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Recent developments in the non-muscular human–robot interface (HRI) and shared
control strategies have shown potential for controlling the assistive robotic arm by
people with no residual movement or muscular activity in upper limbs. However, most
non-muscular HRIs only produce discrete-valued commands, resulting in non-intuitive
and less effective control of the dexterous assistive robotic arm. Furthermore, the user
commands and the robot autonomy commands usually switch in the shared control
strategies of such applications. This characteristic has been found to yield a reduced
sense of agency as well as frustration for the user according to previous user studies.
In this study, we firstly propose an intuitive and easy-to-learn-and-use hybrid HRI by
combing the Brain–machine interface (BMI) and the gaze-tracking interface. For the
proposed hybrid gaze-BMI, the continuous modulation of the movement speed via the
motor intention occurs seamlessly and simultaneously to the unconstrained movement
direction control with the gaze signals. We then propose a shared control paradigm that
always combines user input and the autonomy with the dynamic combination regulation.
The proposed hybrid gaze-BMI and shared control paradigm were validated for a
robotic arm reaching task performed with healthy subjects. All the users were able to
employ the hybrid gaze-BMI for moving the end-effector sequentially to reach the target
across the horizontal plane while also avoiding collisions with obstacles. The shared
control paradigm maintained as much volitional control as possible, while providing
the assistance for the most difficult parts of the task. The presented semi-autonomous
robotic system yielded continuous, smooth, and collision-free motion trajectories for the
end effector approaching the target. Compared to a system without assistances from
robot autonomy, it significantly reduces the rate of failure as well as the time and effort
spent by the user to complete the tasks.

Keywords: brain–machine interface, gaze tracking, human–robot interface, continuous shared control, robotic
arm reaching
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INTRODUCTION

Assistive robotic systems have demonstrated high potential in
enabling people with upper limb physical disabilities, such as
traumatic spinal cord injuries (SCI), amyotrophic lateral sclerosis
(ALS), and tetraplegic patients, to achieve greater independence
and thereby increase quality of life (Vogel et al., 2015; Beckerle
et al., 2017; Muelling et al., 2017). To produce the assistive
robot control for severely impaired patients, the conventional
manual control interfaces [computer mouse, keyboard, joystick,
electromyography (EMG)-based interface, etc.] for able-bodied
or mildly impaired people may no longer be applicable. This
is because the aforementioned interfaces require that there are
still some residual movements or muscle activities in the user.
For people with no residual movement or muscular activity,
previous studies have focused on two key aspects for facilitating
the interaction between patients and the assistive robot. One
is the design of human–robot interfaces (HRI). The other is
the devising of human–robot coordination strategies tailored
to the interface.

To provide HRI for individuals with severe upper extremity
impairment, the brain signals or gaze signals have been
largely explored through brain–machine interfaces (BMI) and
gaze-trackers, respectively. With the advent of invasive BMI
technology, the invasively recorded brain signals have facilitated
successful manipulation of dexterous robotic arms (Collinger
et al., 2013; Wodlinger et al., 2015) due to their high bandwidth
and signal-to-noise ratio (SNR). Nevertheless, the benefit of
effective robotic arm control may be outweighed by the
medical risks associated with the current electrode implantation
techniques. Non-invasive BMI, in particular the widely accepted
electroencephalogram (EEG)-based BMI, provides a desirable
alternative, and it is thus adopted in this study. However, it
comes with a concomitant reduction in spatiotemporal resolution
and effectiveness.

Different EEG paradigm-based BMIs have been employed to
control the dexterous robotic arm. Since sufficient number of
discrete user commands could be inferred with the steady-state
visual evoked potential (SSVEP)-based BMI or P300-based BMI
in theory, a lot of studies have utilized such BMIs to control
the robotic arm (Perera et al., 2016; Hong and Khan, 2017;
Qiu et al., 2017; Zhang et al., 2017; José de Jesús, 2018; Kumar
et al., 2018; Chen et al., 2019; Duan et al., 2019; José de Jesús
et al., 2019a,b). However, they involve flickering displays which
may make some BMI user uncomfortable (Graimann et al.,
2010). Besides, the user can only generate actions synchronously,
resulting in a certain amount of time spent idle for users and
thus slowing down the system. The motor imagery-based (MI-
based) BMI, which does not depend on the external stimulus,
allows for asynchronous control paradigms to move the robotic
arm (Meng et al., 2016; Penaloza and Nishio, 2018). Nevertheless,
the user has to switch many discrete MI states during the task;
for instance, he/she needs to perform the left/right hand/both
hands MI as well as both hands relaxing to move the end-
effector leftward/rightward/upward/downward (limited discrete
directions only) (Meng et al., 2016; Xia et al., 2017; Xu et al.,
2019). In addition, the movement speed is usually not controlled

or merely coarsely modulated by the signal’s time-resolved power.
Such a control method will not only lead to decreased BMI
classification accuracy as the number of classes increases, but
it is also non-intuitive in motion control (these brain states
are not directly related to the desired movement directions of
the end-effector) and prone to greatly increasing the mental
workload during the task (Yuan and He, 2014). In other words,
none of the aforementioned studies using the multi-class MI-
based BMI are able to implement an intuitive and effective
interface capable of providing continuous-valued velocity (i.e.,
including the movement direction and speed simultaneously)
control signals for a robotic device.

We envision continuous-valued velocity control signals to
be advantageous for controlling the dexterous assistive robotic
arm where a user could intuitively perform volitional control
to change the robotic arm end-effector’s velocity, resulting in
relatively smooth changes in position over time. Though recent
studies show that the continuous-valued velocity of the upper
limb could be decoded from the EEG signals with regression
models via an MI paradigm (Yuan et al., 2010; Robinson and
Vinod, 2016; Korik et al., 2018), the quality of the predicted hand
movement parameters are still far away from the requirements
for robotic arm manipulation applications in real world, not
to mention that the intensive calibration phrase for collecting
sufficient training data often lasts for more than half an hour
(Kim et al., 2015).

Thereby, intuitive and easy-to-use interfaces that produce
continuous-valued outputs while demanding less training are
strongly desired. The gaze-tracking system may shed some light
on building such an interface. In fact, gaze constitutes an intuitive
input for continuous-valued positions in 2D control tasks (e.g.,
moving a cursor freely on a computer screen) without extensive
training. However, one of the main limitations of gaze tracking
is that the input may be intention-free (without necessarily
selecting there), even though the user stares at somewhere on
the computer screen. To this end, the hybrid gaze-BMI has been
proposed to predict the web user’s click intention (Slanzi et al.,
2017), explicit selection of the target in robot reaching (Frisoli
et al., 2012), and ability to carry out grasping (McMullen et al.,
2014; Zeng et al., 2017) and pushing tasks (Schiatti et al., 2017). In
these studies, the continuous-valued position of an object is firstly
indicated by the user in the 2D space through the gaze-tracking
device, and this is then confirmed once the MI state is detected
with a simple “MI vs. rest” two-class BMI. In our work, the hybrid
gaze-BMI will be further extended to offer continuous-valued
velocity control signals.

