reveal why the network shows this bipartite organisation in the first place.

In this paper, I present a new model of the pair-rule system, which incorporates the stage-

specific architecture of the pair-rule network. I take the set of identified genetic interactions
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between the pair-rule genes as a starting assumption, formalise them in a Boolean logical

model, and use dynamical simulations to analyse how they collectively lead to complex pattern

formation. I find that gap-mediated kinematic shifts are required for correctly phasing the

pair-rule stripes, something that proves crucial for downstream segment patterning. I also

find that graded Eve activity is not strictly necessary for pair-rule patterning, and I explain the

aetiology of the surprisingly severe eve null mutant phenotype. Finally, I show that a slightly

modified version of the Drosophila pair-rule network gains the capacity to pattern in both

simultaneous and sequential modes, conceptually reconciling long- and short-germ

segmentation.

Results

Topology of the pair-rule network

Fig 1A summarises the inferred regulatory interactions between the pair-rule genes. Following

Clark and Akam (2016) [32], individual interactions are assigned to distinct “early” and “late”

networks, which operate during mid-cellularisation or late cellularisation/gastrulation, respec-

tively. Note that a few regulatory interactions (e.g., repression of ftz by Eve) are common to

both networks, but the majority are restricted to a single phase of patterning.

Gene regulatory network models represent “intellectual syntheses” of diverse experimental

data [70]. I arrived at the topologies in Fig 1A by carefully analysing relative expression data in

tightly staged wild-type embryos and cross-referencing these observations with the large num-

ber of mutant and misexpression experiments recorded in the genetic literature (for example,

[8,30,31,64,71–78]). In places where the data were particularly ambiguous, I also re-character-

ised pair-rule gene expression in select pair-rule mutants in order to pick apart direct versus

indirect regulatory interactions. In almost all cases, the interactions in the network diagrams

have been previously inferred by multiple sets of researchers; my contribution has been (1) to

bring this body of work together into something consistent and relatively complete and (2) to

recognise the distinction between the early and late phases of regulation, rather than pooling

all interactions into a single network. Most of the evidence and reasoning behind the inferred

interactions (and interactions inferred to be absent) in Fig 1A are described in Appendix 1 of

Clark and Akam (2016) [32]. Additional evidence in favour of the “early” cross-regulatory

interactions between the primary pair-rule genes (boxed yellow area in Fig 1A, left) is pre-

sented in S1 Text, based on patterns of pair-rule gene expression in hairy, eve, and runt
mutants.

Two things are immediately clear from the network diagrams. First, the direct regulatory

interactions between the pair-rule genes are overwhelmingly repressive. This is consistent with

a mode of patterning consisting of spatially ubiquitous activation (by maternally provided fac-

tors, for example) combined with precisely positioned repression from other segmentation

genes [76,79–81]. While certain of the pair-rule factors (e.g., Ftz and Prd) have been shown to

quantitatively up-regulate the expression of other pair-rule genes and thus contribute to this

background activation in a spatially modulated way [82–84], these effects do not, for the most

part, seem to be important for qualitatively determining the spatial pattern of pair-rule gene

expression and so have been omitted from the diagram. Most described incidences of one

pair-rule gene genetically activating another pair-rule gene are instead indirect (i.e., mediated

by the direct repression of another repressor).

Second, the 2 networks have very different structures, presumably reflecting the different

patterning function each must perform. During mid-cellularisation, pair-rule gene cross-regu-

lation is responsible for refining many of the pair-rule stripes and standardising their phasing

relative to other pair-rule stripes, resulting in a regular repeating pattern of double-segment

Dynamic patterning by the Drosophila pair-rule network
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Fig 1. Structure and patterning function of the pair-rule gene regulatory network. (A) Cross-regulatory

interactions between pair-rule genes during cellularisation (left) and gastrulation (right). Hammerhead arrows

represent repression; pointed arrows represent activation. The zebra elements of ftz, odd, and runt (yellow

box) turn on earlier than those of prd and slp (blue box). ftz, odd, and runt are also regulated by gap inputs

through their stripe-specific elements (noted by grey dotted lines), but pair-rule inputs are the dominant
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periodicity. This is carried out by the early network, which is sparse, composed of unidirec-

tional regulatory interactions, and has no feedback loops. Two of the pair-rule genes, eve and

hairy, are patterned by gap factors rather than other pair-rule factors and so represent “input-

only” factors to the network [16]. The remaining primary pair-rule genes (runt, ftz, and odd)

do receive extensive gap inputs at early stages of cellularisation, but, by mid-cellularisation,

their patterns are largely specified by other pair-rule genes (see S1 Text). (Note, however, that

some aspects of the ftz pattern cannot be explained by pair-rule inputs alone, see Appendix 2

of [32].) The secondary pair-rule genes turn on later (prd at mid-cellularisation and slp towards

the end of cellularisation) and are patterned by primary pair-rule genes. Overall, the early net-

work has a hierarchical structure, in which Eve and Hairy convey positional information

derived from the gap factors to the remaining primary pair-rule genes and eventually to the

secondary pair-rule genes.

The late network, on the other hand, is extremely dense and consists largely of mutually

repressive pairs of interactions. It is responsible for converting a double-segmental pattern of

overlapping stripes into a segmental pattern of discrete segment-polarity fates. This is the final

step in the Drosophila “segmentation cascade” and completes the transition from the analog

(graded) positional information carried by the maternal and gap gene products to the essen-

tially digital positional information carried by the segment-polarity genes [64]. The numerous

positive (i.e., double-negative) feedback loops within the late network are consistent with it

acting like a multi-stable switch, individual segment-polarity fates representing attractor states

towards which the system will rapidly converge.

Pair-rule patterning and positional information

As described above, gap inputs and the early pair-rule network combine to establish a repeat-

ing double-segmental pattern of pair-rule gene expression. The positional information within

this pattern is then converted into a stable output pattern of segment-polarity states by the late

network. Each initial double-segment repeat is about 7–8 nuclei wide, and each specified seg-

ment will consist of at least 3 distinct states characterised by the expression of engrailed (en),

odd, and slp, respectively (Fig 1B). The en and odd stripes are about 1 nucleus wide, while the

slp stripes are about 1–2 nuclei wide. Parasegment boundaries form wherever En and Slp

domains abut, while Odd provides a buffer zone that preserves the AP polarity of each

influence on their patterns by mid-cellularisation (see S1 Text). The repression of En by Runt in the late

network is dotted because, while the odd-numbered en stripes are sensitive to Runt, the even-numbered

stripes are regulated differently [68]. Note that the regulation of runt in the late network reflects the regulatory

logic of the “7-stripe” element rather than that of the “6-stripe” element [32,69]. (B) The template for polarised

parasegment boundaries is formed by a repeating pattern of En, Odd, and Slp stripes. Top: whole mount

double FISH images (anterior left, dorsal top) showing that en, odd, and slp are expressed in abutting,

mutually exclusive domains. Middle: enlarged views of the stripes. Bottom: schematic of the overall pattern

(anterior left). The grey vertical lines indicate the span of an initial pair-rule repeat relative to the final output

pattern. Parasegment boundaries (dotted red lines) will form at the interface between En and Slp domains.

Scale bars = 100μm. (C) Schematics indicating the number of distinct states that can be specified by static

domains of Hairy and Eve expression. Top: Hairy and Eve are both Boolean variables. There are only 4

possible expression states (1: Hairy on, Eve off; 2: Hairy on, Eve on; 3: Hairy off, Eve on; 4: Hairy off, Eve off).

Bottom: Hairy is still Boolean, but Eve is now a multilevel variable. Different shades of red represent different

levels of Eve activity: low (lightest), medium, or high (darkest). There are now 8 different possible combined

expression states of Hairy and Eve. Grey vertical lines are as in (B). (D) Rich positional information can be

conveyed by a dynamic signal. Top: Boolean Eve stripes are depicted travelling from posterior to anterior over

time (darker red represents a more recent time point). Middle: The Eve profile over time is recorded in binary

digits. Bottom: The Eve signal can be decoded into 6 distinct expression domains, aligned with those in (B).

Grey lines are as in (B). Abbreviations: en, engrailed; FISH, fluorescent in situ hybridization; ftz, fushi tarazu;

odd, odd-skipped; prd, paired; slp, sloppy-paired.

https://doi.org/10.1371/journal.pbio.2002439.g001

Dynamic patterning by the Drosophila pair-rule network

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002439 September 27, 2017 6 / 38

https://doi.org/10.1371/journal.pbio.2002439.g001
https://doi.org/10.1371/journal.pbio.2002439


segment. (This tripartite segment pattern conforms to prescient theoretical predictions made

by Hans Meinhardt in the early 1980s [62,85,86].) It is crucial that all 3 domains are specified

within each segment—and that they are in the correct order—because patterning defects such

as boundary losses, ectopic boundaries, and/or polarity reversals arise when the pattern is per-

turbed [8,31,33,76,87].

The extremely high resolution of the final segmental output pattern implies that the initial

double segment pattern established by the early pair-rule network must contain sufficient posi-

tional information to allow almost every nucleus to be distinguished from its immediate neigh-

bours. We are thus left with 2 questions. First, how does the early network establish a situation

in which the different nuclei within a double-segment repeat each expresses a unique combi-

nation of pair-rule factors? Second, how exactly is this code “read” by the late network? (Or, in

other words, which sets of initial conditions will result in a cell following an expression trajec-

tory that ends at, for example, stable en expression, rather than stable odd or stable slp?)

In later sections, I address these questions by simulating and analysing the networks shown

in Fig 1A. However, before getting into specifics of how particular genes are regulated and

expressed, it is worth considering a more fundamental question: where is the positional infor-

mation coming from in the first place? The topology of the early network (Fig 1A, left) implies

that, to a first approximation, all the positional information in the final pattern must trace

back to the expression patterns of just 2 factors, Eve and Hairy. Boolean (ON/OFF) combina-

tions of Eve and Hairy would only be sufficient to specify 4 different domains within each dou-

ble-segment repeat (Fig 1C, top), whereas the real output pattern consists of at least 6 distinct

domains (i.e., En, Odd, Slp, En, Odd, Slp). How is it possible that just 2 independent spatial

signals are able to give rise to such a high-resolution final output?

One potential answer is that stripes of Eve and/or Hairy might carry quantitative informa-

tion that permits them to convey more than 2 “states” within the positional code. Since the

early 1990s, this idea has been applied to the graded margins of the early Eve stripes [30,75,88].

