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Abstract

The spread of drug resistance of Plasmodium falciparum and Plasmodium vivax parasites

is a challenge towards malaria elimination. P. falciparum has shown an early and severe

drug resistance in comparison to P. vivax in various countries. In fact, P. vivax differs in its

life cycle and treatment in various factors: development and duration of sexual parasite

forms differ, symptoms severity are unequal, relapses present only in P. vivax cases and

the Artemisinin-based combination therapy (ACT) is only mandatory in P. falciparum cases.

We compared the spread of drug resistance for both species through two compartmental

models using ordinary differential equations. The model structure describes how sensitive

and resistant parasite strains infect a human population treated with antimalarials. We found

that an early transmission,i.e., before treatment and low effectiveness of drug coverage,

supports the prevalence of sensitive parasites delaying the emergence of resistant P. vivax.

These results imply that earlier attention of both symptomatic cases and reservoirs of P.

vivax are essential in controlling transmission but also accelerate the spread of drug

resistance.

Author summary

The main strategy to treat and prevent malaria still relies on the use of drugs targeting

Plasmodium falciparum and Plasmodium vivax parasites. Since the worldwide number of

cases is still large, there is a risk of emergence of drug resistance, which is precisely the

case of resistance of chloroquine for P. falciparum and P. vivax in some countries. The

spread of drug resistance challenges malaria control programs due to treatment failures

and consequent lower drug efficacy. This phenomenon is more frequent, accelerated, and

studied in P. falciparum cases but P. vivax also presents drug resistance in some areas and

the particular life cycle of P. vivax with relapses due to its latent form, an earlier transmis-

sion and more common low parasitemia densities that imposes detection difficulties. We

developed a mathematical model to study drug-resistance emergence in P. vivax finding

that early transmission of drug-sensitive parasites as well as infected humans without

symptoms delays drug resistance. As a consequence, however, the number of P. vivax
cases decreases less than the number of P. falciparum cases. These results suggest that
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earlier attention of all infected humans, including individuals without symptoms, might

help to decrease P. vivax cases but also accelerate the spread of drug resistance.

Introduction

The World Health Organization (WHO) estimated 219 million cases of malaria in 2017, most

of them caused by Plasmodium falciparum due to high presence in Africa, with 96.6% of total

numbers [1]. However, P. falciparum does not maintain such high dominance in other conti-

nents, since Plasmodium vivax is diagnosed in 74.1% and 37.2% of cases in the Americas and

Southeast Asia, respectively [1]. Understanding conditions that drive the emergence of drug

resistance for these species is vital in the goal of ending epidemics of malaria by 2030 in the

Sustainable Development Goals (SDG 3.3) in United Nations [2].

Antimalarials have been the main strategy for controlling transmission, but drug resistance

has emerged to drugs for P. falciparum infection implying slower clearance rates and treatment

failures [3–5]. Currently, Artemisinin-based combination therapy (ACT) has constituted first-

line treatment for P. falciparum as a fast-acting artemisinin derivative plus a longer-acting

partner drug [6]. However, previous studies found resistance levels and slow clearance rates

using ACTs such as dihydroartemisinin-piperaquine and artesunate-mefloquine in the

Greater Mekong Subregion, bringing a need for developing new treatments [7–10].

P. vivax and P. falciparum differ in their life cycles [11–13] because P. vivax has a set of par-

ticularities that challenge malaria control: development in temperate climates, production of

dormant-stage parasite forms (hypnozoites), development of low parasitemia densities and

earlier transmission of sexual-parasite forms [14]. By contrast, although drug resistance in P.
vivax also challenges malaria control programs, chloroquine (CQ) remains as first-line treat-

ment for P. vivax while the extended CQ use for P. falciparum spread CQ-resistance for this

parasite worldwide [6, 15, 16]. Nevertheless, CQ-resistance in P. vivax already affects some

regions inducing the adoption of ACTs. Also, low parasitemia densities impose detection diffi-

culties, which contribute to underestimating the real impact of drug resistance in P. vivax [11,

17]. Previous works have compared P. vivax with P. falciparum resistance through in vivo, in

vitro, and molecular assays to test resistance, drug susceptibility, and characterization of gene

changes [18]. However, such studies for P. vivax present difficulties in replicating the life cycle,

producing a knowledge gap in understanding drug resistance in this species [19, 20].

Mathematical models provide an understanding of drug resistance to guide the develop-

ment of malaria programs [21], through both deterministic and stochastic models simulating

the implementation of monotherapies and combination therapies [22]. Models also showed

the contribution on the emergence of resistant strains due to factors: fitness cost, selection of

resistant parasites after treatment, changes in transmission settings, efficiency in drug dose

and the role of asymptomatics [21–35]. These previous works inferred that sub-optimal doses,

high treatment coverage, and lower levels of immunity have a direct relation to drug resistance.

However, they based their findings in P. falciparum life cycle avoiding the particular features

of P. vivax, producing an inaccurate extension of model results in the case of P. vivax control

programs.