Along with the efforts of current studies to design intuitive
and easy-to-use interfaces for motor-impaired people interaction
with assistive robots, there are also endeavors made toward
devising human–robot coordination strategies catering to
specific applications, such as robotic arms and wheelchairs.
In general, the noisy, non-stationary, and low-dimensional
characteristics of control signals hinder the current interfaces to
reliably issue commands in real-time for applications that require
high precision and safety. To increase usability and reduce
the cognitive burden of the user, the shared control strategies
have been commonly adopted by adding autonomous supportive
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behavior to the system. According to the exact specification of
how control is shared between the user and the autonomy, the
existing shared control paradigms for human-robot interactions
based on the interfaces can be generally divided into two lines.

One line of the paradigms triggers a fully pre-specified
autonomous takeover when a specific mental state, e.g., the motor
imagery (MI) state or a response state to a visual stimulus,
is detected by BMI (McMullen et al., 2014; Beckerle et al.,
2017; Zhang et al., 2017). We have recently presented a semi-
autonomous robotic system with similar BMI triggers to initiate
a subtask in a sequence (Zeng et al., 2017). While these systems
are effective at accomplishing the task since a high amount of
autonomy can outperform direct BMI user control, users instead
preferred to have more control (Kim et al., 2012).

Another line of paradigms enables users to have more control
with high-level user commands (e.g., movement directions of
the end-effector or the wheelchair, etc.), while fully relying on
the autonomy to generate the precise and safe low-level reactive
robot motions (e.g., target approaching, collision avoidance, etc.).
Researchers have exploited EEG signals for indoor navigation for
a telepresence robot (Leeb et al., 2013) and the wheelchair (Zhang
et al., 2016; Li Z. et al., 2017), combining left–right navigation
signals with reactive robot behaviors to avoid obstacles. A system
has been developed to enable users to specify a 2D end-effector
path via a click-and-drag operation, and the collision avoidance
is implemented with a sampling-based motion planner (Nicholas
et al., 2013). The operator’s gaze is employed to indicate the target,
and then the robotic arm is guided to reach the target, both by
utilizing potential fields for autonomy (Webb et al., 2016). In the
abovementioned paradigms, since the low-level robot motions
are exclusively realized with the motion planner-based autonomy
without the involvement of users, the user can regain the
control authority only when the reactive behavior (e.g., collision
avoidance) finishes (Kim et al., 2006). Studies have shown that
users often report frustration when it becomes obvious that the
system is providing autonomous control, reducing the sense of
agency (Muelling et al., 2017). To the best of our knowledge,
there are few attempts to investigate the simultaneous blend
of autonomous control and the user control with non-invasive
human–robot interfaces due to the fact that the user control
commands are discrete-valued with these existing interfaces.

In this work, we present a semi-autonomous assistive robotic
system that could be potentially used by severely motor-
impaired people, for deliberate tasks involving the target reaching
and obstacles avoiding. With this system, the user constantly
utilizes his/her gaze and EEG signals to freely and intuitively
direct the movement of the robotic limb end-effector while
receiving the dynamical assistance from the robot autonomy. Our
contribution is twofold. (1) In addition to the mode for discrete
target selection with the previous hybrid gaze-BMI, we extend
such hybrid interfaces toward a new mode for asynchronously
providing continuous-valued velocity commands by which the
user can retain continuous motion control of the end-effector.
The proposed new mode constitutes an intuitive and easy-to-
learn-and-use input, where the continuous modulation of the
movement speed via the motor intention is simultaneous to
the unconstrained movement direction control with the gaze

signals in a seamless way. (2) Distinguished from previous
shared control strategies for non-invasive driven assistive robots
where the control authority switches discretely between the
user and the autonomy, our shared control paradigm combines
user input and the autonomy at all times with the dynamical
combination regulation, and this is thanks to the continuous-
valued velocity control via the new HRI. The paradigm is devised
in this manner to maintain as much volitional control as possible
while providing the assistance for the most difficult parts of
the task. Although the idea of shared control is not new, the
present study is to our knowledge, the first application of shared
control to the assistive robotic arm driven by continuous-valued
velocity based non-invasive hybrid gaze-BMI. The experiments
are performed by a number of able-bodied volunteers, and the
results show that the new HRI-driven semi-autonomous assistive
robotic system allows for a continuous, smooth, and collision-
free motion trajectory for the end-effector approaching the target,
significantly reducing the rate of failure as well as time and effort
spent by the user to complete the tasks.

MATERIALS AND METHODS

The experimental setup used in this study is depicted in Figure 1.
The assistive robotic system consists of an eye-tracker, a device for
recording EEG signals, a web camera, a robotic arm, a computer,
and a monitor. As shown in Figure 1, a subject is seated in front
of the monitor while controlling the movement of the robotic
arm end-effector via the hybrid gaze-BMI. Before each task, the
end-effector and the target (the red cuboid in Figure 1) were
placed at two sides of the workspace. Two light obstacles (white
cylinders in Figure 1) were set down in static locations between
the target and the initial position of the end-effector throughout
the experiments. In case the obstacle were to be knocked away by
the end-effector in a run, it would then be relocated to the fixed
coordinates in the next run. In our previous work, we investigated
how to improve the robot grasping performance with the hybrid
gaze-BMI control (Zeng et al., 2017). Thereby, we will focus on
improving the reaching performance in the current study, and
the grasping task will be completed automatically.

In specific, the reach-and-grasp task was divided into three
stages. In stage 1, the user was to specify his intended target for
the assistive robotic system, using the hybrid gaze-BMI operating
in a discrete selection mode (refer to sub-section “Two operation
modes of the hybrid gaze-BMI control”). Upon observing the
virtual rectangle appearing around the target, the user got to
know that the position of the target has been successfully
communicated to the assistive robotic system. Subsequently,
the system automatically switches the hybrid gaze-BMI into a
continuous-velocity control mode (refer to sub-section “Two
operation modes of the hybrid gaze-BMI control”). In stage 2,
the user was to employ the hybrid gaze-BMI for moving the
end-effector sequentially to reach the target across the horizontal
plane parallel to the table while avoiding collisions with obstacles.
Once the end-effector entered a pre-specified zone right above
the target object (defined by a virtual cylindrical region centered
above the target with a radius of 5 mm), it was forced to halt
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FIGURE 1 | The overview of the experimental setup.

and hover over the target. In stage 3, the system executed a
pre-programed procedure, i.e., the end-effector moved down,
adjusted its gripper orientation according to the orientation of
the target in the workspace, and grasped the object.