These stripes have been proposed to act as local morphogen gradients, repressing different tar-

get genes at different concentration thresholds and thus differentially positioning their respec-

tive expression boundaries. Current models of pair-rule patterning rely on the assumption that

there are 4 functionally distinct levels of Eve activity across an Eve stripe (from the centre to

the edge: HIGH, MEDIUM, LOW, and OFF) [8,44]. These different levels would provide cel-

lular-level resolution within each double-segment repeat and, combined with information

from the Hairy stripe, allow each nucleus to be uniquely specified (Fig 1C, bottom).

While a given concentration of Eve protein may well repress its various targets with differ-

ent efficacies, it is unlikely that segment patterning relies significantly upon this mechanism,

for 3 main reasons. First, for the model to be viable, the Eve stripes would need to provide an

accurate and precise set of positional signals within each double-parasegment repeat, i.e., the

Eve stripes would have to be extremely regular and all share the same shape and amplitude.

However, more posterior Eve stripes show significantly lower expression levels than more

anterior Eve stripes throughout most of cellularisation [59]. Furthermore, pair-rule transcripts

are apically localised, and therefore pair-rule gene expression becomes effectively cell autono-

mous soon after membrane invagination begins [89,90]. This means that, unlike for the gap

genes (whose transcripts remain free to diffuse between neighbouring nuclei), for eve, there is

little or no spatial averaging to buffer the high intrinsic noise of transcription [91,92]. This

reduces the precision of the Eve signal and thus its capacity to reliably convey analog

information.

Second, the morphogen model also requires the readout of the Eve signal to be very sensi-

tive; i.e., eve target genes would have to reliably discriminate between different Eve expression

levels and pattern their expression boundaries accordingly. However, it is not clear that this

Dynamic patterning by the Drosophila pair-rule network

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002439 September 27, 2017 7 / 38

https://doi.org/10.1371/journal.pbio.2002439


actually occurs within the embryo—for example, the model proposes that graded Eve stripes

result in offset boundaries of the Eve targets odd and ftz, but recent observations indicate that

these offsets are in fact produced by other mechanisms [32].

Third, the morphogen model does not explain the full severity of the eve null mutant phe-

notype, in which aberrant expression patterns are seen even in regions that would be outside

the Eve stripes in wild-type embryos. Neither does the morphogen model explain the pattern-

ing robustness of eve heterozygotes, in which halving Eve expression levels fails to perturb the

overall pattern of segment-polarity domains.

How, then, might the spatial resolution of the segment pattern be explained if not by an Eve

morphogen gradient? Traditional models of Drosophila segmentation are essentially static:

each tier of segmentation gene expression provides a single set of spatial signals, which is trans-

duced into a new set of spatial signals by the tier below. This simplifies the real situation in the

embryo, in which both gap and pair-rule expression domains shift subtly from posterior to

anterior over time [59,93]. Explicitly considering these temporal aspects of segmentation gene

expression suggests an alternative segment patterning mechanism: using the temporal dynam-

ics of a relatively coarse pair-rule signal to provide high-resolution spatial information across

each pattern repeat.

A signal that varies over time can be used to convey an arbitrary quantity of information,

even if each reading of that signal provides very little (think of Morse code or binary storage).

The eve and hairy stripes continue to be regulated by gap inputs throughout most of cellulari-

sation and therefore shift across nuclei in concert with the gap domains. This means that,

rather than each nucleus having to deduce its position from a single level of, e.g., Eve protein

(as in the morphogen model), the nucleus actually experiences a temporal sequence of Eve

protein levels. Strikingly, an overall shift of just 2 nuclei would be theoretically sufficient for a

Boolean Eve stripe to, on its own, specify the positions of all 6 segment-polarity domains

within a double-segment repeat (Fig 1D).

This kind of mechanism would, however, rely on the downstream targets of Eve and Hairy

being able to decode a temporal sequence of Eve/Hairy expression and convert it into an

appropriate segment-polarity fate. In the following sections, I carry out simulations and analy-

sis of the network shown in Fig 1A and, based on the results, argue that the cross-regulatory

interactions between the pair-rule genes function to achieve exactly this task.

A simple model of the pair-rule system

In order to investigate how pair-rule patterning works, I used the networks shown in Fig 1A to

create a toy model of the pair-rule system and then simulated pair-rule gene expression across

an idealised 1-dimensional tissue. In this section, I briefly describe the structure and assump-

tions of the modelling approach; a full description of the model plus details of all simulations

are given in S2 Text. (Source code for running the simulations is available in S1 and S2 Files,

while pair-rule networks in SBML-qual format are available in S3 and S4 Files).

The genes whose regulation I model explicitly are the 7 pair-rule genes, plus en, whose

product plays a key role in regulating late pair-rule gene expression. I have also included 4

inputs that are extrinsic to the system: 2 temporal signals, Caudal (Cad) [94] and Opa, and 2

signals to represent the positional information provided by the gap system, “G1” and “G2”.

Cad represses the secondary pair-rule genes during early stages of patterning [87], while Opa

turns on midway through patterning and triggers the switch from the early network to the late

network [32]. G1 is responsible for patterning the hairy pair-rule stripes while G2 is responsi-

ble for patterning the eve pair-rule stripes. G1 and G2 do not represent specific gap factors but
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are instead an abstraction of the spatial inputs (i.e., stripe boundary locations) provided by the

gap system as a whole.

Each gene in the system is represented by a Boolean variable, and its control logic is formal-

ised using logical rules (essentially equivalent to the “logical equations” used in Sanchez and

Thieffry [2003] [44] or the “vector equations” used in Peter et al. [2012] [70]). For example, if

Opa is OFF (early network), odd is expressed only if both Hairy and Eve are also OFF, while if

Opa is ON (late network), odd expression relies on all of Runt, En, and Slp being OFF (com-

pare Fig 1A). In most cases (apart from, e.g., activation of en by Ftz or Prd), gene activation is

assumed to be driven by some ubiquitous background factor(s) and is not explicitly included

in the model.

The network simulation proceeds by discrete time steps, with expression output at time

point t + 1 calculated from the state of the system at time point t. Because of the speed and

dynamicity of segment patterning, time delays associated with protein synthesis and protein

decay imply that protein and transcript expression domains for a given gene will often be non-

congruent within the Drosophila embryo. This is likely to be significant for patterning, and I

therefore approximate this effect by adding simple time delay rules into the simulation. Each

gene has associated “synthesis delay” and “decay delay” parameter values s and d, both of

which are integers representing a certain number of time steps. (Once a gene turns on, tran-

script will be present immediately, but protein will only appear s time steps later. Similarly,

once a gene turns off, transcript will disappear immediately, but protein will only disappear

after another d timesteps have elapsed.) For parsimony (and consistent with real expression

kinetics [82]) all pair-rule genes and en are assigned the same delay value, which applies to

both s and d. The specific value of this delay is fairly arbitrary, because the ratio between differ-

ent delays is what affects how the system behaves, but I have chosen this value to be 6. Given

that the half-life of ftz RNA during cellularisation is 7 minutes [79], this means that each time

step in the simulation can be thought of as representing on the order of 1 minute of real devel-

opmental time. The time delays of the other components in the network (Cad, Opa, G1, and

G2) are assigned appropriate values relative to this timescale, so that their simulated behaviour

roughly approximates their spatiotemporal expression in a real embryo.

The simulation is set up to occur across a row of 20 “cells”, an idealised representation of

the AP axis. This row of cells is not meant to correspond to a specific region of the Drosophila
embryo but rather to be generally representative of patterning within the main trunk (i.e.,

pair-rule stripes 3–6), in which pair-rule genes are not additionally affected by cephalic or ter-

minal factors. Each cell within this “tissue” is simulated independently, starting from a specific

set of initial conditions. (As mentioned above, pair-rule transcripts are apically localised, and

therefore the cross-regulation between the pair-rule genes is likely to be effectively cell autono-

mous from roughly mid-cellularisation onwards.)

The starting conditions for each cell usually involve specifying the appropriate expression

of G1 and G2, setting Cad to ON, and setting all other genes to OFF. G1 and G2 are initialised

with patterns that are offset by 2 cells and repeat every 8 cells, meaning that the hairy and eve
stripes specified by these inputs will partially overlap and exhibit a double-segment periodicity,

as in real embryos. Gap inputs into runt, ftz, and odd are omitted, meaning that their early

expression is organised entirely by the spatial inputs from Hairy and Eve. As the simulation

proceeds, Cad protein will disappear, allowing prd to turn on [87], followed by slp. (Note that

we do not currently know how exactly the timing of slp expression is controlled, so in order to

reproduce the timing observed in the embryo, slp expression in the simulation requires Prd

expression to already be present.) Shortly afterwards, Opa protein will turn on, switching the

control logic of pair-rule gene expression to the late network and causing pair-rule gene
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PLOS Biology | https://doi.org/10.1371/journal.pbio.2002439 September 27, 2017 9 / 38

https://doi.org/10.1371/journal.pbio.2002439


expression to eventually reach a final, stable state. After the switch to the late network, the gap

factors and Hairy cease to regulate the pair-rule genes and then fade away, as in real embryos.

Note that the model just described, which is Boolean, deterministic, and uses discrete time

steps, is not designed to capture the full complexity of the embryo (in which gene expression

is, of course, quantitative, stochastic, and continuous). Rather, it represents a tool to expose the

key mechanisms of patterning—and to delineate how much of what is observed in the embryo

follows simply from the qualitative structure of the regulatory network. It also provides an

important sanity check of the inferences that led to that structure being proposed in the first

place.

Posterior-to-anterior expression shifts are crucial for pair-rule patterning

Using the model described above, I first simulated a scenario in which gap gene inputs and

hence the pair-rule stripes of Hairy and Eve are completely static. The results are shown in S9

Movie and are summarised in Fig 2A. Under these conditions, the positional information pro-

vided by Hairy and Eve is essentially equivalent to the situation diagrammed in Fig 1C (bot-

tom) and thus has no possibility of generating the correct segmental output. Unsurprisingly,

the simulation does a bad job of recapitulating the patterns of pair-rule gene expression seen

in real embryos (see below). In particular, at the end of the simulation, there is no en expres-

sion anywhere at all, and neither odd nor slp is expressed in a segmental pattern.

I then simulated a scenario in which the gap gene inputs and hence the Hairy and Eve

stripes shift anteriorly over time. Given that the shift rate in real embryos is of the same order

as the synthesis and decay rates of the segmentation gene products, I set the rate of these shifts

to be such that the time taken for an expression domain to shift anteriorly by 1 cell is equal to

the synthesis/decay delay parameter value of the pair-rule genes, i.e., 6 time steps (see S2 Text).