Previous P. vivax models focused on exploring the effect of relapses on malaria prevalence,

and Schneider and Scalante placed a feature in their model to consider the evolution of drug

resistance [36] by assessing parasite selection on a genetic model. Previous works estimated

that relapses cause around 80% of P. vivax cases in children in Papua New Guinea suggesting a

high epidemiological effect of hypnozoites [37, 38]. This finding agrees with previous models
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that predict a greater P. vivax prevalence than P. falciparum in the same transmission settings

due to relapses [39] and a direct relation between P. vivax prevalence and relapse frequency

[40]. Elimination programs must consider a relapse treatment with primaquine (PQ). Also,

previous works have inferred that a potent treatment with ACTs plus primaquine (PQ) would

eliminate P. vivax in low transmission settings by implementing programs of mass drug

administration [41–43]. Nevertheless, P. vivax demonstrated an unstable elimination environ-

ment, when compared to P. falciparum [41], since PQ triggers an adverse effect to individuals

affected by glucose-6-phosphate-dehydrogenase deficiency (G6PD) questioning mass pro-

grams [40, 44]. Previous works also indicated that the early development of gametocytes

increases P. vivax incidence [40, 45].

We aim to study the emergence and spread of P. vivax and P. falciparum drug resistance

taking into account P. vivax particularities: relapses, earlier transmission, and detection diffi-

culties due to asymptomatic cases. We developed compartmental models for both P. vivax and

P. falciparum illustrating the emergence and transmission of one resistant strain on a wild-

strain population under the pressure of treatments with CQ and ACTs plus addition or no PQ.

We implemented equivalent epidemiological settings for human and mosquito populations to

make comparable drug-resistance evolution between Plasmodium species. Our approach

reveals the impact of P. vivax particularities in drug resistance filling in the gap of knowledge

about P. vivax resistance.

Materials and methods

We developed mathematical models for both Plasmodium vivax and Plasmodium falciparum
using ordinary differential equations (ODE) to represent the transmission of two strains: sensi-

tive and resistant. The fundamentals from these models have origin on the well-known Ross-

Macdonald model that separates human and mosquito populations by susceptible and infected

individuals [46]. Additionally, we implemented a post-treatment state in humans, and we also

distinguished infected states by sensitive and resistant strains.

The model structure considers only a single genotype per infected human, either sensitive

or resistant. However, multiple malaria parasites with different genotypes might infect

humans. Multiple-genotype infections can happen due to genetically distinct sporozoites,

either from a single inoculation (co-inoculation) or multiple inoculations (superinfection).

The relative importance of co-inoculation versus superinfection is setting dependent and not

yet fully understood. Previous studies found that parasite density in blood-stage can limit sub-

sequent development of new sporozoites supporting the parasite population of first-inoculated

genotype [47, 48]. Hence, superinfection may be limited. Another study analyzing multiple-

genotype infections found multiple parasite haploids with genetic similarity suggesting infec-

tion from a single inoculation rather than several inoculations [49]. The model presented here

uses a single genotype per infected human for model simplification.

The next subsections expand model features and differences between P. vivax and P. falcip-
arum modeling.

P. falciparum model

This model outlines P. falciparum transmission in five human and three mosquito states: sus-

ceptible humans Sh, infected humans by sensitive strain Ifs, post-treatment humans after sensi-

tive infection Pfs, infected humans by resistant strain Ifr, post-treatment humans after resistant

infection Pfr, susceptible mosquitoes Sm, infected mosquitoes by sensitive strain Imfs, and

infected mosquitoes by resistant strain Imfr. Infected and post-treatment humans can infect sus-

ceptible mosquitoes, and then, they can become susceptible again (see Fig 1). On the other
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hand, infected mosquitoes remain in this state until their death due to their short life expec-

tancy. The equations from Eqs 1 to 8 represent the measure per state; Table 1 illustrates model

parameters.

dSh
dt
¼ � mab

Imfs
Nm

Sh � ð1 � aÞmab
Imfr
Nm

Sh þ
Pfs
k
þ

Pfr
kðnþ 1Þ

þð1 � Zsf Þrf Ifs þ ð1 � Zsf Þrf Ifr;
ð1Þ

dIfs
dt
¼ mab

Imfs
Nm

Sh � ð1 � Zsf Þrf Ifs � Zsf gf Ifs; ð2Þ

dPfs
dt
¼ Zsf gf Ifs �

Pfs
k
; ð3Þ

dIfr
dt
¼ ð1 � aÞmab

Imfr
Nm

Sh � ð1 � Zsf Þrf Ifr �
Zsf gf

nþ 1
Ifr; ð4Þ

dPfr
dt
¼
Zsf gf

nþ 1
Ifr �

Pfr
kðnþ 1Þ

; ð5Þ

dSm
dt
¼ LmNm � ½acssf þ acað1 � sf Þ�

Ifs
Nh

Sm � acs
�f

k
ð1 � φÞð1 � nÞ

Pfs
Nh

Sm

� acs
�f

k
ð1 � aÞð1 � φÞn

Pfs
Nh

Sm � ½acssf þ acað1 � sf Þ�ð1 � aÞ
Ifr
Nh

Sm

� acs
�f

k
ð1 � aÞð1 � φÞ

Pfr
Nh

Sm � mmSm;