The design for the first two sequential stages took advantage of
the natural visuomotor coordination behavior of human beings.
Specifically, when a human decides to pick up an object, he/she
usually first looks at the object, and then performs the hand
reaching under the visual guidance. Moreover, following the
suggestion in Meng et al. (2016), the original 3D-reaching task
is accomplished by a combination of two sequential 2D-reaching
tasks (i.e., the last two stages of tasks) in the horizontal plane
and the vertical one, respectively. Such a design could effectively
reduce the number of DoFs that the HRI has to provide, while it
would still allow the user to reach the object in 3D space.

Figure 2 introduces the block diagram of the proposed
semi-autonomous robotic system, which consists of four main
functional blocks:

(1) Hybrid Gaze-BMI, which combines gaze tracking and BMI.
It firstly operates in a discrete selection mode for inputting
the user’s intended target location in stage 1, and is then
automatically switched to operate in a continuous-velocity
control mode for inputting the user’s velocity commands to
move the robotic arm end-effector horizontally toward the
target in stage 2;

(2) Camera and Graphical User Interface (GUI), which
provide the live scene of the robotic arm workspace
for the normal and enhanced visual feedback as well as
the coordinate transformations from camera coordinate
system to the robot coordinate system for all the three
stages. The Computer Vision implements the object
segmentation and the object orientation identification for
the target in stage 1 and stage 3, respectively;

(3) Shared Controller, which fuses the user commands from
the hybrid gaze-BMI and the robot autonomy commands
to form a new one, for directing the end-effector toward the
target horizontally while avoiding obstacles in stage 2;

(4) Actuated System and Control, where the resulting end-
effector commands are converted into reaching and
grasping motions with a 5-Dof robotic arm.

The details about the individual modules of the system and the
flow of information between them are described below.

The Hybrid Gaze-BMI
Gaze Tracking
For the gaze tracking, a consumer-level desktop eye tracker,
EyeX (Tobii AB Inc., Sweden), was employed. It did not require
continuous recalibration and allows moderate head movements.
The eye tracker was mounted at the bottom of the host PC
monitor, it detects the user’s pupils and then projects the pupils
onto the screen, i.e., the outputs of the eye tracker sensor system
are the user’s gaze locations on the screen. The raw gaze data
were transmitted to the computer via USB 3.0 at a sampling rate
of 60 Hz. Since human eyes naturally make many involuntary
movements including rolling, microsaccades, and blinking, the
gaze signals acquired from the EyeX system were smoothened.
In specific, a 10-point moving average filter is utilized to cancel
out minor gaze fluctuations, while leaving performance on fast
movements as unchanged as possible. Then, the filtered gaze
points were fed to the shared control script every 30 ms.

Brain–Machine Interface
Given the final goal of developing affordable and usable assistive
technology, a low-cost commercial EEG acquisition headset,
Emotiv EPOC + (Emotiv Systems Inc., United States), is used
to record the EEG signals. This device consists of 14 EEG
channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
F4, F8, and AF4) according to the 10–20 system. The EEG
signals are communicated to the host PC via Bluetooth with a
sampling rate of 128 Hz.

In this study, we used the OpenVibe toolbox for the offline
calibration of a 2-class BMI classification model and the online
detection of the MI state. During the offline calibration phase,
the EEG signals for the motor imagery state, and the rest state
were recorded. Afterward, the segmented signals were bandpass-
filtered between 8 and 30 Hz with a 5th-order Butterworth
bandpass temporal filter. Subsequently, the commonly adopted
spatial filtering method for the feature extraction in MI-based
BMI, i.e., common spatial pattern (CSP), was applied on the
signals. This was to find the directions that maximized variance
for one class while minimized variance for the other class. The
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FIGURE 2 | The block diagram of the proposed semi-autonomous robotic system. The dotted arrows denote the information flows only for Stage 1, and the
dot-dashed arrow represents the information flow only for Stage 3.

logarithms of the normalized power for the spatially projected
signals were ultimately employed as the input features of
the Bayesian linear discriminant analysis (LDA) classifier. The
Bayesian LDA classifier assumed that the 2-class training data
follow multivariate normal density distributions, and they had
the same covariance matrix but different mean vectors and were
estimated with equations below:

µ̂i =
1

Ni

∑
x∈Ci

x, (i = 0, 1) (1)

6̂ =

∑N
k=1

∑1
i=0(xk − µ̂i)(xk − µ̂i)

T

N − 2
(2)

where x represents a sample that belong to class “MI” (i = 1) or
class “rest” (i = 0), Ni is the number of training samples belonging
to class i, Ci denotes the set of training samples belonging to class
i, N is total number of training samples, and “T” denotes the
transpose. Then, the posterior probability value for the MI state
was calculated by:

P
(
x|y = i

)
=

1√
2π

∣∣∣6̂∣∣∣ exp
(
−

1
2

(x− µi) 6̂−1 (x− µi)
T
)

,

(i = 0, 1) (3)

PMI = P
(
y = 1|x

)
=

P
(
x|y = 1

)
P
(
y = 1

)∑1
i=0 P(x|y = i)P(y = i)

(4)

During the online phase, a 1 s-long sliding window in a step
of 125 ms was used to update the feature values, and then the
updated posterior probability value for the MI state was delivered
to the shared control script on host PC through the VRPN
protocol with the OpenVibe toolbox.

Two Operation Modes of the Hybrid Gaze-BMI
Control
In this work, the hybrid gaze-BMI operated in two modes. In
stage 1, as in Frisoli et al. (2012), McMullen et al. (2014), and
Zeng et al. (2017), the user exploited the interface in a discrete
selection mode to specify the intended target location for the
system by firstly gazing at the center of the target object in
GUI and then issuing the confirmation once the posterior
probability value for the MI state exceeded the threshold (0.6
in our experiment). After a successful target object selection
indicated by the augmented reality (AR) feedback (illustrated in
subsection “Camera, GUI and Computer Vision”), the hybrid
gaze-BMI automatically entered the continuous-valued velocity
control mode in stage 2 (the horizontal reaching). With the
hybrid interface in such a mode, the user had to constantly
specify the sequential locations in GUI, to which he/she desires
the end-effector to move, using the eye-tracker. At the same
time, the user had to perform the motor imagery of pushing
the end-effector with his/her dominant arm, and the 2-class BMI
constantly produced the continuous-valued posterior probability
for the MI state (ranging between 0 and 1), representing the
detection certainty that the user entered the MI state. Such
a unidimensional scalar index was then utilized to regulate
the continuous-valued movement speed of the end-effector
during the horizontal reaching task (detailed in subsection “The
Proposed Shared Control Paradigm”).