The simulation output for this scenario is shown in S10 Movie and summarised in Fig 2B.

Even though the pair-rule network is unchanged and the Hairy and Eve stripes retain the same

pattern and relative phasing as for the static simulation, the model now performs completely

differently. Qualitative aspects of actual pair-rule gene expression (i.e., whether the expression

domains of each pair of genes are congruent, overlapping, abutting, or separate, and the

way this changes over time) are recapitulated remarkably well. For all pair-rule genes except

prd, the match between the model output and the real spatiotemporal dynamics of gene

expression is about as close as could be achieved by a simple, Boolean model—a few examples

are highlighted in Fig 3, and the full set of comparisons is shown in S1 Fig. For prd, the real

spatiotemporal expression profile is only partially recovered: the early pair-rule stripes are

positioned correctly but do not refine correctly at later stages—they narrow rather than split,

meaning that alternate segmental stripes are missing from the final pattern (S3 Fig). However,

the prd domains missing from the simulation are not actually required for segment boundary

patterning in real embryos (they are not reflected in the larval cuticles of prd mutants, although

they do have minor effects on wg expression [6,31,95]). Accordingly, the simulation still gener-

ates the correct final segmental output: a repeating pattern of En, Odd, Slp x2, En, Odd, Slp x2.

These results tell us a number of things. First, it is not strictly necessary to invoke morpho-

gen gradients in order to account for Drosophila pair-rule patterning. Second, posterior-to-

anterior shifts of the Hairy and/or Eve stripes appear to be crucial for properly patterning the

other pair-rule genes, and analysing the different behaviour of the static and shifting simula-

tions should reveal exactly why. Third, the model as formulated is too simple to explain

important aspects of the prd expression profile. Additional complexities that influence prd
expression in real embryos could include (1) additional spatial or temporal regulatory inputs

missing from the model, (2) quantitative information from existing spatial or temporal inputs
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Fig 2. Simulation output from a Boolean model of the pair-rule network. Pair-rule gene expression patterns generated by simulating a Boolean

model of the pair-rule network, assuming static “gap” inputs (A), dynamic “gap” inputs (B), or dynamic “gap” inputs and no Eve expression (C). Original

simulations are shown in S9–S11 Movies. In each panel, the horizontal axis represents the anteroposterior (AP) axis (anterior left), while the vertical

axis represents the different gene products that might be expressed in a given “cell” (column). Pale colours represent active transcription; dark colours

represent active protein (see colour key at top right). Grey vertical lines indicate the span of an idealised double-segment repeat of 8 “cells”. The same
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that is not captured by the use of Boolean variables, or (3) differential synthesis/degradation

rates of particular segmentation gene products not accounted for by the equal time delays

assumed by the model. At least the first option seems to apply, as I have recently discovered

that the Sox transcription factor Dichaete [96,97] also affects prd regulation [87].

How and why do the shifts affect patterning?

Dynamic patterning of the early pair-rule stripes. First, let us consider the earliest phase

of the simulations (time points 0–24, corresponding to mid-cellularisation in a real embryo),

in which double-segmental stripes of the primary pair-rule genes runt, ftz, and odd are pat-

terned by the early pair-rule network. Each of these genes is repressed by 2 other pair-rule fac-

tors: ftz and odd by Hairy and Eve, and runt by Hairy and Odd (Fig 1A, left). In the static

simulation, this system rapidly reaches steady state (Fig 4A): ftz and odd are expressed in cells

that express neither Eve nor Hairy, while runt is restricted to cells that don’t express Hairy but

do express Eve (and hence don’t express Odd). This scenario is significantly different from the

expression patterns of these genes in a real embryo, in which there are more overlaps between

the various stripes (Fig 4C). For example, runt expression overlaps with ftz (Fig 4Cg) and odd
(Fig 4Cc) as well as eve, while ftz and odd overlap slightly with hairy (Fig 4Cd and 4Ce).

These overlaps represent unstable combinations of gene expression (Hairy represses ftz and

odd while Odd represses runt), but they are nevertheless present throughout the “early” phase

of the second simulation, which incorporates stripe shifts. This is because the dynamic inputs

from Hairy and Eve mean that primary pair-rule gene expression is not permitted to reach sta-

ble state (Fig 4B), and therefore a fraction of cells within the tissue will be in these transient

states at any given point in time. Note that although the gene expression within each cell is

constantly changing over the course of the simulation, the overall pattern of stripes remains

constant once established, moving across the tissue like an elaborate Mexican wave.

Specifically, the additional overlaps seen in the second simulation (Fig 4B) arise because the

combination of shifting dynamics with time delays for protein synthesis/decay means that

domains of active transcription do not necessarily reflect domains of protein activity, and vice

versa. If a pair-rule stripe is shifting anteriorly, the protein distribution of that stripe should lag

behind the transcript distribution, a prediction I have verified by comparing eve transcript and

Eve protein expression patterns within individual embryos (Fig 4D). After a gene turns on at

the anterior edge of a stripe, there will be a delay before the protein appears and represses its

targets, resulting in small transcriptional overlaps between repressors and their targets (i.e.,

anterior hairy/posterior ftz, anterior hairy/posterior odd, and anterior odd/posterior runt).
Similarly, after a gene turns off at the posterior edge of a stripe, there will be a delay before the

protein disappears and its targets are derepressed, resulting in small transcriptional gaps

between repressors and their targets (i.e., posterior eve/anterior odd, posterior hairy/anterior

runt, and posterior eve/anterior ftz). The exact size of the gaps and overlaps depends on the

relationship between the speed of the expression shifts and the length of the time delays

involved in protein synthesis and decay: faster relative shift rates will result in larger gaps and

overlaps, while slower relative shift rates will result in a pattern closer to the static scenario

(S6 Fig; S1–S5 Movies).

7 time points (T20–T56) are shown for each simulation. Cad turns off between the first (T20) and second (T26) panels (dashed lines), derepressing

prd and slp. Opa turns on between the third (T32) and fourth (T38) panels (dashed lines), causing a switch from the early to the late network logic.

Parasegment boundaries (black vertical lines at T56, located between abutting domains of Slp and En) are only produced by the simulation with

dynamic gap inputs (B). Abbreviations: Cad, Caudal; Opa, Odd-paired; prd, paired; slp, sloppy-paired.

https://doi.org/10.1371/journal.pbio.2002439.g002
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Fig 3. The “dynamic” simulation accurately recapitulates the spatiotemporal expression of the pair-rule genes. Left: false-coloured

double FISH images for selected combinations of pair-rule gene transcripts at 4 different stages. Each panel shows a lateral view of stripes

2–6 (anterior left, dorsal top). Scale bars = 50 μm (rightmost panels use a slightly lower magnification due to tissue rearrangements).

Additional expression combinations are shown in S1 Fig, while uncropped views of the embryos are shown in S2 Fig. Right: simulated

transcriptional output for these pairs of genes at 4 different time points (see Fig 2B). The earliest time point of the simulated expression

(T20) is representative of the leftmost panels of real expression (mid-cellularisation), and so on. The simulation output is generally very

similar to the real expression patterns, with 2 main differences related to the discrete nature of the simulations. (1) Real gene expression

domains fade over time rather than turning off instantaneously (e.g., compare hairy in A0–A@ to the simulated hairy expression at T32/T44/

T56). (2) Qualitative expression pattern changes may occur gradually between late cellularisation and early gastrulation (e.g., eve

expression in B–B@/C–C@ or odd expression in C–C@/E–E@) rather than instantaneously, as between T32 and T44. (A) hairy and eve pair-

rule stripes partially overlap during cellularisation. At gastrulation, hairy expression fades away, while the eve stripes narrow from the

posterior and then also fade. (B) eve and ftz pair-rule stripes are at first expressed in complementary patterns. Starting from late

cellularisation, they both narrow from the posterior (eve more than ftz). eve expression later fades away, while ftz persists. (C) eve and odd

pair-rule stripes are at first expressed in complementary patterns before both narrowing. odd secondary stripes emerge at the posterior of

the narrowing eve domains, which then fade away, leaving segmental stripes of odd. (D) runt and ftz pair-rule stripes partially overlap

throughout cellularisation. At gastrulation, runt secondary stripes emerge to the posterior of the narrowing ftz stripes. Later, the runt primary

stripes refine from the posterior, and the overlaps with ftz are lost. (E) The ftz and odd stripes are fairly congruent during cellularisation. At

gastrulation, both narrow from the posterior, and the odd secondary stripes intercalate between them. Over the course of patterning, their

anterior boundaries also become offset from one another. (F) The slp primary stripes emerge later than the runt primary stripes and are

offset slightly from their posterior boundaries. (The simulated slp domains are wider than the real slp domains.) At gastrulation, secondary

stripes of both genes emerge between the primary stripes (the widths of the simulated slp stripes are now appropriate). The expression

patterns become largely congruent, except at the posteriors of the runt primary stripes. These differences resolve later, when the runt

primary stripes narrow. (G) The slp primary stripes emerge later than the ftz primary stripes and partially overlap with them. At gastrulation,

the secondary slp stripes emerge just anterior to the ftz domains, which narrow from the posterior, losing the overlaps with the slp primary

stripes. (H) As for (G), the slp primary stripes partially overlap the odd primary stripes, and these overlaps are later lost by the odd stripes

narrowing from the posterior. The secondary stripes of odd and slp intercalate between the primary stripes and abut one another.

Abbreviations: eve, even-skipped; FISH, fluorescent in situ hybridization; ftz, fushi tarazu; odd, odd-skipped; slp, sloppy-paired.

https://doi.org/10.1371/journal.pbio.2002439.g003
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Fig 4. Dynamic patterning of the primary pair-rule genes. (A) Regulatory schematic showing the predicted phasing of the primary pair-rule stripes

during cellularisation, assuming static, partially overlapping domains of Hairy and Eve. Pale colours represent transcript domains; intense colours

represent protein domains; hammerhead arrows represent repressive interactions; grey vertical lines indicate the span of a double-segment pattern

repeat. Cross-regulatory interactions are from the early network (compare Fig 1A, left). For simulation output, see S1 Movie. (B) Regulatory

schematic showing the predicted phasing of the pair-rule stripes during cellularisation, assuming dynamic, partially overlapping domains of Hairy and
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Dynamic patterning of the odd-numbered parasegment boundaries. The next phase of

the simulations (time points 25–36, corresponding to late cellularisation in a real embryo) is

when the secondary pair-rule genes turn on in double-segment patterns and prepattern the

odd-numbered (Prd-dependent) parasegment boundaries. These boundaries rely on setting

up offset posterior boundaries of prd and slp expression: en is activated by Prd but repressed by

Slp, thus resulting in narrow stripes of en expression posteriorly abutting each of the slp pair-

rule stripes (Fig 5A; S4 Fig).