ð6Þ

Fig 1. P. falciparum model. This structure illustrates the transmission in five human and three mosquito states:

susceptible humans Sh, infected humans by sensitive strain Ifs, post-treatment humans after sensitive infection Pfs,
infected humans by resistant strain Ifr, post-treatment humans after resistant infection Pfr, susceptible mosquitoes Sm,

infected mosquitoes by sensitive strain Imfs, and infected mosquitoes by resistant strain Imfr. Complete lines describe the

possible progressions between states, whereas dotted lines describe the parasite transmission between humans and

mosquitoes. Red, gray, and black lines display the flows between pairs of states: resistant, sensitive, and recovered states.

https://doi.org/10.1371/journal.pcbi.1007945.g001
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dImfs
dt
¼ ½acssf þ acað1 � sf Þ�

Ifs
Nh

Sm þ acs
�f

k
ð1 � φÞð1 � nÞ

Pfs
Nh

Sm � mmImfs; ð7Þ

dImfr
dt
¼ ½acssf þ acað1 � sf Þ�ð1 � aÞ

Ifr
Nh

Sm þ acs
�f

k
ð1 � aÞð1 � φÞ

Pfr
Nh

Sm

þ acs
�f

k
ð1 � aÞð1 � �Þn

Pfs
Nh

Sm � mmImfr; ð8Þ

Table 1. Model parameters.

Parameter Description Value

m Mosquitoes per human Nm/Nh (dimensionless) 2435/625

[50]

a Biting rate (day−1) 0.21 [39]

b Transmission probability from an infected mosquito to a susceptible human

(dimensionless)

0.5 [51]

η Treatment coverage (dimensionless) 0-1

σf Proportion of symptomatic humans infected by P. falciparum (dimensionless) 0.9 [52]

σv Proportion of symptomatic humans infected by P. vivax (dimensionless) 0.33 [53]

rf Recovery rate of untreated infected-humans by P. falciparum (day−1) 1/287 [50]

rv Recovery rate of untreated infected-humans by P. vivax (day−1) 1/60 [54]

γf Progression rate from infected to post-treatment humans affected by P. falciparum
(day−1)

1/2 [50]

γv Progression rate from infected to post-treatment humans affected by P. vivax (day−1) 1/9 [36, 55]

φ Proportion of treated humans with primaquine (dimensionless) 0-1

κ Protective period of the treatment (day) see Table 2

�f Infectious period of post-treatment humans infected by P. falciparum (day) see Table 2

�v Infectious period of post-treatment humans infected by P. vivax (day) see Table 2

α Resistance cost (dimensionless) 0-0.6 [24]

n Recurrences produced by the resistant strain (dimensionless) 1

Λm Mosquito birth rate (day−1) 0.033 [50]

μm Mosquito death rate (day−1). We assumed constant population 0.033

ca Transmission probability from an asymptomatic human to susceptible mosquito

(dimensionless)

0.12 [56]

cs Transmission probability from an infected-symptomatic human to susceptible mosquito

(dimensionless)

0.4 [56]

ν Probability of transmitting a resistant parasite from a post-treatment infected by a

sensitive strain (dimensionless)

see Table 2

ψ Hypnozoite relapse rate (day−1). We assumed tropical relapses 1/60 [57]

ρsr Probability of developing sensitive infection by the contact between an infected

mosquito by sensitive strain and a human with latent parasites of the resistant strain

(dimensionless)

0.5

ρrs Probability of developing resistant infection by the contact between an infected mosquito

by resistant strain and a human with latent parasites of the sensitive strain

(dimensionless)

0.5

ϕt Probability of post-treatment human of remaining with latent parasites (dimensionless) 0.21 [58]

ϕu Probability of an untreated-infected human of remaining with latent parasites

(dimensionless)

0.4-0.9 [59]

μvl Clearance rate of latent parasites (hypnozoites) day−1 1/425 [39]

https://doi.org/10.1371/journal.pcbi.1007945.t001
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with

Nh ¼ Sh þ Ifs þ Pfs þ Ifr þ Pfr;

Nm ¼ Sm þ Imfs þ Imfr:

P. vivax model

This model outlines P. vivax transmission in seven human and three mosquito states: suscepti-

ble humans Sh, infected humans by sensitive strain Ivs, humans with latent parasites of sensitive

strain Lvs, post-treatment humans after sensitive infection Pvs, infected humans by resistant

strain Ivr, humans with latent parasites of resistant strain Lvr, post-treatment humans after

resistant infection Pvr, susceptible mosquitoes Sm, infected mosquitoes by sensitive strain Imvs,
and infected mosquitoes by resistant strain Imvr. This model reproduces the same transmission

interactions of P. falciparum model but involves two additional states: Lvs and Lvr. These states

describe humans with dormant hypnozoites of P. vivax that cause relapses after first infection.