Camera, GUI and Computer Vision
A USB camera, with a resolution of 1,280 × 720 pixels, was
placed on top of the setup to capture the live video of the robot
workspace. It streams the horizontal view in robot coordinates
system to the host PC via USB 2.0, and the video was displayed
on the monitor with GUI. The user closes the loop by viewing
video feedback and directing the end-effector accordingly.
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In order to select the target and control the movement
direction of the end-effector, the system needs to know the
position of the gaze points from GUI in the robot coordinates. An
autonomous algorithm was implemented to build the mapping
from the gaze coordinates on the screen to the robot coordinates.
For this purpose, in the calibration phase (executed only once),
four points were selected on the screen with known coordinates
on the robot arm frame of reference. Then the identification of

perspective transformation was accomplished with the 4-point
getPerspective procedure from the OpenCV toolbox. Such a
calibration is illustrated in Figure 3.

In stage 1, we provided the AR feedback to the user through
the GUI to indicate the successful target object selection. Namely,
as in our previous work (Zeng et al., 2017), the target (a cuboid in
the current study) was highlighted with a virtual rectangle frame
surrounding it (Figure 4) when the cursor (gaze point) was over

FIGURE 3 | An illustration of mapping the camera’s coordinates to the robotic arm’s coordinates.

FIGURE 4 | The selected target highlighted with a virtual rectangle frame surrounding it.
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the center of it and the motor imagery state was decoded from
the BMI. Specifically, with the OpenCV and OpenGL toolboxes,
the hybrid interface specified object was firstly segmented from
the image took by the camera and was then it is overlaid with a
virtual rectangle frame around.

In stage 2, since this paper mainly focus on the shared control
method, the locations of obstacles in the workspace were static
and known to the system, and the depth sensor was therefore not
used to detect them in our paper.

In stage 3, to grasp the target (i.e., the cuboid) automatically,
the orientation of the target had to be communicated to the
robot system for adjusting its gripper pose. To this end, the
orientation of the target was estimated by performing the
geometric fitting of rectangles with a smoothly constrained
Kalman fiter (Geeter et al., 1997).

The Proposed Shared Control Paradigm
The devised shared-control paradigm consisted of a movement-
speed shared controller and a movement-direction shared
controller. In such shared controllers, the commands from the
user and the robot autonomy were dynamically blended in order
to generate the final velocity control commands for the end-
effector sent to the robotic arm control system. The final velocity
control command is written below:

−−→
Vfinal = So

−→
Do (5)

where Sois the scalar speed of the robotic arm end-effector
obtained from the speed shared controller, and

−→
Do stands for the

direction control command from the direction shared controller.
These two shared controllers are described in detail in the
following sub-sections.

The Speed Shared Controller
To achieve a continuous control of the speed of the robotic
arm end-effector, the movement speed was modulated by the
instantaneous strength of his/her dominant arm motor imagery
state constantly detected by the BMI. Specifically, the speed
of the end-effector was set to be proportional to the posterior
probability assigned to the motor imagery state as follows:

Sh = PMISmax (6)

where Smax=1.8cm/srepresents the maximum speed of the
robotic arm end-effector that can move, PMIdenotes the posterior
probability assigned to the motor imagery state using the
Bayesian LDA classifier on EEG signals in a sliding window,
and Shstands for the speed commands generated by the user.
With increased level of motion intention, the user can complete
a task at a higher speed. Undoubtedly, such an intermediate
feedback will increase the involvement of the user during the
task and maintain his/her sense of control. To avoid a sudden
change in the movement speed of the end-effector, the output
speed commands were filtered using a 2.5 s-long window in
a step of 100 ms.

To further develop the human–robot blending of the
movement speed commands, there were two issues to be
addressed. One was to devise the assistance command provided

by the robot autonomy, the other was the design of the
arbitration scheme. Prior work indicated that users subjectively
preferred the assistance when it lead to more efficient task
completion (You and Hauser, 2011; Dragan and Srinivasa,
2013; Javdani et al., 2018). Thereby, to enable fast reaching,
full speed was adopted for the assistance command from
the robot autonomy. For the arbitration scheme, following
the suggestions of previous user studies (Kim et al., 2006;
Dragan and Srinivasa, 2013; Muelling et al., 2017), we
decided to allow the user to directly control the majority
of the movement and smoothly increase the assistance for
realizing an efficient reaching, based on the system’s confidence
of the estimated user’s intent to reach the target. More
specifically, the arbitration between user commands and
robot autonomy generated ones was realized by a linear
blending function:

So = (1− α) Sh + αSmax (7)

Here, α represents the dynamical arbitration factor, defining
the amount of assistance provided by the robot autonomy. It
was calculated using a sigmoid function to enable smooth
and continuous blending between the user and robot
autonomy command:

α =
1

1+ e−a(xd−c) (8)

where xd denotes the distance from the robotic arm end-effector
to the position of the target object on the horizontal 2D plane
parallel to the table, a = −0.4 is a constant parameter, and
c defines the distance so that α=0.5. Figure 5 depicts the
distribution of the arbitration factor α. According to Figure 5,
as the end-effector moves closer to the target object, the certainty
of user intention increases, the robot autonomy’s command gains
more control weight, and then the end-effector approaches the
target object more quickly. Nevertheless, if the user directs the
end-effector to certain point far away from the target, the user
regains the complete control of the robotic arm.

The Direction Shared Controller
For the direction control of the end-effector, a unit directional
vector pointing from the end-effector to the user’s gaze position
is derived as the user specified movement direction command,
as shown in Figure 6. If the robot is controlled by the user
alone, during the experiments, the user must always focus his/her
attention to ensure control precision and collision avoidance,
leading to heavy mental workload. Therefore, to reduce the
difficulty, we provided assistance for the user, deriving from the
robot autonomy. In specific, the robot autonomy also generated
the direction control command based on the relative position
between the robotic arm end-effector and the obstacle/target
object, as shown in Figure 6. For the arbitration scheme, like that
for the speed shared controller, we kept the user in control to the
largest extent possible. Meanwhile, the robot autonomy gradually
assisted the user by enforcing an attraction toward the target
as well as the collision avoidance, when it became confident on
the estimated user’s intent to reach the target or avoid obstacles.
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FIGURE 5 | The distribution of the arbitration factor α.

Specifically, the final direction control command sent to the robot
are calculated using a linear blending of the user and the robot
autonomy commands:

ED = (1− β)
−→
Dh + β

−→
Dr ,
−→
Do =

ED
| ED|

(9)

β =
1

1+ e−b(xd−d)
(10)

where ED is the norm of ED,
−→
Dh is the unit 2D directional vector

generated by the user:

−→
Dh =

−→
dg

|
−→
dg |

(11)

−→
dg represents the 2D directional vector pointing from the end-
effector to the gaze point.