The posterior boundaries of prd and slp are patterned by Eve, which represses both genes

during cellularisation (Fig 1A, left). While slp continues to be repressed by Eve throughout

later development [88], prd becomes insensitive to Eve towards the end of cellularisation

[30,32] for reasons that are not entirely clear but may relate to the loss of Dichaete expression

from the blastoderm [87]. The current model for how the offsets are set up is that the anterior

edge of each Eve stripe acts as a morphogen gradient, which represses slp at a lower Eve con-

centration than is required to repress prd, thus differentially positioning their expression

boundaries (Fig 5B) [30]. The reason that patterning fails in the first simulation (Fig 2A) is that

the static, Boolean stripes of Eve position the boundaries of both prd and slp at the same place,

resulting in no offsets and hence no en expression. In the second simulation (Fig 2B), however,

the prd/slp offsets do emerge, even though Eve expression remains Boolean. This is because slp
expression turns on significantly later than prd expression (about 10 minutes later in real

embryos [59]), by which time, the Eve boundary has shifted to a more anterior position than

where it was when it patterned the prd stripes. Thus, whereas under the morphogen model, the

distance between the prd and slp boundaries is measured using Eve concentration, an alterna-

tive model is that this distance is instead measured using time (Fig 5C).

These 2 mechanisms are not mutually exclusive, and it may be that they both contribute to

patterning in the embryo. However, in their basic forms, they make different predictions

about the relative expression dynamics of the prd and Eve domains. Under the static morpho-

gen model, the 2 sets of domains should show significant overlaps throughout patterning (Fig

5B). Under the dynamic model, these overlaps should be absent when the prd stripes are first

patterned and emerge later, once prd becomes resistant to Eve (Fig 5C). Real pair-rule gene

expression in the embryo is more consistent with the dynamic model: the posterior boundaries

of the prd stripes abut the anterior boundaries of the eve stripes when they first emerge, and it

is only later, when slp starts to be expressed, that overlaps between prd and eve become obvious

(Fig 5D).

Dynamic patterning of the even-numbered parasegment boundaries. The final phase of

the simulations (time points 37–60, corresponding to gastrulation in real embryos) is when the

system switches over to the late network, and the even-numbered (Ftz-dependent) paraseg-

ment boundaries are patterned. These boundaries are patterned by the pair-rule stripes of

Runt, Ftz, and Slp, which together pattern segmental stripes of en, odd, and slp (Fig 6A and 6B)

[32]. Correctly patterning these latter domains therefore relies on the early network being able

Eve. hairy and eve domains shift anteriorly over time, resulting in offsets between transcript and protein domains. Colours, etc., as for (A). For

simulation output, see S2 Movie. (C) Comparisons between real and predicted phasings of the primary pair-rule stripes. Double FISH images show

lateral views of stripes 2–6 (anterior left, dorsal top) in mid-cellularisation stage embryos. In the bottom half of each image, the 2 channels have been

thresholded, making regions of overlap easier to see. Scale = 50 μm. Diagrams to the right of each image show the stripe phasings predicted by static

(top) or shifting (bottom) gap inputs, respectively (compare A and B). For panels (A) and (B), the 2 models predict the same relative pattern. In all other

panels, the models predict different relative patterns. (D) Simultaneous visualisation of eve transcript (magenta) and Eve protein (green) in embryos at

4 different stages. Rightmost panels show a ventrolateral view; all other panels show lateral views. Upper panels show whole embryo views; lower

panels show enlarged views of stripes 2–6. In stripes 3 onwards, the protein domains lag behind the transcript domains until late gastrulation,

indicating that the anterior boundaries of the eve stripes shift anteriorly until early gastrulation. In stripe 2, the anterior boundary stabilises significantly

earlier. Scale = 50 μm. Abbreviations: eve, even-skipped; FISH, fluorescent in situ hybridization.

https://doi.org/10.1371/journal.pbio.2002439.g004
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Fig 5. Dynamic patterning of the odd-numbered parasegment boundaries. (A) Regulatory schematic of gene expression at the odd-numbered

parasegment boundaries. Domains of Slp, Prd, and Eve expression (dark colours) pattern segment-polarity stripes of wg, en, and odd (pale colours).

Anterior left. Hammerhead arrows represent repressive interactions; pointed arrows represent activatory interactions; grey vertical line represents a

prospective parasegment boundary. See S4 Fig for relevant in situ data. (B) Static, “morphogen gradient” model for the patterning of the prd and slp

posterior borders by Eve. The anterior margin of the Eve stripe is graded, with higher levels of Eve protein (darker green) present more posteriorly. High

Eve (dark green) is required to repress prd, but only medium Eve (medium green) is required to repress slp. Based on Fujioka et al. (1995) [30]. (C)

Dynamic model for the patterning of the prd and slp posterior borders by Eve. prd is activated earlier (T1, mid-cellularisation) than slp (T2, late

cellularisation). In between these time points, the anterior border of the Eve domain shifts anteriorly. The posterior border of the prd domain is patterned by

Eve at T1, but the posterior border of the slp domain is patterned by Eve at T2, resulting in a more anterior location. prd is no longer repressed by Eve at

T2, resulting in stable, overlapping expression of Eve and prd. (D) Double FISH images showing the relative phasing of eve (green), prd (blue), and slp

(red) expression domains at mid-cellularisation and late cellularisation. Enlarged views of stripes 2–6 are shown below the whole embryo lateral views

(anterior left, dorsal top). In the bottom half of each image, the 2 channels have been thresholded, making regions of overlap easier to see. At mid-

cellularisation, slp is not expressed and the posterior borders of the prd stripes abut the anterior borders of the eve stripes. At late cellularisation, the

posterior borders of the prd stripes overlap the anterior borders of eve stripes (note the regions that appear cyan), the posterior borders of the slp stripes
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to set up the correct relative pattern of runt, ftz, and slp expression. Crucially, this pattern

includes narrow overlaps between runt and ftz (which will later give rise to en expression) and

narrow gaps between runt and slp (which will later allow odd expression to be maintained).

This means that the 3 relevant sets of expression boundaries (ftz anterior boundaries, runt
posterior boundaries, and slp anterior boundaries) each need to fall in different positions.

The patterning of each of these sets of boundaries eventually traces back to the posteriors of

the Eve stripes (see Fig 4B). ftz expression is directly patterned by Eve; runt is patterned by

Odd, which is itself patterned by Eve; and slp is patterned by Runt, which, as just mentioned, is

indirectly downstream of Eve. In the first simulation (Fig 6C, top), these Eve boundaries are

static, and thus the boundaries of Runt, Ftz, and Slp end up coinciding exactly. This explains

why the en stripes fail to emerge and odd expression is lost: the expression states that give rise

to them are missing from the positional code.

However, the correct boundary positions do emerge from the second simulation (Fig 6C,

bottom), even though the network is unchanged. Again, this result is caused by the dynamic

nature of the Eve stripes. Each of the 3 boundaries is patterned by a regulatory chain of a differ-

ent length (1, 2, or 3 interactions, respectively) and so will take different lengths of time to

adjust to a given change in Eve expression (Fig 6D). This means that when the Eve stripes shift

anteriorly over time, the 3 sets of boundaries each lag behind the Eve domains by different dis-

tances, thereby providing the necessary positional framework for the final segment pattern.

Patterning dynamics explain the severity of the eve mutant phenotype

Above, I described how the final segmental output consists of the pattern [En, Odd, Slp, En,

Odd, Slp] across each double-parasegment repeat. I then used a dynamical model of the pair-

rule system to show how the Eve stripes are directly or indirectly responsible for patterning

most of the expression boundaries in this pattern, including both sets of parasegment bound-

aries. In this section, I use the same model to simulate and dissect the evemutant phenotype,

which has proved hard to account for using traditional patterning models.

Although evewas originally identified as a pair-rule gene on the basis of a pair-rule cuticle

phenotype [3], it turned out that this particular mutant allele was an eve hypomorph, while eve
null mutants yield an aperiodic denticle lawn phenotype instead [98]. Both odd-numbered

and even-numbered en stripes are absent from eve null mutant embryos [71], indicating severe

mispatterning of upstream pair-rule gene expression. To investigate the aetiology of these

effects, I characterised pair-rule gene expression patterns in precisely staged evemutant

embryos using double fluorescent in situ hybridisation (FISH) (Fig 7) and then cross-refer-

enced these observations with the patterning output of an “in silico” evemutant (Fig 2C; S11

Movie), simulated by starting with the dynamic model and then setting eve transcription to

remain off (see S2 Text).

The experimental results are in accordance with earlier, more fragmentary characterisations

of evemutants [30,64,73,74,99–101] and reveal a number of significant changes to pair-rule

gene expression patterns. The odd and ftz primary stripes are broader than usual (Fig 7A), and

the early expression of prd and slp is largely aperiodic rather than pair rule (Fig 7A and 7C).

Then, at gastrulation, segmental patterns of pair-rule gene expression fail to emerge; instead,

prd resolves into broad pair-rule stripes (Fig 7D), runt and slp become expressed fairly

sharply abut the anterior borders of the eve stripes, and the posterior borders of the slp stripes are offset anteriorly from the posterior borders of the prd

stripes (arrowheads). These expression patterns are more consistent with the dynamic model (C) than the static morphogen model (B). Scale

bars = 50 μm. Abbreviations: en, engrailed; eve, even-skipped; FISH, fluorescent in situ hybridization; odd, odd-skipped; prd, paired; slp, sloppy-paired;

wg, wingless.

https://doi.org/10.1371/journal.pbio.2002439.g005
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Fig 6. Dynamic patterning of the even-numbered parasegment boundaries. (A) Double FISH images showing the relative

expression patterns of runt, ftz, and slp at late cellularisation. Enlarged views of stripes 2–6 are shown below whole embryo lateral

views (anterior left, dorsal top). In the bottom half of each enlarged image, the 2 channels have been thresholded, making regions of

overlap easier to see. Scale bars = 50 μm. (B) Regulatory schematic showing the patterning of the even-numbered parasegment

boundaries. At gastrulation, Runt, Ftz, and Slp are expressed in partially overlapping domains similar to their transcript expression at
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ubiquitously (Fig 7F), and odd and ftz expression largely disappears (Fig 7E). These changes

are also seen in the evemutant simulation (Fig 2C) and, as described below, follow logically

from the structure of the pair-rule network.