In fact, Ivs, Ivr, Pvs and Pvr can remain with latent parasites becoming Lvs or Lvr instead suscepti-

ble. Additionally, the model allows new infections in humans with latent parasites as Fig 2

illustrates. The equations are from the Eqs 9 to 18 using the parameters in Table 1.

dSh
dt
¼ � mab

Imvs
Nm

Sh � mabð1 � aÞ
Imvr
Nm

Sh þ ð1 � ZsvÞð1 � �uÞrvðIvs þ IvrÞ

þ mvlðLvs þ LvrÞ þ
½1 � �tð1 � φÞ�

k
Pvs þ

½1 � �tð1 � φÞ�
kðnþ 1Þ

Pvr; ð9Þ

Fig 2. P. vivax model. This structure illustrates the transmission in seven human and three mosquito states: susceptible humans Sh,
infected humans by sensitive strain Ivs, humans with latent parasites of sensitive strain Lvs, post-treatment humans after sensitive

infection Pvs, infected humans by resistant strain Ivr, humans with latent parasites of resistant strain Lvr, post-treatment humans after

resistant infection Pvr, susceptible mosquitoes Sm, infected mosquitoes by sensitive strain Imvs, and infected mosquitoes by resistant

strain Imvr. Complete lines reproduce the possible progressions between states while dotted lines reproduce the parasite transmission

between humans and mosquitoes. Red lines display the flow of resistant parasites, gray lines display the flow of sensitive parasites,

and black lines display the flow without parasites.

https://doi.org/10.1371/journal.pcbi.1007945.g002
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dIvs
dt
¼ mab

Imvs
Nm

Sh � ð1 � ZsvÞrvIvs � ZsvgvIvs þ cLvs þmabrsr
Imvs
Nm

Lvr

þmab
Imvs
Nm

Lvs þmabð1 � rrsÞ
Imvr
Nm

Lvs;
ð10Þ

dLvs
dt
¼ ð1 � ZsvÞ�urvIvs þ

�tð1 � φÞ
k

Pvs � mvlLvs � cLvs � mab
Imvs
Nm

Lvs

� mabð1 � aÞ
Imvr
Nm

Lvs;
ð11Þ

dPvs
dt
¼ ZsvgvIvs �

Pvs
k
; ð12Þ

dIvr
dt
¼ mabð1 � aÞ

Imvr
Nm

Sh � ð1 � ZsvÞrvIvr �
Zsvgv
nþ 1

Ivr þ cLvr þmabð1 � aÞ
Imvr
Nm

Lvr

þmabð1 � aÞrrs
Imvr
Nm

Lvs þmabð1 � rsrÞ
Imvs
Nm

Lvr;
ð13Þ

dLvr
dt
¼ ð1 � ZsvÞ�urvIvr þ

�tð1 � φÞ
kðnþ 1Þ

Pvr � cLvr � mvlLvr � mabð1 � aÞ
Imvr
Nm

Lvr

� mab
Imvs
Nm

Lvr;
ð14Þ

dPvr
dt
¼
Zsvgv
nþ 1

Ivs �
Pvr

kðnþ 1Þ
; ð15Þ

dSm
dt
¼ LmNm � ½acssv þ acað1 � svÞ�

Ivs
Nh

Sm � acs
�v
k
ð1 � φÞð1 � nÞ

Pvs
Nh

Sm

� ½acssv þ acað1 � svÞ�ð1 � aÞ
Ivr
Nh

Sm � acs
�v
k
ð1 � aÞð1 � φÞ

Pvr
Nh

Sm

� acs
�

k
ð1 � aÞð1 � φÞn

Pvs
Nh

Sm � mmSm; ð16Þ

dImvs
dt
¼ ½acssv þ acað1 � svÞ�

Ivs
Nh

Sm þ acs
�v
k
ð1 � φÞð1 � nÞ

Pvs
Nh

Sm � mmImvs; ð17Þ

dImvr
dt
¼ ½acssv þ acað1 � svÞ�ð1 � aÞ

Ivr
Nh

Sm þ acs
�v
k
ð1 � aÞð1 � φÞ

Pvr
Nh

Sm

þ acs
�v
k
ð1 � aÞð1 � φÞn

Pvs
Nh

Sm � mmImvr; ð18Þ

with

Nh ¼ Sh þ Ivs þ Lvs þ Pvs þ Ivr þ Lvr þ Pvr;

Nm ¼ Sm þ Imvs þ Imvr:
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Resistance cost

Resistance cost (α) reduces parasite fitness when a mutation occurs and confers resistance on

specific treatment [25]. We modeled this cost as a reduction of resistant strains by a multiplica-

tive factor 1 − α.

Asymptomatic infections

We considered asymptomatic infections taking into account the proportion of infected

humans with very low malaria parasite density infections. They act as parasite reservoirs, but

their transmission rate is lower than the one of symptomatic humans. In the model, the trans-

mission probabilities from asymptomatic and symptomatic individuals to susceptible mosqui-

toes occur with different probabilities ca and cs, respectively, considering ca< cs [63]. The

number of individuals without symptoms is a consequence of the immunological profile in an

endemic region due to previous exposition periods. Also, this number varies with parasite

[52]. Hence, we considered (1 − σf) and (1 − σv) as constant proportion of asymptomatic

humans infected by P. falciparum and P. vivax assuming a long exposition period before

treatment.

Antimalarial treatment

Treatment coverage η varies from 0% to 100% of infected humans, adopting a single-treatment

regimen. Additionally, the model also permits evaluation of treatment plus primaquine by

applying a proportion φ of treated humans impacting gametocyte transmission and P. vivax
hypnozoites.