−→
Dr is the unit 2D directional vector

generated by the robot autonomy, either pointing toward the
target or away from the obstacle:

−→
Dr =

−−−→
dmobj∣∣∣−−−→dmobj

∣∣∣ or
−−−→
mobsd∣∣∣−−−→mobsd

∣∣∣ (12)

−−−→
dmobj denotes the 2D directional vector pointing from the end-

effector to the target object, while
−−−→
mobsd is the 2D directional

vector pointing from the obstacle to the end-effector. β is the
arbitration factor defining the level of assistance provided by
the autonomous system and is again calculated using a sigmoid
function given in (10) to enable smooth and continuous blending.

In the direction controller, the constant parameter b is set to
−0.55, and d = 25 defines the distance so that β = 0.5, xdrepresents
either the distance between the robotic arm end-effector and the
obstacle or that between the end-effector and the target object.
The distribution of the arbitration factor β is shown in Figure 7.
As can be seen from Figure 7, when the user drives the end-
effector close to the obstacle or the target, the robot autonomy
gets more and more confident about the user’s intent to reach
the target or avoid obstacles, and then it influences the robot
end-effector more strongly than the user.

Actuated System and Control
A proof-of-concept implementation of the proposed semi-
autonomous robotic system was carried out using a 5-Dof
robotic arm (Dobot Arm, Shenzhen Yuejiang Technology Co
Inc., China). The robotic arm control system could automatically
determine the joint motion commands based on the specified
3D positions of the end-effector using inverse kinematics. The
developers also could specify the orientation of the gripper
in order to grasp an object with a certain orientation in the
workspace. The robotic arm control system communicated with
the host PC through Bluetooth, receiving the input from the
shared controller and sending the state parameters of the robotic
arm to the host PC every 100 ms.

EXPERIMENTS

Subjects and Tasks
Ten participants (eight males and two females, 25.2 ± 0.8 years
old) were recruited from the campus to perform the objects
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FIGURE 6 | The principle for the shared control in direction.

manipulation tasks using the proposed HRI driven semi-
autonomous robotic system. The study was approved by the
Ethics Committee of Southeast University. Written informed
consent was obtained from each subject.

The task was the 3-stage reach-and-grasp one introduced in
detail at the beginning of section “Materials and Methods.” The
user was to firstly select the target in stage 1 and then reach
the target horizontally while avoiding obstacles in stage 2, using
the hybrid gaze-BMI operating in a discrete selection mode

and a continuous velocity control model in these two stages,
respectively. In stage 3, the end-effector executed moving down,
adjusting its gripper orientation and grasping the target and all in
an automatic way.

Offline Calibration Session
Operative tests were preceded by a calibration session for both
the eye-tracker and the BMI.

Firstly, the built-in calibration procedure for the Tobii eye
tracker EyeX was performed. It lasted less than 1 min for each
subject, during which the user gazed at seven calibration dots
sequentially appeared on the monitor.

Secondly, the BMI decoding model was trained for each
subject with the offline calibration procedure described in sub-
section “Brain-machine Interface.” Specifically, for the recoding
of the motor imagery state, the user had to focus on observing the
robotic arm end-effector’s predefined motion in the horizontal
plane through GUI while imagining to push the end-effector
with his/her dominant arm at the same time. For the rest state,
the robotic arm did not move, and the user was asked to relax
and avoid moving. The training session for each subject was
composed of a randomly sorted sequence of 40 trials, 20 for
the hand motor imagery tasks and 20 for the relax tasks. The
execution of each task lasted for 4 s, and it was spaced from
the beginning of the next task with an interval lasting randomly
from 1 to 3 s during which the subject could relax concentration.
Each task was triggered through visual cues developed with
the openVibe toolbox and displayed in GUI. The data acquired
during the training session were used to build the 2-class BMI
decoding model composed of CSP and Bayesian LDA. The

FIGURE 7 | The distribution of the arbitration factor β.
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duration of the BMI calibration usually did not exceed 5 min.
However, it was difficult to report the testing performance
for the BMI decoder built with all the training data in our
experimental setting. Thereby, we reported the fivefold cross-
validation (CV) BMI decoding performance instead, which could
to some extent reflect the performance for the BMI decoder
built with all the training data. In the fivefold CV, when the
posterior probability for the MI state exceeded 0.6, the mental
state was classified to be MI; otherwise it was determined to be
the “rest” state.

Before the formal online evaluation, the online decoding
model of BMI was obtained by training with all the data from
the offline calibration session mentioned above. Subsequently,
a rehearsal phase was further launched for the purpose of
familiarizing each user with the hybrid HRI-based robotic arm
control, and this lasted less than 5 min for each of the 10
subjects. In the end of this phase, most of them could deliberately
specify the intended target in stage 1 and constantly fixate
gaze on any point on the screen to specify his/her desired
movement direction for the end-effector while simultaneously
regulate his/her strength of the MI state to modify the speed of
the end-effector in stage 2.

Online Evaluation Session
The main focus of this study was to apply the blending-based
shared control for the robotic arm reaching driven by the
proposed continuous-velocity hybrid gaze-BMI (i.e., the stage
2). Thereby, to evaluate the effectiveness of the proposed shared
control paradigms for such an interface, the reaching tasks with
or without shared control were conducted. Specifically, each
subject executed 40 reaching trials with the following four types
of control paradigms:

SCDS: The shared control both in speed and direction
(i.e., So=(1− α)Sh + αSmax and

−→
D = (1− β)

−→
Dh + β

−→
Dr ,

−→
Do =

ED
| ED|

).
SCS: The shared control in speed only (i.e., So=(1− α)Sh +

αSmax and
−→
D =

−→
Dh ,
−→
Do =

ED
| ED|

).
SCD: The shared control in direction only (i.e., So=Sh and

−→
D = (1− β)

−→
Dh + β

−→
Dr ,
−→
Do =

ED
| ED|

).
MC: The manual control by the hybrid Gaze-BMI without any

assistance from the robot autonomy.
There were 10 trials executed with SCDS, SCS, SCD, and

MC. The four paradigms were applied in a random order for
the 40 trials, and the current control paradigm was not told
to the user, in order to minimize the learning effect. For each
online trial, the participant attempted to move the robotic arm
end-effector sequentially toward the target in the horizontal
plane while avoiding obstacles along the path with the proposed
continuous-velocity control-based hybrid gaze-BMI. The robotic
arm released the target and returned to the initial place of the
workspace at the beginning of each run. The subject had a
rest whenever needed between two trials. We did not conduct
experiments with the previously proposed semi-autonomous
robotic systems for performing the reach-and-grasp task, but
the advantages of two key components in our semi-autonomous

robotic system (i.e., the currently proposed hybrid Gaze-BMI and
shared control paradigms) over the previous ones are illustrated
in the section “The Proposed Hybrid Gaze-BMI” and section
“The Proposed Shared Control Paradigms.”