Because Eve expression plays a relatively minor role in late patterning, most of the expres-

sion changes just described result from the loss of Eve activity during cellularisation (time

points 0–36 in Fig 2C and S11 Movie). First, odd, ftz, and prd, all of which are direct targets of

Eve repression (Fig 7A0), are expressed ectopically: the odd and ftz primary stripes expand

anteriorly (judged relative to hairy, Fig 7A, top/middle rows), while the prd interstripes (i.e.,

the gaps between the early broad stripes) are derepressed (Fig 7A, bottom row). The ectopic

Odd expression has a knock-on effect on runt expression, which becomes down-regulated (Fig

7B and 7B0). (Note that while runt expression is almost entirely lost at this stage of the simula-

tion, in real embryos runt remains fairly widely expressed, although at significantly lower lev-

els—see S5 Fig. This difference may be partially due to expression from the runt stripe-specific

elements, which are not included in the model.) The loss of Runt activity then contributes to

the misexpression of the slp primary stripes, which turn on at the end of cellularisation and

would normally be patterned by both Eve and Runt (Fig 7C0). Given the absence of Eve activity

and the loss/weakening of Runt activity, slp becomes expressed almost ubiquitously within the

trunk of the mutant embryos (Fig 7C).

Finally, the downstream effects of these aberrant patterns play out over the course of gastru-

lation, after the switch to the late network (time points 37–60 in Fig 2C / S11 Movie). Odd

represses prd, causing the aperiodic domain of prd to resolve into a pair-rule pattern (Fig 7D

and 7D0). Odd and Ftz also repress slp, causing some small gaps to appear in the slp pattern

(Fig 7E and 7F). However, odd and ftz are themselves repressed by Slp very strongly (Fig 7E0),

and the ectopic Slp expression in the embryo causes their expression to be almost completely

lost (Fig 7E). In, contrast, new runt expression emerges throughout most of the trunk, due to

the absence of its repressors, Eve and Odd (Fig 7F and 7F0).

As a consequence of all this mispatterning, en expression is completely repressed, and para-

segment boundaries never form. The odd-numbered en stripes are specifically blocked by the

ectopic Slp expression that replaces the Eve stripes. Above, we saw that these en domains are

specified by the short regulatory chain [Eve––| Slp––| En], thus explaining why they have been

observed to reappear in eve, slp double mutants [8,101]. On the other hand, the even-num-

bered en stripes are redundantly repressed in evemutants, by both ectopic Odd and ectopic

late cellularisation (see A). These overlapping domains provide a template for the segment-polarity stripes of en, odd, and slp: the

anterior borders of the Ftz stripes define the posterior borders of the slp secondary stripes, the posterior borders of the Runt stripes

define the anterior borders of the odd primary stripes, and the Slp anterior borders define the posterior borders of the odd primary

stripes. The even-numbered en stripes are activated by Ftz but repressed by Odd and Slp and so are restricted to the region of

overlap between Runt and Ftz, in which both odd and slp are repressed [32]. Anterior left. Hammerhead arrows represent repressive

interactions; grey vertical line represents a prospective parasegment boundary. (C) Schematic explaining why the even-numbered

parasegment boundaries require dynamic gap inputs in order to be patterned. Given static inputs (top panel, compare Fig 2A), the

Ftz anterior boundary (1, pink vertical line), the Runt posterior boundary (2, green vertical line), and the Slp anterior boundary (3, blue

vertical line) all coincide, resulting only in broad slp expression. Given dynamic inputs (bottom panel, compare Fig 2B), the 3

boundaries are each located at different anteroposterior (AP) positions (as in B), resulting in the segment-polarity pattern: slp, en,

odd, slp. (D) Schematic explaining the origin of the offset boundaries of ftz, runt, and slp. Top: diagram of the relative expression of

Eve, runt, ftz, odd, and slp at late cellularisation (compare A, and see T32 in Fig 2B). The solid red vertical line indicates the current

position of the Eve posterior border, which coincides with the ftz anterior border (1). Dotted red vertical lines indicate previous

positions of the dynamic Eve posterior border, coinciding with the runt posterior border (2) or the slp anterior border (3). Bottom: the

regulatory chains responsible for patterning each of the 3 expression boundaries are highlighted in red on the early pair-rule network.

All 3 boundaries trace back to Eve, but more posterior boundaries correspond to longer regulatory chains and so incur a longer time

lag to resolve, given a change in Eve expression. The 3 different genes (ftz, runt, and slp) are effectively patterned by increasingly

earlier incarnations of the Eve stripes, and therefore the existence of spatial offsets between boundaries 1, 2, and 3 relies on the Eve

posterior border shifting anteriorly over time. Abbreviations: en, engrailed; FISH, fluorescent in situ hybridization; ftz, fushi tarazu;

odd, odd-skipped; slp, sloppy-paired.

https://doi.org/10.1371/journal.pbio.2002439.g006
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Fig 7. Aetiology of the eve mutant phenotype. (A–C) “Early” effects. (A–C) Double FISH images of pair-rule

gene expression in cellularisation stage wild-type and eve mutant embryos. Enlarged views of stripes 2–6 are

shown (anterior left, dorsal top). Scale = 50 μm. For whole embryo views and single channel views, see S5 Fig.

(A0–C0) Predicted transcriptional output of these genes from “wild-type” and “eve mutant” simulations (compare

T32 in Fig 2B and 2C). (A@–C@) Regulatory interactions relevant to the aberrant expression patterns in eve
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Slp, as a result of the regulatory chains [Eve––| Odd––| En] and [Eve––| Odd––| Runt––|

Slp––| En], respectively. The model therefore explains why these stripes reappear in eve, odd
double mutants [102] but not in eve, slp double mutants [8].

The Drosophila pair-rule network is compatible with both simultaneous

and sequential segmentation

By simulating the Drosophila pair-rule network, I have shown that dynamic spatial inputs

from just 2 factors, Hairy and Eve, are sufficient to organise the expression of the system as a

whole. In the Drosophila blastoderm, these inputs are driven by the dynamic output of the pos-

terior gap system. However, the elaborate control of pair-rule gene expression by gap factors

appears to be a relatively recent novelty in arthropod segment patterning, originating during

the evolutionary transition from short-germ to long-germ embryogenesis [103,104]. It is cur-

rently not clear how much of the cross-regulation between the pair-rule genes seen inDrosoph-
ila is a new adaptation to long-germ development and how much is retained from a short-

germ ancestral state.

To explore this question, I determined how many changes to the “wild-type” Drosophila
simulation it would take in order to produce something resembling a sequential, “clock-and-

wave-front” mode of segmentation. I managed to achieve this transition by way of a few plausi-

ble alterations, leaving the bulk of the network untouched (Fig 8C).

The only explicit regulatory changes that I made to the simulation were to the control logic

of eve, hairy, and opa. First, I removed the regulation of eve by gap inputs (G2 in the model)

and replaced it with early repression from Runt and Odd, both of which repress the eve late ele-

ment in wild-type embryos (Fig 1A, right). Second, I removed the regulation of hairy by gap

mutants are highlighted on the early pair-rule network (bold arrows). Eve and its regulatory effects, which are

absent from the mutant embryos, are shown in grey. (A) Eve normally represses ftz, odd, and prd. In eve mutant

embryos, all 3 genes are ectopically expressed: the ftz and odd stripes expand anteriorly, and prd is expressed

ubiquitously rather than in stripes. These expression changes are recapitulated by the simulation. (B) Eve

normally indirectly regulates runt expression by repressing its repressor, Odd. In eve mutant embryos, odd

expression expands anteriorly (see A), resulting in a down-regulation of the runt stripes, except at their anterior

margins (S5 Fig). This effect is recapitulated in a discrete manner by the simulation. (C) Eve normally regulates

slp in 2 ways: (1) by repressing it directly, and (2) by repressing it indirectly via indirectly maintaining the

expression of its repressor, Runt (see B), via direct repression of odd (see A). In eve mutant embryos, slp is

expressed fairly ubiquitously rather than in narrow stripes. This expansion is evident in the simulated expression,

but see legend of S5 Fig for discussion of differences between the real and simulated patterns. (D–F) “Late”

effects. Double FISH images of pair-rule gene expression in wild-type and eve mutant embryos over the course of

gastrulation. For each set of images, each row compares a wild-type and a mutant embryo of roughly equal age

(age increases from top to bottom). Both whole embryo views (anterior left, dorsal top) and enlarged views of

stripes 2–6 are shown. For single channel views, see S5 Fig. (D0–F0) Regulatory interactions that explain the

observed pattern maturation are highlighted on the late network (bold arrows). (D) Odd represses prd in the late

network, and so prd expression is lost from cells in which odd and prd expression initially overlap. In wild-type

embryos, the odd primary stripes overlap the centres of the prd pair-rule stripes, which therefore split in two. In

eve mutant embryos, broad odd stripes are overlain on initially aperiodic prd expression, which therefore resolves

into a pair-rule pattern. (E) There is mutual repression between Slp and Ftz/Odd in the late network (E0). (Note

that the repression from Slp appears to be stronger than the reciprocal repression from Ftz and Odd.) In wild-type

embryos, Slp causes the primary stripes of both odd and ftz to narrow from the posterior (where they overlap the

slp primary stripes). In eve mutant embryos, Slp is broadly expressed, causing general repression of odd and ftz.

Note that expression of both odd and ftz persists in stripe 3 (asterisks), in which there is a corresponding gap in

the slp expression domain. (F) In the late network, slp and runt are regulated similarly, and Slp represses all of the

repressors of runt (i.e., eve, odd, and en). Consequently, runt and slp take on almost identical expression

patterns. In wild-type embryos, the 2 genes become expressed in coincident segmental stripes. In eve mutant

embryos, early broad expression of slp allows runt to also become ubiquitously expressed. Note that the slp

domain later resolves into a pair-rule pattern (perhaps due to repression from residual Ftz protein).