Infectious period

Infected without available treatment and asymptomatic humans recover from infection at rf
and rv rates for P. falciparum and P. vivax, respectively. Thus, 1/rf and 1/rv represent the aver-

age infection period, without treatment, for P. falciparum and P. vivax where 1/rf> 1/rv
because P. vivax model counts only one infection and it can generate a new P. vivax relapse

when infected human Iv becomes human with latent parasites Lv. On the other hand, treated

humans advance to post-treatment state at γ rate with 1/γ as infectious period with 1/γv> 1/γf
because the early development of gametocytes in P. vivax triggers longer infectious period

before treatment than P. falciparum [52, 61]. Resistant parasites provoke recurrences, during

treatment, producing more extended infectious periods than infectious periods with sensitive

parasites [64]. The mean infectious time for a sensitive strain is 1/γ (infectious period),

whereas the mean infectious period of a resistant strain is (n+ 1)/γ, with n recurrences. The

factor n+ 1 captures humans infected by resistant parasite extending their infectious periods

when a recurrence occurs.

Post-treatment period

The post-treatment period engages three dynamics: infectivity, drug half-life, and the emer-

gence of resistant parasites. Parasite clearance of drugs such as chloroquine and artemisinin

components affects differently specific parasite forms, i.e., per species [60, 65]. Infectivity

depends on the duration of gametocyte presence on blood. We define � as the infectious period

after treatment; � is longer for P. falciparum because P. falciparum gametocytes have a longer

lifespan than P. vivax gametocytes (�f> �v) [36, 65]. Drug half-life κ corresponds to the time

interval when treatment remains in the blood conferring a protective period [66]. The
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emergence of resistant parasites occurs by the selection of parasite strains under residual drug

concentration, which occurs with probability ν of transmitting a resistant parasite from a post-

treatment infected by a sensitive strain [23].

Basic reproduction number

We derived the basic reproduction number adopting the next generation matrix (NGM)

approach proposed in [67–69]. The basic reproduction number represents the number of sec-

ondary infections generated from an initial primary case in a susceptible population. We

assumed constant populations in humans (Nh) and mosquitoes (Nm) thus Λ m = μ m. NGM

method requires finding the disease–free state (Sh = Nh; Sm = Nm; the remaining states equal 0)

to linearize the equations and building the transmission and transition matrix to derive the

basic reproduction numbers [67].

Simulation

We aim to simulate the spread of drug resistance in P. falciparum and P. vivax comparing

between different treatment-regiments. We contrasted regimens between the adoption of four

treatment lines: chloroquine (CQ), chloroquine plus primaquine (CQ+PQ), artemisinin-based

combination therapy (ACT) with artemether-lumefantrine (ARLU) and ARLU plus PQ (ACT

+PQ). The initial condition is only the presence of the sensitive strain, and Table 2 summarizes

the parameters to each treatment regiment. We analyze the system of equations in R using deS-

olve package [70]. The simulation code is provided in S1 File.

Malaria-transmission settings

We used parameters from the study by Chitnis et al. defining low and high transmission set-

tings for a Ross-McDonald structure [50]. We also incorporated the parameter distinction

between symptomatic and asymptomatic infectiousness from [56]. P. falciparum model

showed a valid prevalence (between 0.01 and 0.324) according to the third quartile of 32374

prevalence values reported in the Malaria Atlas Project MAP for 98 countries from 1984 to

2018 [71]. MAP generated a dataset of prevalence values using parasite rate points that came

from organizations of health surveys and prevalence studies in literature revision [72]. The P.
vivax model used the same parameters to make comparable results and also adopted a set

parameters to involve hypnozoite relapses [39, 57, 59]. In order to better understand the

impact of parameters, we performed a sensitivity analysis to describe the implications of varia-

tion in model parameters on the emergence time of resistant strain that represents the moment

when resistant-strain prevalence surpasses sensitive-strain prevalence.

Table 2. Treatment parameters.

Treatment regimen Protective period (κ)

[60]

Infectious period after treatment (�) [36,

60, 61]

Probability of transmitting a resistant parasite from Pfs and

Pvs (ν) [62]

CQ 30 days 2.1 days (P. vivax), 11 days (P. falciparum) 10−12

CQ+PQ 30 days 2.1 days with (φ = 0.95) 10−12

ACT (artemether-lumefantrine) 3 days 1.55 days (P. vivax), 11 days (P.
falciparum)

10−24

ACT+PQ (artemether-

lumefantrine)

3 days 1.55 days (φ = 0.95) 10−24

https://doi.org/10.1371/journal.pcbi.1007945.t002
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Sensitivity analysis

Finally, we performed a sensitivity analysis of parameter models on the emergence-time of the

resistant strain using Latin Hypercube Sampling (LHS) to respond at the uncertainty of esti-

mated values and also to assess the parameter influence [73]. We implemented the analysis in

R using deSolve, lhs, and sensitivity packages; the partial correlation coefficients of sensitivity

function were calculated with a confidence level of 95% [70, 74, 75]. All reproducibility code is

in S1 File.

Results

Basic reproduction number

We derived formulae for the basic reproduction number of sensitive and resistant strains in

the cases of P. falciparum and P. vivax models (see from Eqs 19 to 22). These derivations reveal

that R0, as a function of resistant cost α, cuts down R0 values of resistant strains compared to

sensitive ones. As expected, recurrences increase the basic reproduction number in both cases.