Evaluation Metrics and Statistical
Analysis
To evaluate the effectiveness of the proposed-direction shared
controller, the successful reaching rate (SRR) and the end-effector
trajectory length (EETL) were acquired on the trials with (i.e.,
SCDS and SCD) and without (i.e., SCS and MC) the movement-
direction shared controller being applied. A successful reaching
trial was defined as one during which the end-effector did not
collide with obstacles before entering the pre-grasping zone.
Then, the SRR identified the proportion for successful reaching
trials out of the 10 trials applied with the four paradigms,
measuring the effectiveness in improving the robot control
precision for achieving the user’s goal. The EETL measured the
user’s efforts to achieve the goal.

To evaluate the effectiveness of the proposed speed shared
controller, the completion time (CT) was obtained on the
trials applied with (i.e., SCDS and SCS) and without (i.e., SCD
and MC) the movement-speed shared controller being applied.
CT measured the how long it took the subject to enter the
pre-grasping zone, reflecting the efficiency in achieving the
user’s goal.

A p-value of 0.05 was selected as the threshold for studying
the statistical significance of those metrics. For metrics measured
per trial (i.e., EETL and CT), we averaged the data across all ten
trials for each paradigm, enabling us to treat each user as one
independent datapoint in the statistical analysis. A Friedman test
was used to assess whether each metric had a significant main
effect among different paradigms since the data did not pass the
test of normality (Jarque–Bera test). If a significant main effect
was found, we further conducted the Tukey’s honestly significant
difference post hoc test for multiple comparisons.

RESULTS

The Offline Classification Performance
of the BMI
The fivefold cross-validation classification accuracy of the BMI
for each subject is shown in Table 1. The average recall for
the relax state was 81.7 ± 6.8% (mean ± standard deviation)
while that for the motor imagery state was 82.5 ± 5.6%
(mean ± standard deviation). The overall average classification
accuracy across the subject was 82.1% with a standard deviation
of 4.8%. The highest fivefold CV classification accuracy of the
2-class BMI achieved was 90.3% with the data from subject 6,
while subject 7 obtained the lowest performance with an average
accuracy of 71.6%. Such offline classification performance was
in line with the existing BMI studies (Martinezleon et al., 2016;
Schiatti et al., 2016) using a Emotiv EPOC headset. It indicated
that the adopted BMI calibration method could provide an
applicable BMI decoder for our experiments.
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TABLE 1 | The fivefold cross-validation BMI classification performance for each
subject.

Participant ID Recall (%) Accuracy (%)

Relax Motor imagery Total

S1 81.6 82.9 82.3

S2 79.1 86.7 82.9

S3 90.2 76.5 83.4

S4 79.1 77.6 78.3

S5 93.1 81.9 87.5

S6 88.8 91.8 90.3

S7 70.4 72.7 71.6

S8 73.5 89.3 81.4

S9 81.2 84.2 82.7

S10 80.1 80.9 80.5

Mean ± STD 81.7 ± 6.8 82.5 ± 5.6 82.1 ± 4.8

The Online Evaluation Performance
The Effectiveness of the Direction Shared Controller
The SRRs for the 10 subjects are listed in Table 2. It can be
observed that, with the SCDS or SCD being applied, every subject
attained 100% successful reaching rate. By contrast, with the
SCS shared control paradigm, the average successful reaching
rate across subjects only achieved 67%, and the SRR of subject
5/subject 7 was the lowest (50%) among the 10 participates.
The MC paradigm yielded an SRR of 66% with subject 7
being the lowest (40%). The Friedman test showed that SRR
had a significant main effect (p << 0.05), and the post hoc
analysis revealed that the direction shared controller resulted in
significant differences of SRR (SCDS vs. SCS, p = 0.0037, SCD
vs. SCS, p = 0.0037, SCDS vs. MC, p = 0.0009 and SCD vs. MC,
p = 0.0009). In a word, a subject completed the reaching task
in all the trials without knocking against the obstacles when

assisted by the direction shared controller, but easily failed in
trials unassisted by such a direction shared controller.

The EETLs for each subject and across subjects are presented
in Figure 8. One can observe that EETLs obtained with SCDS or
SCD were generally shorter than those obtained with SCS and
MC. The Friedman test indicated that EETL differed significantly
between such four shared control paradigms (p < < 0.05). The
post hoc test showed that the direction shared controller led to
significant differences of EETL (SCDS vs. SCS, p = 0.037, SCD vs.
SCS, p = 0.0001, SCDS vs. MC, p = 0.0016 and SCD vs. MC, p < 0.
0001). The shorter path lengths during the movement-direction
shared control trials suggested that the yielded movements were
more direct, leading to reduced user efforts.

In Figure 9, we provide a representative comparison of
performance with direction shared control (SCDS) and without
direction shared control (SCS) by plotting the trajectories of the
robotic arm end-effector from all the trials for subject 6. The
trajectories obtained with SCD were not shown since there was no
statistical difference in EETL between SCDS and SCD (p = 0.1733),
and neither were the trajectories with MC as the differences in
EETL between SCS and MC (p = 0.3069) were not significant.
The two circles in blue denote the obstacles along the reaching
path, and the yellow circle is the target object. The red lines
represent the trajectories that were generated with SCS while the
blue lines were those generated with SCDS. From Figure 9, we
observed that the reaching trajectories generated with assistance
from the direction shared controller were smoother and more
direct than those without. It also showed that there were no
collisions between the end-effector and the obstacles with SCDS.
By contrast, the end-effector bumped against the obstacles for
several trials with SCS. Furthermore, when the robotic arm end-
effector was not far from the target object, it entered the target
object pre-grasping zone more directly with SCDS than with
SCS. In other words, the movement direction shared controller
improved task performance mainly by stabilizing the movement

TABLE 2 | Number of trials with collisions and successful reaching rate in the experiments for the four control paradigms.