Abbreviations: en, engrailed; eve, even-skipped; FISH, fluorescent in situ hybridization; ftz, fushi tarazu; odd,

odd-skipped; prd, paired; slp, sloppy-paired.

https://doi.org/10.1371/journal.pbio.2002439.g007
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Fig 8. A slightly modified pair-rule network can pattern segments in both simultaneous and sequential modes. (A,B) Simulation

output for the modified network. Each panel shows the system state at a specific time point between T0 and T200 (see S12 and S13 Movies for

complete output). In each panel, the horizontal axis represents a region of the anteroposterior (AP) axis (anterior left) and the vertical axis

represents the different gene products that might be expressed in a given “cell” (individual columns C1 to C20). Pale colours represent active

transcription; dark colours represent protein activity (see colour key at top right). Dotted red lines indicate parasegment boundaries. (A) The
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inputs (G1 in the model) and replaced it with autorepression, which is a common phenome-

non for her/hes family genes [107,108]. Third, I tied the onset of opa expression to the decay of

Cad by making Cad repress opa. These changes allowed the gap inputs G1 and G2 to be

removed from the model and simplified the temporal control of the patterning process, put-

ting everything downstream of Cad and Hairy.

I took this modified version of the Drosophila network and explored how it behaved at the

tissue level, given various sets of initial conditions. I found that if I set up a repeating initial

phase gradient of Hairy expression (i.e., for each cell along a double-segment repeat, Hairy

expression begins at a slightly different point in its feedback cycle) and left initial Cad expres-

sion unchanged, the simulation output was essentially identical to before (Fig 8A and S12

Movie). This is because the waves of oscillating Hairy expression that sweep through the tissue

while the early network is active are sufficient to correctly organise the pair-rule stripes of all

the remaining primary pair-rule genes (including Eve), and therefore downstream patterning

proceeds unperturbed.

However, I also discovered that if I removed all spatial patterning of Hairy from the initial

conditions and instead established an anterior-to-posterior decay gradient of Cad (mimick-

ing the retracting Cad domain seen in short-germ insects [87,109]), the simulation still pro-

duced the correct segmental output except that, now, this pattern emerged sequentially

instead of simultaneously (Fig 8B and S13 Movie). As Cad decays and disappears from pro-

gressively more posterior cells over time, Opa turns on in an anterior-to-posterior wave,

switching cells from the early network over to the late network. Cells in the posterior portion

of the tissue synchronously passage through a repeating sequence of pair-rule gene expres-

sion (Hairy! Eve! Runt! Ftz/Odd!Hairy) until this point and subsequently differen-

tiate into particular segment-polarity fates.

The modified network (Fig 8C, right) is thus compatible both with Drosophila-like pair-rule

gene expression and with “clock-and-wave-front” pair-rule gene expression similar to that

seen in, e.g., Tribolium. This finding suggests (1) that many of the regulatory interactions

within the Drosophila pair-rule network might be conserved in short-germ arthropod species

and (2) that long-germ and short-germ segmentation involve essentially similar patterning

mechanisms and dynamics. Specifically, segment-polarity fate appears to be determined in

both cases by the intersection of 2 sets of temporal signals, those carried by the pair-rule genes

and those carried by broadly expressed extrinsic timing factors. In long-germ embryos, a

system is initialised with uniform expression of Cad and a periodic phase gradient of Hairy expression (protein or transcript “age” increases

from posterior to anterior, and the pattern repeats every 8 cells—see S2 Text for details). Given these starting conditions, the dynamical

behaviour of the system is almost identical to the unmodified network (compare Fig 2B or S10 Movie). Note, however, that hairy transcript is

always out of phase with Hairy protein. (B) The system is initialised with uniform expression of Hairy but a decay gradient of Cad (protein

disappears from anterior to posterior over time). Given these altered starting conditions, the system behaves differently and patterning takes

longer, but the same stable segmental pattern eventually emerges. Note that in this simulation, the primary pair-rule genes continuously

oscillate within cells that do not express Opa, and segmental stripes emerge progressively from anterior to posterior as Opa turns on along the

AP axis. (C) Comparison of the original (left) and modified (right) early networks. For simplicity, the secondary pair-rule genes are not shown.

See text for details. (D) Proposed regulatory homology between phases of segmentation gene expression in long-germ embryos (left) and

short-germ embryos (right). In Drosophila, the quintessential long-germ insect, there are 3 main phases of segment patterning during

embryogenesis. During cellularisation (top), most pair-rule genes are regulated via zebra elements and become expressed in periodic patterns

throughout the trunk of the embryo (green region). During gastrulation (middle), segmental patterns of pair-rule genes and segment-polarity

genes emerge throughout the trunk (blue region) fairly simultaneously. Finally, during germ band extension (bottom), the segment-polarity

network maintains the segment pattern via intercellular signalling throughout the trunk (red region). In short-germ embryos, for example, those

of the red flour beetle Tribolium castaneum, segment patterning occurs continuously throughout germ band extension. Three germ bands of

increasing age are depicted: the trunk elongates from the posterior as embryogenesis proceeds. Throughout the whole process, primary pair-

rule genes exhibit oscillatory expression in the posterior segment addition zone (green regions). Pair-rule stripes then resolve (and may

undergo frequency doubling) in the anterior segment addition zone (blue region). Finally, segment-polarity genes are expressed in segmental

stripes starting just anterior to the segment addition zone (red regions). This phase of expression is thought to be regulated by a conserved

signalling network [105,106]. Abbreviations: Cad, Caudal; Opa, Odd-paired.

https://doi.org/10.1371/journal.pbio.2002439.g008
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periodic pattern of segment-polarity fates is achieved by directly imparting spatial information

to the pair-rule genes using the gap system and stripe-specific elements. In short-germ

embryos, however, retracting wave fronts of the timing factors provide this spatial informa-

tion, and the gap genes play other roles.

Discussion

A revised view of the Drosophila pair-rule network reconciles long-germ

and short-germ segmentation

In this manuscript, I have analysed the structure and dynamics of the Drosophila pair-rule net-

work using a combination of simulated and experimental data to reveal how segment pattern-

ing is achieved. I have discovered a functional role for dynamic gap inputs in correctly phasing

the pair-rule stripes and propose revised mechanisms for the patterning of the odd-numbered

and even-numbered parasegment boundaries. In contrast to previous models based around

the principle of static morphogen gradients, these mechanisms involve a coordinated interplay

between intrinsic network dynamics and extrinsic spatiotemporal signals and do not necessar-

ily require graded pair-rule activity.

These findings contribute to the evolving view of the role of Even-skipped, perhaps the best

known of the pair-rule factors. Eve has long been known to be required for the expression of

both sets of en stripes and hence both sets of parasegment boundaries [71,98]. Originally, Eve

was thought to achieve this directly by activating en. Later, it was recognised that Eve does not

regulate en directly but instead represses several other pair-rule factors that themselves repress

en [75,76]; however, quantitative information inherent within the Eve stripes was still believed

to establish the template for the en stripes [8,30]. This conclusion is challenged by the new

model presented here, which suggests that static domains of Eve expression would cause a

similar degree of pattern loss to that seen in evemutant embryos. Instead, I propose that Eve

conveys positional information largely via its expression dynamics, which are decoded down-

stream by the rest of the pair-rule gene network. (Interestingly, while “French flag” type

morphogen gradient mechanisms have been proposed to underpin many developmental pat-

terning systems, several modern studies have found that the reality often involves complex

dynamics [58,110–113].)

The findings also clarify the relationship between long-germ and short-germ segmentation.

I have shown that pair-rule patterning is fundamentally a temporal process and that it is there-

fore straightforward to convert the Drosophila pair-rule network into a clock-and-wave-front

system. Under this scenario, the dynamic “early” network regulates oscillatory expression in

the posterior of the tissue, while the switch-like “late” network stabilises these outputs into seg-

mental patterns in the anterior. Given that long-germ insects such as Drosophila are derived

from short-germ ancestors, it seems unlikely that this fluidity between simultaneous and

sequential patterning modes is a coincidence. I therefore propose that output from the Dro-
sophila early pair-rule network is developmentally homologous to the oscillatory pair-rule

gene expression seen in the segment addition zone of short-germ insects such as Tribolium,

while the output from the late pair-rule network is developmentally homologous to the stripe

refinement and frequency doubling that occurs just anterior to the segment addition zone

(Fig 8D). This hypothesis is strongly supported by a recent comparative study carried out by

Andrew Peel and myself, which found that different phases of pair-rule gene expression in Tri-
bolium exhibit the same correlations with cad and opa expression as seen in Drosophila [87].

Strikingly, the hypothesis implies that the “zebra” elements of runt and odd (which drive pair-

rule patterns in the Drosophila blastoderm) represent the relictual components of some

Dynamic patterning by the Drosophila pair-rule network

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002439 September 27, 2017 24 / 38

https://doi.org/10.1371/journal.pbio.2002439


ancestral segmentation clock that drove oscillations of these genes with double-segment peri-

odicity [50].

How did long-germ segmentation evolve?

The evolutionary transition from short-germ segmentation to long-germ segmentation is

thought to have been driven largely by selection for faster development. A segmentation clock

can only tick so fast, and therefore represents a tight production bottleneck when generating

segments: a longer body requires a longer time (S7A Fig). (Selection for quicker development

may also underlie the evolutionary success of “pair-rule” patterning, seen in centipedes [114]

as well as insects [115,116], which effectively halves the number of clock cycles required to pro-

duce a body of a given length.) In contrast, segmentation can be accomplished remarkably

quickly when pair-rule gene expression is initialised with a periodic spatial pattern, as in

Drosophila.

Mechanistically, the transition to long-germ segmentation seems to have involved 2 main

changes: (1) a heterochronic shift in the deployment of the pair-rule network from posterior

segment addition zone to blastoderm and (2) the elaboration of the posterior gap network and

associated stripe-specific elements. These latter processes are likely to have occurred progres-

sively along the AP axis, with intermediate forms exhibiting a composite mode of develop-

ment: simultaneous for more anterior segments, sequential for more posterior segments [103].

The process also seems to have been facilitated by the re-use of anterior stripe-specific ele-

ments to also drive more posterior pair-rule stripes [23,117,118]. However, given the complex-

ity of Drosophila pair-rule patterning, it has not been clear how this process could have

evolved gradually and seamlessly, all the while maintaining a perfect segmental output pattern.