On the other hand, terms associated with latent P. vivax parasites reduce the basic reproduc-

tion number of both strains in the same proportion.

R0fs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2b

mm½ð1 � Zsf Þrf þ Zsf gf �
cssf þ cað1 � sf Þ þ Zsf gf cs�f ð1 � nÞð1 � φÞ
h i

s

ð19Þ

R0fr ¼ ð1 � aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2b

mm ð1 � Zsf Þrf þ
Zsf gf

nþ 1

� � cssf þ cað1 � sf Þ þ Zsf gf cs�f ð1 � φÞ
h i

v
u
u
u
t ð20Þ

R0vs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2bðcþ mvlÞ½cssv þ cað1 � svÞ þ Zsvgvcs�vð1 � nÞð1 � φÞ�

mm½ðcþ mvlÞ½ð1 � ZsvÞrv þ Zsvgv� � c½�tð1 � φÞZsvgv þ �uð1 � ZsvÞrv��

s

ð21Þ

R0vr ¼ ð1 � aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2bðcþ mvlÞ½cssv þ cað1 � svÞ þ Zsvgvcs�vð1 � φÞ�

mm ðcþ mvlÞ ð1 � ZsvÞrv þ
Zsvgv
nþ 1

� �

� c
�tð1 � φÞZsvgv

nþ 1
þ �uð1 � ZsvÞrv

� �� �

v
u
u
u
t ð22Þ

Simulation

In numerical simulations, we evaluated the basic reproduction number R0 by varying cost

resistance, treatment plus primaquine, and infectious time before and after treatment (see

Fig 3). In general, increases in drug coverage decrease R0 values of P. falciparum at a higher

rate than the ones obtained for P. vivax. Sensitive P. vivax overcomes resistant strains by R0

values at different resistance cost compared to the switch point for P. falciparum. Treatment

plus primaquine influences equally R0 values of sensitives and resistant stains for both species.

In general, a longer infectious period before and after treatment increases the reproduction

number, but only the longer infectious time before treatment boosted the sensitive R0 to stay

over the resistant R0. This effect is stronger in P. vivax because it has an early transmission

before treatment.

Simulations with no regimen produce a proportion of 0.98 for Ivs in P. falciparum model

and 0.93 and 0.06 for Ivs and Lvs, respectively, in P. vivax model implying an equilibrium with-

out resistant strain (see Figure A in S2 File). With this initial conditions, we implemented
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regimen (η = 1) obtaining a decrease in all infected proportions in comparison with no regi-

men but resistant strain emerged in all treatments as Fig 4 illustrates.

Although emergence time of P. vivax resistant strain was slower than the one of P. falcipa-
rum resistant using all regimens, the regimens accomplished a smaller reduction in the pro-

portion of infected humans by P. vivax. Treatment with chloroquine (CQ) contributed to a

Fig 3. Drug coverage varying the basic reproduction numbers. The figure illustrates R0 lines for P. falciparum (figures a) and P.
vivax (figures b) models dividing by sensitive and resistant strains. 1(a) and 1(b) display R0 lines of sensitive and resistant strains with

different resistance cost (α); 2(a) and 2(b) display R0 lines using or non-using primaquine (φ); 3(a) and 3(b) display R0 lines at two

infectious periods before treatment in days (1/γ); 4(a) and 4(b) display R0 lines at two infectious periods after treatment in days (�). α
= 0.28, ρ = 0.5, �f = 11, �v = 2.1, γf = 1/2 and γv = 1/9 when they are fixed; other parameters have values from Table 1.

https://doi.org/10.1371/journal.pcbi.1007945.g003
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higher proportion of post-treatment humans, especially in the case of P. falciparum, and the

emergence of resistant P. vivax took a time twofold as long as resistant P. falciparum. Treat-

ment including primaquine (CQ+PQ) decreased infected and post-treatment humans of P. fal-
ciparum, and humans with latent parasites of P. vivax, but this regimen implied the emergence

of resistant parasites in less time.

Regimens with artemisinin-based combination therapy delayed the emergence of resistant

P. vivax three times as long as resistant P. falciparum, but this regimen affected the proportion

of infected humans less than chloroquine regimen. Primaquine addition (ACT+PQ) also

decreased infected and post-treatment humans of P. falciparum, and humans with latent para-

sites of P. vivax though the emergence of resistant parasites remained at a similar time as the

ACT without primaquine.

Fig 4. Simulation of treatment regimens. This figure illustrates the implementation of four treatment-regimens: chloroquine CQ (κ = 30 days, �f = 11

days, �v = 2.1 days, φ = 0 and ν = 10−12), chloroquine plus primaquine CQ+PQ (κ = 30 days, �f = 11 days, �v = 2.1 days, φ = 0.95 and ν = 10−12),

artemisinin-based combination therapy ACT (κ = 3 days, �f = 11 days, �v = 1.55 days, φ = 0 and ν = 10−24) and artemisinin-based combination therapy

plus primaquine ACT+PQ (κ = 3 days, �f = 11 days, �v = 1.55 days, φ = 0.95 and ν = 10−24). First row shows the simulated regimens in P. falciparum
model and second row shows the simulated regimens in P. vivax model.

https://doi.org/10.1371/journal.pcbi.1007945.g004
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Sensitivity analysis