Participant ID Number of trials with collisions Number of collision-free trials SRR(%)

SCDS SCD SCS MC SCDS SCD SCS MC SCDS SCD SCS MC

S1 0 0 4 5 10 10 6 5 100 100 60 50

S2 0 0 3 2 10 10 7 8 100 100 70 80

S3 0 0 4 3 10 10 6 7 100 100 60 70

S4 0 0 4 3 10 10 6 7 100 100 60 70

S5 0 0 5 5 10 10 5 5 100 100 50 50

S6 0 0 4 4 10 10 6 6 100 100 60 60

S7 0 0 5 6 10 10 5 4 100 100 50 40

S8 0 0 2 2 10 10 8 8 100 100 80 80

S9 0 0 0 1 10 10 10 9 100 100 100 90

S10 0 0 2 3 10 10 8 7 100 100 80 70

Mean 0 0 3.3 3.4 10 10 6.7 6.6 100 100 67 66

p-value (SCDS vs. SCS) 0.0037

p-value (SCD vs. SCS) 0.0037

p-value (SCDS vs. MC) 0.0009

p-value (SCD vs. MC) 0.0009
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FIGURE 8 | The EETLs for each subject and across subjects (the
across-subjects performance difference with statistical significance is marked
by “*”, p < 0.05).

FIGURE 9 | Trajectories of the robotic arm end-effector in the horizontal plane
during the reaching task with or without the direction shared controller
(subject 6).

near the target or obstacles to eliminate unintended or inaccurate
movements that could interfere with the task completing.

Figure 10 shows the evolving control weight for the robot
autonomy in the direction shared controller during the 9th trial
that executed with SCDS for subject 6. When the end-effector got
closer and closer to obstacles, the control weight for the robot
autonomy increased sharply. Consequently, the robot autonomy
generated commands for the movement direction dominated
the control role for enforcing an effective collision avoidance.

As the end-effector was near to the target, the robot autonomy
generated commands for the movement direction to dominate
the control role again to enable a direct approaching toward
the object.

The Effectiveness of the Speed Shared Controller
Figure 11 depicts the CT obtained with SCDS, SCD, SCS, and
MC for each subject and across subjects during the reaching
task. In general, Figure 11 demonstrated that the MC paradigm
was the slowest among the four paradigms. The Friedman test
showed that CT had a significant main effect (p = 0.0017).
The difference of CT between SCDS and MC was statistically
significant (p < 0.001). Furthermore, for the two paradigms that
yielded 100% SRR (i.e., SCDS and SCD), the difference of CT
between them was also statistically significant according to the
post hoc analysis (p = 0.001), and all the subjects finished the
object reaching task faster with SCDS being applied than with SCD
being applied. In other words, the speed shared controller lead to
improved efficiency of the reaching tasks.

Recall that SCDS and SCD resulted in similar satisfying EETLs
without a statistically significant difference, the difference of CT
between them can be only attributed to their difference in speed
during the reaching tasks. Moreover, since the direction shared
controller was unable to modify the speed of the end-effector, the
difference in speed can only be explained by whether the speed
shared controller was applied or not. To provide a representative
comparison of speed between SCDS and SCD (i.e., with speed
shared control vs. without speed shared control), Figure 12
shows the evolving posterior probability values calculated by
the BMI for subject 1 as well as the speeds of the end-effector
with SCDS and SCD, both on a normalized time scale. The blue
line in the top subfigure of Figure 12 denotes the evolving
mean posterior probability value of the motor imagery state.
In the bottom subfigure of Figure 12, the red line and the
blue line represent the evolving mean speed values of the end-
effector obtained with SCD and SCDS, respectively. The range of
standard deviations is indicated with shaded background in the
two subfigures of Figure 12. In our design, the continuous-valued
output signals of the BMI Bayesian LDA classifier were used to
linearly modulate the speed of the end-effector. According to the
experimental results shown in the bottom subfigure of Figure 12,
the evolving trend of the mean speed without assistances from
the robot autonomy (i.e., mean speed obtained with SCD) was
indeed found to be generally aligned with that of the posterior
probability value of the MI state during the reaching task. In the
beginning of the trials (less than 5 s), similar low end-effector
speeds were maintained for trials with shared control as the
unassisted trials. After a while, the probability values assigned to
the MI state became unstable, possibly due to the noisy and non-
stationary characteristics of the brain signals. As a consequence,
it led to unstable motion speed for the end-effector in unassisted
trials. By contrast, when the robot autonomy assistance was
provided, the end-effector speed remained much more stable
with a slow increasing trend. Such a smooth speed profile
was achieved by the dynamic speed compensation according
to the certainty of the inferred user intention for reaching
the target.
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FIGURE 10 | The evolving control weight for the robot autonomy in the direction shared controller during the 9th trial executing with SCDS for subject 6.

FIGURE 11 | The CTs for each subject and across subjects (the
across-subjects performance difference with statistical significance is marked
by “*”, p < 0.05).

For illustrating the dynamic speed compensation process
above, Figure 13 shows the arbitration factor for the robot
autonomy from the speed shared controller in a normalized time
scale. The red curve represents the averaged value across trials,
and the range of standard deviations is indicated with a shaded
background. As shown in the Figure 13, the robot autonomy
provided little assistance in the beginning (the end-effector was

far away from the target object) as the certainty of system-inferred
user intention for reaching the target was low. As the reaching
task went on, the distance between the end-effector and the target
object continuously decreased. Then, the shared controller got
more and more confident with the user’s goal, and the arbitration
factor for the robot autonomy thus gradually outweighed that for
the user, and the robot autonomy dominated the control with a
full speed for moving toward the target.

DISCUSSION

The Proposed Hybrid Gaze-BMI
To potentially assist individuals suffering from severe motor
impairments of upper limbs, the development of effective user
control of dexterous robotic assistive manipulators requires
intuitive and easy-to-learn-and-use interfaces that produce
continuous-valued inputs. In the past decades, invasive BMI
approaches have achieved relatively accurate and continuous
control of a robot up to 10 DoFs 0. However, the surgical
risks associated with current invasive BMIs may outweigh the
advantages of effective robotic arm control. The proposed non-
invasive and hybrid Gaze-BMI may provide an alternative
solution that diminishes medical risks, at the costs of reduced
control accuracy and number of controlled DoFs.

In general, the proposed hybrid gaze-BMI operating in
the continuous-velocity mode is intuitive and easy-to-learn-
and-use. The gaze-tracking system can be calibrated and
proficiently driven by a user with no previous experience within
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FIGURE 12 | The evolving posterior probability values calculated by the BMI
and the evolving speeds of the end-effector with SCDS and SCD in a
normalized time scale (subject 1).

FIGURE 13 | The arbitration factor for the robot autonomy from the speed
shared controller in a normalized time scale.

1 min, while maintaining sufficient precision in specifying
the movement direction for the end-effector intuitively. Since
the input from pure gaze-tracking might be free of intent,
it is complemented with an intentional continuous-valued
speed input from the 2-class BMI, whose calibration usually
did not exceed 5 min. After a short familiarization, all
the users could constantly input the movement direction
for the end-effector with the gaze-tracking modality, while

simultaneously regulating the speed of the end-effector with
the BMI modality.