The findings in this paper significantly mitigate this problem. In my model of the Drosoph-
ila pair-rule network, 2 of the primary pair-rule genes are patterned by gap inputs while 3 are

patterned by cross-regulation. However, the system works equally well if only 1 of these genes

is explicitly patterned and the rest are cross-regulated (S12 Movie) or if all 5 are patterned by

gap inputs and there is no cross-regulation (S8 Movie). Therefore, direct stripe patterning

through stripe-specific elements and indirect stripe patterning through zebra elements can

stand in for one another without affecting events downstream. (Similar conclusions, including

a potential role for stripe shifts, were reached by a recent in silico evolution study focused on

the Drosophila pair-rule genes [119].) Consequently, there is no need for multiple stripe-spe-

cific elements to have evolved simultaneously during the transition to long-germ segmenta-

tion: new stripe-specific elements could have evolved one by one, each time slotting into or

replacing parts of the existing patterning machinery. Retention of an intact segmentation

clock could also have buttressed gap-driven segment patterning during the transition, and

such a scenario may apply today to insects such as Nasonia and Bombyx, which exhibit some

evidence of both patterning modes [120–122]. The corollary of such flexibility between gap-

driven and cross-regulated pair-rule gene expression is, however, that the dynamics of the gap

network need to be highly constrained and should resemble those of the original segmentation

clock. This appears to be the case [67].

A trade-off between patterning speed and patterning robustness

Above, I stated that stripe-specific elements and cross-regulation are theoretically interchange-

able for positioning pair-rule stripes. In the Drosophila blastoderm, the regulatory situation

appears to be partially redundant: at least 3 of the primary pair-rule genes possess stripe-spe-

cific elements in any given pair-rule repeat, but only 2 of these genes lack zebra elements [16].

Why then have multiple pair-rule genes evolved stripe-specific elements, when patterning just
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a single gene in this way is theoretically sufficient for making segments? Additionally, why do

genes such as runt retain a zebra element when they already have a full set of stripe-specific

elements?

The first question has 2 likely answers. Using gap inputs to directly pattern multiple genes

speeds up the first emergence of a correctly phased pair-rule repeat and hence reduces the total

time required for segmentation as well as the minimum magnitude of the stripe shifts (S7B

Fig; S6–S8 Movies). (The extreme scenario is that gap shifts are dispensed with entirely, as

seems to have occurred in the anterior of the Drosophila trunk, based on comparisons with the

scuttle fly Megaselia abdita [123,124].) The acquisition of extra stripe-specific elements could

therefore have been driven by selection for marginal decreases to the length of development.

Alternatively, these elements could have been selected for in order to mitigate irregularities in

the patterns of upstream pair-rule genes. For example, runt, ftz, and odd all possess a stripe-

specific element for stripe 3 [16], corresponding to a region of the blastoderm in which their

repressor, Hairy, is inappropriately expressed early on [59].

While the stripe-specific elements of runt, ftz, and oddmay therefore increase the speed of

patterning, their output patterns are not as regular as those of hairy and eve, probably answer-

ing the second question. Irregular gap-driven pair-rule stripes, if not later refined by cross-reg-

ulation, would result in aberrant segment-polarity patterns. For example, cross-regulation of

the runt pair-rule stripes appears to be absent in Dichaete mutant embryos, and this leads to

severe and variable segmentation defects [87].

However, even if these runt stripes were as regular as those of eve, cross-regulation might

still be required. The eve stripes are patterned with a precision of about 1% AP length, i.e., dif-

fering in position from embryo to embryo by roughly 1 nucleus [41]. This positional noise is

equivalent to the spatial resolution of the final segment-polarity pattern, in which most

stripes are only 1 cell wide (Fig 1B). Therefore, if the eve and runt stripes both showed posi-

tional variation of this magnitude, and this noise was uncorrelated, segmentation defects

would likely occur. The benefit of the dynamic patterning carried out by the pair-rule net-

work is that the influence of Eve activity on gene expression is not restricted to the cells cur-

rently within each Eve stripe but also extends to cells posterior to these stripes, like wakes

stretching out behind moving ships. This means that entire pair-rule repeats become coordi-

nated with the Eve stripes, regardless of where exactly these stripes are located in the blasto-

derm. Thus, spending extra time to cross-regulate is likely to minimise the consequences of

noise in the original spatial signals, a trade-off that is characteristic of many developmental

patterning systems [125].

Assumptions, unexplained phenomena, and model limitations

I have presented theoretical evidence that posterior-to-anterior shifts of pair-rule stripes,

driven by dynamic gap inputs, play a functional role in segment patterning. The plausibility of

my model therefore rests on these shifts existing and being of an appropriate speed and magni-

tude. The basic model (only hairy and eve patterned by gap inputs) requires a minimum shift

of 3 nuclei, while versions including greater control of pair-rule gene expression by gap inputs

reduce this minimum to 1 or 2 nuclei (S6–S8 Movies). As yet, these shifts have only been mea-

sured in real embryos by comparing population estimates of absolute stripe position (in per-

cent egg length) in fixed material of different ages [59,61]. Interpreting these measurements is

not straightforward, but adjustments for nuclear migration suggest shifts of at least 2–3 nuclei

for eve stripes 3–7, consistent with the requirements of the model. Recent developments in live

imaging [126–128] mean that it should now be possible to test these estimates directly in indi-

vidual embryos.
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While the new model clarifies many aspects of segment patterning, it also highlights certain

regulatory phenomena that are currently unexplained and require further study. For example,

it is not clear how the timing of slp transcription is controlled, how exactly prd is spatially regu-

lated, or which factors are responsible for activating the pair-rule genes.

Finally, the model is obviously simplistic and represents only the first step towards a mod-

ern, system-level understanding of the pair-rule network. For example, while the model dem-

onstrates that morphogen-like effects are not necessary to account for pair-rule patterning, it

does not rule them out. (Indeed, anterior-to-posterior expression shifts might well contribute

to concentration-dependent spatial patterning of target genes, by helping shape the contours

of the pair-rule stripes at the protein level.) Careful experimental characterisation of the quan-

titative relationship between the protein concentrations of input factors and the transcription

rate of output factors could form the basis for future, more sophisticated models of Drosophila
pair-rule patterning, which explore the roles of quantitative and stochastic effects. Future mod-

els of short-germ segmentation, on the other hand, could account for morphogenetic processes

such as cell division and rearrangement [129–131] and/or incorporate known intercellular

communication processes that occur both upstream (e.g., Notch-Delta signalling [132–134])

and downstream (e.g., Toll receptor codes [135,136]) of the pair-rule genes.

Concluding remarks

In the introduction to this paper, I highlighted 3 recent findings related to pair-rule patterning:

(1) that pair-rule orthologs exhibit oscillating expression in the segment addition zones of

short-germ arthropods, (2) that pair-rule gene expression in long-germ insects is patterned by

dynamic gap gene expression, and (3) that the pair-rule network in Drosophila undergoes an

extensive topology change at gastrulation. I then presented evidence that dynamic Eve expres-

sion is integral to segment patterning and also that the Drosophila pair-rule network is broadly

compatible with both simultaneous and sequential modes of segmentation.

I therefore propose the following evolutionary hypothesis, which ties together and poten-

tially explains the 3 original findings. (1) Long-germ and short-germ segmentation are not

dichotomous modes of patterning but rather alternative behaviours of a largely conserved

pair-rule network. (2) In long-germ insects, ad hoc patterning of stripes by gap inputs stands

in for the expression of particular pair-rule gene “clock enhancers”, meaning that gap gene

networks are under strong selection to preserve dynamic behaviour. (3) In Drosophila, the

“early” pair-rule network is derived from the “clock” part of an ancestral short-germ segmenta-

tion mechanism, while the “late” network is derived from the stabilising genetic interactions

that would have originally established parasegment boundaries anterior to the segment addi-

tion zone.

These predictions can be tested in the future by comparative studies in emerging arthropod

model species.

Materials and methods

Wild-type in situ images are from a previously published data set deposited in the Dryad

repository: http://dx.doi.org/10.5061/dryad.cg35k [137]. The evemutation used was eve3 (gift

of Bénédicte Sanson) and was balanced over CyO hb::lacZ (Boomington stock no. 6650) in

order to easily distinguish homozygous mutant embryos. Whole mount double FISH, micros-

copy, and image analysis were carried out as described previously [32]. The eve/Eve doubles in

Fig 4D were generated by incubating embryos with 1:1,000 rabbit anti-Eve [138] and 1:500

anti-rabbit 488 following in situ hybridisation to eve. Images were analysed using Fiji

[139,140]: intensity profiles were produced using the “multi plot” function, while thresholded
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images were produced using the “make binary” tool. Simulations were coded in Python (www.

python.org) using the libraries NumPy [141] and Matplotlib [142]. SBML-qual files were gen-

erated using the GINsim software (http://ginsim.org) [143]. All models and simulations are

described in detail in S2 Text.

Supporting information

S1 Fig. Extended comparison between real and simulated pair-rule gene expression pat-

terns. Expanded version of Fig 3 from the main text, showing all pairwise combinations

between hairy, eve, runt, ftz, odd, and slp. (A) hairy and eve pair-rule stripes partially overlap

during cellularisation. At gastrulation, hairy expression fades away, while the eve stripes nar-

row from the posterior and then also fade. (B) eve and runt pair-rule stripes partially overlap

during cellularisation. The eve stripes become increasingly narrow at gastrulation, and the runt
secondary stripes emerge anterior to the eve stripes. By early GBE, eve expression has faded

away and runt expression has resolved into a regular, segmental pattern. The refinement of the

eve stripes occurs more gradually in real embryos than in the simulation. Arrowheads in B”‘

indicate new runt expression related to the developing nervous system. (C) eve and ftz pair-

rule stripes are at first expressed in complementary patterns. Starting from late cellularisation,

they both narrow from the posterior (evemore than ftz). eve expression later fades away, while

ftz persists. (D) eve and odd pair-rule stripes are at first expressed in complementary patterns,

before both narrowing. odd secondary stripes emerge at the posterior of the narrowing eve
domains, which then fade away, leaving segmental stripes of odd. (E) hairy and runt pair-rule

stripes are expressed in complementary patterns during cellularisation. hairy expression then

fades away, while runt transitions to segmental stripes. (F) hairy and ftz pair-rule stripes

slightly overlap during cellularisation. hairy expression then fades away, while the ftz stripes

narrow. (G) hairy and odd pair-rule stripes slightly overlap during cellularisation. hairy expres-

sion then fades away, while odd transitions to narrow segmental stripes. (H) runt and ftz pair-

rule stripes partially overlap throughout cellularisation. At gastrulation, runt secondary stripes

emerge to the posterior of the narrowing ftz stripes. Later, the runt primary stripes refine from

the posterior, and the overlaps with ftz are lost. (I) runt and odd pair-rule stripes slightly over-

lap during cellularisation. These overlaps resolve at late cellularisation (slightly earlier than in

the simulation). At gastrulation, new odd expression emerges just anterior to the runt primary

stripes, while new runt expression emerges just posterior to the refining odd primary stripes.