In this model, resistance cost is the most influencing parameter since this parameter delays

more the emergence of resistant parasites for either P. vivax or P. falciparum (see Fig 5). Four

parameters were also directly proportional but with a low parameter influence: probability of

developing sensitive infection by the contact between Imvs and a Lvr ρsr (only in P. vivax), hyp-

nozoite relapse rate ψ (only in P. vivax), recovery rate of untreated infected r and proportion

of treated humans with primaquine φ. On the other hand, the number of recurrences by drug

resistance obtained the most negative influence for both species implying an earlier emergence

of the resistant strain. Five parameters also exhibited a negative relationship: the probability of

transmitting a resistant parasite from a post-treatment human ν, progression rate from

infected to post-treatment humans γ, probability of developing a resistant infection by the con-

tact between Imvr and a Lvs ρsr (only in P. vivax), the proportion of symptomatic humans and

treatment coverage. The remaining parameters impacted less, also noting that the transmission

probabilities to susceptible mosquito (cs and ca) and the protective period after treatment κ
only exhibited a proportional factor for P. falciparum.

Discussion

We found that early transmission before treatment, asymptomatic human, and low effective-

ness of drug coverage support the prevalence of sensitive parasites delaying the emergence of

resistant P. vivax. The reproduction numbers of sensitive P. vivax surpassed the reproduction

numbers of resistant ones when the infectious period before treatment was greater, and this

usually occurs in P. vivax transmission by the early development of gametocytes [52]. This

effect produces an increase in the number of P. vivax infected by a shorter incubation period

of parasites as a previous model found [40]. It also implies more difficulties in P. vivax

Fig 5. Parameter sensitivity on the emergence-time of the resistant strain. The figure illustrates parameter influence where -1 represents the

maximum inverse relation (accelerate drug resistance), 1 represents the maximum proportional relation (delay drug resistance) and 0 represents no

relation.

https://doi.org/10.1371/journal.pcbi.1007945.g005

PLOS COMPUTATIONAL BIOLOGY Modeling of emergence of drug resistance in malaria

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007945 June 17, 2020 13 / 22

https://doi.org/10.1371/journal.pcbi.1007945.g005
https://doi.org/10.1371/journal.pcbi.1007945


elimination and control than P. falciparum, illustrating the lowest effectiveness of current

treatment regimens against P. vivax [45, 76, 77]. Previous models also indicated a lower reduc-

tion in P. vivax prevalence in same settings than P. falciparum [39, 41] but actually, P. falcipa-
rum prevalence is similar to or greater than P. vivax in the same settings suggesting that host

acquisition of P. vivax immunity would play a role modulating P. vivax prevalence [78, 79].

Implications in treatment policy

Chloroquine (CQ) and Artemisinin-based combination therapy (ACT) with artemether-lume-

fantrine (ARLU) caused emergence of P. falciparum resistance on a similar time scale, whereas

ARLU delayed the emergence of P. vivax resistance in comparison with CQ. In theory, resis-

tance development to a set of drugs is less likely than a single drug, and this reinforces the

improvement of combination therapies [62]. We capture the fact that resistance is less likely

for combination therapy by using a smaller ν for ACT than CQ (Table 2). Nevertheless, our

results showed that fast parasite clearance and shorter protective period of ARLU against P. fal-
ciparum avoided the transmission of sensitive parasites after-treatment, allowing the emer-

gence period of a resistant parasite as long as the one for CQ despite the lower probability of

transmitting resistant parasites with ARLU. CQ resistance in P. vivax emerged earlier than

ARLU resistance, but CQ achieved a higher reduction in the prevalence of infected humans in

overall simulations. These effects indicate that combination therapy evades drug resistance for

a long period in P. vivax, but its shorter protective period than the one for CQ allows a preva-

lence increase. This result agrees with the substantial increase in P. vivax cases with ACT adop-

tion for all Plasmodium species in Papua New Guinea and Indonesia [80]. Hence,

combination therapy delays emergence of drug resistance for a long period for P. vivax than

monotherapy, but it should attach a long protective period to prevent an increase in disease

incidence. Indeed, dihydroartemisinin-piperaquine (DPQ) regimen, a combination therapy, is

highly recommended for malaria control, since it offers a protective period as well as CQ [60].

Still, extensive use of partner drugs as monotherapy such as piperaquine alone, before combi-

nation therapy adoption, would intensify risk of resistance [81]. On the other hand, mixed

infections of P. falciparum-P. vivax produce a premature exposure of P. vivax at non-adopted

drugs forcing an earlier selective pressure as previous works reported [76, 81, 82]. Our simula-

tion only considered an initial sensitive strain infection without taking into account previous

resistance profile and several genotypes, with different drug susceptibility and fitness [83], lim-

iting results to a qualitative validation of regimen adoption in a sensitive population of

parasites.

Cessations and changes in drug policy have allowed the emergence of wild-type parasites in

endemic zones in Africa and Asia, boosting the possibility of adopting well-known regimens

as CQ and sulfadoxine-pyrimethamine [84–87]. Our model structure does not have an inverse

mutation from resistant to sensitive strain, but basic reproduction numbers have a comparable

structure in terms of parasite competence. If we have a treatment cessation (η = 0), R0fr = (1 −
α)R0fs and R0vr = (1 − α)R0vs entail R0fs> R0fr and R0vs> R0vr, with α> 0, generating that sensi-

tive prevalence grows up above resistance prevalence and therefore, reemergence of wild-type

strain.