Many studies have utilized the BMI to direct the assistive
robot and wheelchairs for a potential population of patients who
suffer from severe impairment in upper limbs. Compared with
their adopted synchronous BMI or asynchronous BMI, which
can only produce discrete-valued velocity commands for the
assistive devices, the combination of gaze-tracking and BMI in
our work provides users with a flexible HRI for volitionally
moving the end-effector continuously and freely on a horizontal
plane. Such a continuous-valued velocity (movement direction
and speed) control advantage means that not only the end-
effector could follow natural movement paths determined by
the user in real-time (rather than following predefined ones,
Rebsamen et al., 2010; Zhang et al., 2017), but also that the end-
effector is always moving as long as it is volitionally directed by
the user during the horizontal reaching task. By contrast, this is
not the case, in particular, for the synchronous (P300, SSVEP-
based) BMI-controlled robotic arms or wheelchairs, where the
assistive devices have to spend a lot of time idle, waiting for
inputs from the user.

The Proposed Shared Control Paradigms
According to the online experimental results in section “Results,”
on average, 34% trials failed to prevent the end-effector from
colliding with the obstacles with the MC paradigm (see Table 2).
Moreover, such a paradigm also yielded the longest average
EETL and CT across trials and subjects (refer to Figures 8,
11). This is largely due to the significant inherent difficulties
for the pure hybrid Gaze-BMI control. For instance, one of
the difficulties is that it requires a swap of the mental statuses
(e.g., rest or hand motor imagery) in time so as to delicately
regulate the speed of the end-effector when approaching the
target or avoiding the obstacles. However, evoking a desired
mental command required effort from the user and, sometimes,
multiple attempts. Such difficulty was further exaggerated by the
use of the consumer-level EPOC hardware and the unsatisfying
performance of the software for online MI state detection.
Thanks to the application of the shared control in both the
movement direction and speed, the SCDS paradigm reduced the
task difficulty by adding autonomous supportive behavior to the
system. Ultimately, it resulted in 100% SRR, satisfying average
EETL and the shortest average CT across trials and subjects (refer
to Figures 8, 11).

Furthermore, for the proposed shared control paradigms
during the horizontal reaching task, the control for the end-
effector always reflected the simultaneous input from both the
user and the robot autonomy by a dynamic linear blending
(arbitration). In this way, the paradigms allow the user to directly
control the majority of the movement, while smoothly increasing
the assistance from robot autonomy during the most difficult
parts (e.g., collision avoidance, target approaching) of the task for
the user, reaching a balance between the user’s perceived control
and the reliable assistance provided by the robot autonomy. By
contrast, for the existing studies that apply the shared control
strategies in robotic arm, wheelchair, and mobile robot systems
driven by the non-invasive HRI, the user commands and the
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robot autonomy commands switch either in the beginning of
the reaching task (i.e., the robot autonomy takes over to finish
the remaining routine, triggered by the user) (McMullen et al.,
2014; Chen et al., 2019) or during the most difficult parts
of the reaching task (i.e., the robot autonomy takes over to
finish sub-tasks requiring a high precision, triggered by the
user) (Zhang et al., 2017; Xu et al., 2019). Such a switching
characteristic makes the user clear that the system is providing
the autonomous control, which is known to yield reduced sense
of agency and frustration for the user according to previous
user studies (Kim et al., 2006; Dragan and Srinivasa, 2013;
Muelling et al., 2017).

Limitations and Future Work
This work has presented a proof-of-concept implementation for
new shared control paradigms that could potentially help to
better integrate the robot autonomy in assistive robotic arm
manipulation applications while keeping the user in control with
a novel HRI as much as possible. In particular, the current
study focus was set primarily on the horizontal reaching task
since strategies for maintaining the user in control to the
largest extent during other operations (e.g., grasping, lifting,
etc.) were presented in our previous paper (Zeng et al.,
2017). These studies together may open up possibilities for
sophisticated scenarios.

The currently implemented hybrid gaze-BMI is just one
of the many systems components that will be improved in
future developments. One of the future works will be devoted
to re-implementing the detection of the mental state related
to motor imagery using a medical EEG acquisition system.
Another future study will extend the current 2D gaze tracking
into 3D one with a wearable eye-tracker as in Abbott and
Faisal (2012) and Li S. et al. (2017) In this way, the 3D
coordinates of the gaze in the 3D environment can be estimated
for generating the movement direction commands, by which
the true 3D continuous motion of the end-effector can be
achieved during reaching and without decomposing it into
a horizontal 2D motion and a vertical motion sequentially.
In addition, the infrequent switching between tasks (e.g.,
from reaching to grasping, from grasping to delivering, from
delivering to releasing, etc.) was implemented automatically.
Future studies will investigate advanced BMI classification
methods for recognizing multiple mental states, in order to
trigger the task switching. For this aim, enhanced visual or
haptic cues about the state of task execution by the robot
can be further provided to the user in order to increase
usability and transparency of the system as in our previous work
(Zeng et al., 2017).

To extend the proposed proof-of-concept semi-autonomous
robotic system for performing tasks in realistic environments,
the currently used stereo-camera will be replaced with depth
sensors. Besides, an advanced computer vision module will
be employed to provide more effective object perception and
modeling for the robot.

The shared control paradigms in the current study were
designed based on the environmental context only, and the same
paradigms were applied for each participate throughout the task.

In future, the personalized shared control paradigms will be
developed, where the paradigms adapt to the user’s evolving
capability and needs given not only the environmental context
but also the state of the user. This may allow the user to use
intelligent assistive devices in their day-to-day lives and for
extended periods of time.

CONCLUSION

This paper presents a semi-autonomous robotic system for
performing the reach-and-grasp task. In particular, we propose
a new control paradigm for the robotic arm reaching task,
where the robot autonomy is dynamically blended with the
gaze-BMI control from a user. Meanwhile, the hybrid gaze-
BMI constitutes an intuitive and effective input through which
the user can continuously control the robotic arm end-
effector moving freely in a 2D workspace with an adjustable
speed proportional to the user’s motion intention strength.
Furthermore, the presented shared control paradigm allows
the user to directly control the majority of the movement
while smoothly increasing the assistance from robot autonomy
the during the most difficult parts (e.g., collision avoidance,
target approaching, etc.) of the task for the user, reaching
a balance between the user’s perceived control and the
reliable assistance provided by the robot autonomy. The
experimental results demonstrate that the proposed semi-
autonomous robotic system yielded a continuous, smooth and
collision-free motion trajectory for the end-effector approaching
the target. Compared to the system without the assistance
from robot autonomy, it significantly reduces the rate of
failure as well as the time and effort spent by the user to
complete the tasks.
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