By early GBE there is a regular segmental pattern of abutting odd and runt stripes, separated

by gaps. Arrowheads in I”‘ indicate new runt expression related to the developing nervous sys-

tem. (J) The ftz and odd stripes are fairly congruent during cellularisation. At gastrulation,

both narrow from the posterior, and the odd secondary stripes intercalate between them. Over

the course of patterning, their anterior boundaries also become offset from one another. (K)

The slp primary stripes emerge later than the hairy stripes, but share an anterior border with

them. (The slp stripes in the simulation are too broad at this stage—they should be narrower

than the hairy stripes.) hairy expression then fades away, while slp transitions to a segmental

pattern. (L) The slp primary stripes emerge later than the eve stripes, and abut their anterior

borders. (In the simulation, these slp stripes extend too far posteriorly, and overlap with eve.
The reason is that the eve anterior borders would have stabilised by this point in real embryos,

but they are still shifting in the simulation.) At gastrulation, the eve stripes narrow from the

posterior and then fade, while slp transitions to segmental stripes. (M) The slp primary stripes

emerge later than the runt primary stripes, and are offset slightly from their posterior bound-

aries. (The simulated slp domains are wider than the real slp domains.) At gastrulation, second-

ary stripes of both genes emerge between the primary stripes (the widths of the simulated slp
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stripes are now appropriate). The expression patterns become largely congruent, except at the

posteriors of the runt primary stripes. These differences resolve later, when the runt primary

stripes narrow. (N) The slp primary stripes emerge later than the ftz primary stripes, and par-

tially overlap with them. At gastrulation, the secondary slp stripes emerge just anterior to the

ftz domains, which narrow from the posterior, losing the overlaps with the slp primary stripes.

(O) As for (N), the slp primary stripes partially overlap the odd primary stripes, and these over-

laps are later lost by the odd stripes narrowing from the posterior. The secondary stripes of odd
and slp intercalate between the primary stripes, and abut one other.

(DOCX)

S2 Fig. Uncropped views of the embryos shown in S1 Fig. Each panel shows an uncropped

version of the corresponding double fluorescent in situ image in S1 Fig. All panels show a

whole embryo lateral view, anterior left, dorsal top. Embryos within each column are of

approximately equal age. Scale = 100 μm.

(DOCX)

S3 Fig. Some aspects of prd expression are not recovered by the simulation. This figure

compares double FISH data of pair-rule gene expression with simulated transcript expres-

sion, as in Fig 3 and S2 Fig. (A) prd transcripts (magenta) are shown relative to eve (green),

odd (blue) or slp (cyan) transcripts, at four different embryo ages (left) or simulation

timepoints (right). Note that the figure presents a different set of developmental ages / simu-

lated timepoints from those in Fig 3 and Supplementary Figure 3, in order to show cellulari-

sation in greater temporal detail. At “early cellularisation”, the primary pair-rule genes are

expressed but prd and slp are not; at “mid cellularisation”, prd is expressed but slp is not; at

“late cellularisation”, slp is additionally expressed. While the simulated expression of prd is

broadly appropriate early on (e.g. compare prd and odd expression at mid-cellularisation /

T26), several aspects of prd expression are not recapitulated by the model. First, the chang-

ing phasing of prd posterior borders and eve anterior borders between mid-cellularisation

and late cellularisation (see also Fig 5). Second, the splitting of the prd stripes at late cellular-

isation, slightly prior to the appearance of the secondary stripes of odd and slp. Third, the

patterning of the prd “A” stripes (i.e. the narrow stripes formed from anterior portions of

the early broad stripes, asterisks in the in situ images) and the consequent emergence of sin-

gle-segment periodicity. (B) Uncropped views of the embryos shown in (A). Scale bars

100 μm.

(DOCX)

S4 Fig. Gene expression at the odd-numbered parasegment boundaries. (A) Double FISH

images of segmentation gene expression in gastrulation stage embryos (lateral view, anterior

left, dorsal top). Each row shows a different pairwise comparison of the transcripts of the genes

eve (magenta), prd (blue), slp (green), en (red), odd (yellow), and wg (cyan). From left to right,

the panels in each row show: 1) a whole embryo view; 2) an enlarged view of pair-rule repeats

2–6; 3) the individual channel for the first gene listed in the row label; 4) the individual channel

for the second gene listed in the row label. Arrowheads mark the locations of prospective odd-

numbered parasegment boundaries. Scale bars 100 μm. (B) Summary schematic showing the

relative expression of the Eve, Prd, and Slp protein domains, and the en, wg, and odd transcript

domains, at the odd-numbered parasegment boundaries. (C) The same schematic as in B, with

the addition of the regulatory interactions between Eve, Prd, and Slp and their target genes.

Aside from the colours, which are changed to match the in situ images, this schematic is iden-

tical to Fig 5A.

(DOCX)

Dynamic patterning by the Drosophila pair-rule network

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002439 September 27, 2017 29 / 38

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2002439.s002
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2002439.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2002439.s004
https://doi.org/10.1371/journal.pbio.2002439


S5 Fig. Expanded view of the eve mutant phenotype. This figure is an expansion of Fig 7 in

the main text, showing additional whole embryo and single channel views. Enlarged views

show stripes 2–6. Asterisks in (E) indicate the stripe 3 region. Scale = 50 μm. Note the quantita-

tive traces below the images in (C). These plots show the AP intensity profiles of runt (green)

and slp (blue) along a narrow ventral strip of the trunk of the two embryos pictured. In the

wild-type embryo, the runt stripes are all (except stripe 7) roughly symmetrical and strongly

expressed. In the evemutant embryo, runt stripes 1–6 (which overlap with odd expression, see

B), have much lower intensity than runt stripe 7 (which doesn’t overlap with odd expression,

see B) and exhibit a sawtooth pattern, in which expression intensity decreases from anterior to

posterior. The slp expression in the evemutant embryo, while broad, does display a pair-rule

modulation, which is in opposite phase to the downregulated runt stripes. Therefore, the same

two regulatory interactions (repression of runt by Odd, and of slp by Runt) are evident in both

the in situ data and the simulated data (Fig 7A’), but lead to slightly different expression pat-

terns in each case, one quantitative and one qualitative.

(DOCX)

S6 Fig. Stripe phasing depends on the speed of the gap shifts. Simulation output showing

the expression patterns generated by the early pair-rule network, assuming various anterior-

to-posterior shifts speeds of the gap inputs (shown in black). See supplementary movies for full

simulation output (S1 Movie = 0x; S2 Movie = 1x; S3 Movie = 0.5x; S4 Movie = 2x; S5 Movie =

3x). Gap domain shift speeds are relative to the time delay for pair-rule protein synthesis /

decay: a speed of 1x leads to a one nucleus offset between the anterior borders of transcript

and protein domains, a speed of 2x leads to a two nucleus offset, and so on. See S2 Text for fur-

ther details about the simulations.

(DOCX)

S7 Fig. Selection for patterning speed could lead to increasingly elaborate regulation of

pair-rule genes by the gap system. (A,B) Minimum duration required for generating a correct

segment pattern (En, Odd, Slp repeats), under various simulation scenarios. Minimum simula-

tion duration (Y-axis) is given as a multiple of the synthesis / decay delay parameter value of

the pair-rule gene products (corresponding to 6 timesteps for all simulations shown in this

manuscript). See S2 Text for further details on the various simulations. (A) Minimum time

required to pattern a given number of segments by either simultaneous or sequential pattern-

ing, using the same network model as S12 and S13 Movies. Sequential patterning requires 12x

the delay for the initial two segments, plus 8x the delay for every two additional segments.

Simultaneous patterning requires a constant minimum time of 10x the delay, no matter the

number of segments. (B) Minimum time (in multiples of the synthesis / decay delay parameter

value) required for simultaneous patterning, for systems with increasingly elaborate gap pat-

terning. If only hairy receives gap inputs (1), a minimum of time 10x the delay is required (net-

work model as in simulation 12). If both hairy and eve receive gap inputs (2), the minimum is

7x the delay (network model as in simulation 10). If runt or ftz/odd additionally receive gap

inputs (3), the minimum is 6x the delay (early network model as in simulations 6 or 7, respec-

tively, plus late network model as for simulation 10). Finally, if all the primary pair-rule genes

receive gap inputs (4), the minimum is 5x the delay (early network model as in simulation 8,

plus late network model as for simulation 10). Note that the stripes of ftz and odd are consid-

ered a single pattern, because of their identical regulation in the simulations.

(DOCX)

S1 Text. Regulatory interactions between the primary pair-rule genes during cellularisation.

(PDF)
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S2 Text. Details of models and simulations.

(PDF)

S1 File. Functions needed for running network simulations.

(PY)

S2 File. Template script for network simulations. Corresponds to the network in Simulation

10 and Fig 2B.

(PY)

S3 File. Wild-type pair-rule network in SBML-qual format. Corresponds to the network in

Simulation 10 and Fig 2B.

(SBML)

S4 File. Modified pair-rule network in SBML-qual format. Corresponds to the network in

Simulations 12 and 13, and Fig 8.

(SBML)

S1 Movie. Simulation 1. Simulated expression of the primary pair-rule genes, assuming static

gap inputs.

(MP4)

S2 Movie. Simulation 2. Simulated expression of the primary pair-rule genes, assuming

dynamic gap inputs.

(MP4)

S3 Movie. Simulation 3. Simulated expression of the primary pair-rule genes, assuming slow

gap shifts.

(MP4)

S4 Movie. Simulation 4. Simulated expression of the primary pair-rule genes, assuming fast

gap shifts.

(MP4)

S5 Movie. Simulation 5. Simulated expression of the primary pair-rule genes, assuming very

fast gap shifts.

(MP4)

S6 Movie. Simulation 6. Pattern establishment when hairy, eve, and runt take gap inputs.

(MP4)

S7 Movie. Simulation 7. Pattern establishment when hairy, eve, and ftz/odd take gap inputs.

(MP4)

S8 Movie. Simulation 8. Pattern establishment when all primary pair-rule genes take gap

inputs.

(MP4)

S9 Movie. Simulation 9. Simulated behaviour of the whole pair-rule system, assuming static

gap inputs.

(MP4)

S10 Movie. Simulation 10. Simulated behaviour of the whole pair-rule system, assuming

dynamic gap inputs.

(MP4)
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S11 Movie. Simulation 11. Pair-rule gene expression in a simulated evemutant.

(MP4)

S12 Movie. Simulation 12. Simultaneous patterning by the modified pair-rule network.

(MP4)

S13 Movie. Simulation 13. Sequential patterning by the modified pair-rule network.

(MP4)
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