Impact of treatment plus primaquine

We also tested treatment regimen plus primaquine (PQ) finding that PQ decreased basic

reproduction numbers and prevalence of either sensitive or resistant strains. Still, it had a

lower contribution to drug-resistance. For P. falciparum, PQ helped to avoid transmission

after treatment decreasing prevalence using CQ+PQ and ARLU+PQ. Still, CQ resistance
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occurred slightly earlier because PQ also blocked the transmission of sensitive parasites after

treatment in a protective period. PQ decreases P. vivax prevalence in humans with latent para-

sites, but decreases less the prevalence of P. falciparum, suggesting that earlier transmission

and asymptomatic individuals have a more important role in P. vivax transmission than trans-

mission after treatment. This finding agrees with a previous study showing that early transmis-

sion in P. vivax forced greater reproduction number [45]. This result contrasts with previous

studies that found relapses as the most important contributor of P. vivax prevalence instead of

early transmission [41, 42]. Nevertheless, our results reinforce the adoption of regimens plus a

drug to kill hypnozoites and gametocytes, because regimens plus PQ decreased prevalence,

when compared to single-drug regimen. In terms of drug resistance, Schneider and Escalante

suggested that a drug to kill gametocytes such as PQ could prevent drug resistance [36]. Our

model only avoids all transmission of resistant strain with a 100% of PQ regimen which is

implausible, given adverse effects of PQ in patients with G6PD deficiency [14, 88]. Simulation

results showed an earlier emergence of drug resistance in treatments plus PQ for both Plasmo-
dium species. In contrast, sensitivity analysis showed low influence in PQ delaying the emer-

gence of the resistant strain. However, such results are still inconclusive due to potential

disturbances in Latin hypercube sampling because φ obtained a lower influence. Therefore,

our results showed that PQ might not have an essential role in drug resistance over the primary

treatment regimen.

P. vivax relapses

Relapses in P. vivax constitute the principal challenge in control and elimination programs

and incidence increases with more frequent relapses [39, 40, 42]. Our model structure defined

relapses through hypnozoite relapse rate (ψ) and probabilities of remaining with latent para-

sites (φu and φt). The formula for R0v indicated that the hypnozoite relapse rate ψ has no

important effect on the incidence because this term applies by the same factor in numerator

and denominator. The compartmental structure of the model does not capture all the nature

of relapse with hypnozoite relapse rate (ψ). Nevertheless, probabilities of remaining with latent

parasites (φu and φt) help to capture this dynamic, and we found that probabilities φu and φt
increased R0v and parasite prevalence, connecting with previous studies that noticed greater R0

with more relapses [39, 41]. Relapses considering drug resistance through sensitivity analysis

showed relapse rate as delayer of resistance strain because relapses might benefit the transmis-

sion of sensitive parasites before the appearance of the resistant strain. These results suggest

that tropical zones support sensitive P. vivax more than temperate zones because a single-sen-

sitive infection might cause more than one sensitive infection episode delaying the emergence

of resistant strain [41, 89, 90].

Effect of asymptomatics

The effect of asymptomatic individuals is key because they can support a new transmission

way, providing insights into the implication of detection difficulties in P. vivax. Basic repro-

duction numbers expressions illustrated that proportion of symptomatic humans σ enhanced

the real drug coverage ση generating smaller reproduction numbers while asymptomatic pro-

portion (1 − σ) increases them. This result agrees with Adapa et al. presenting asymptomatics

as magnifying the number of cases [45]. Simulation results exhibited a greater prevalence of P.
vivax (between 40% and 75%) using all regimens in same transmission settings than P. falcipa-
rum (between 10% and 25%) and larger asymptomatic proportion in P. vivax ((1 − σv)>(1 −
σf)) might explain a part of this greater prevalence. A previous study in the Solomon Islands

(low transmission settings) revealed an 82.4% of P. vivax prevalence, among which only 2.9%
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of infected had fever implying a high impact on the transmission of asymptomatic cases link-

ing with model results [91]. In general terms, current results provided some insights into the

contributions of asymptomatic reservoirs, but the model structure has limitations. First, mod-

els here consider a fixed proportion of asymptomatic, which may vary between localities and

time [92]. To perform model robustness, we performed a sensitivity analysis that illustrated σ
as an accelerator of drug resistance with influence for both Plasmodium species. Drug efficacy

increases when there is a large proportion of symptomatic humans, boosting the selective

force. This result agrees with Kim et al. that found lower sensitive-strain fitness with higher

drug efficacy [33]. Second, our model structure considers an average decay rate of infected

states for both symptomatic and asymptomatic humans at the same levels. The weight of

asymptomatic infection might be more significant than expected. In this case, asymptomatic

individuals would have a higher impact on disease prevalence and avoiding drug resistance.

Multiple-genotype infection

The model structure here considers only single genotype infection per infected human, but

there is evidence of multiple-genotype infections. Both co-inoculation and superinfection gen-

erate multiple genotypes per infected, as reported in endemic zones [93]. Our model does not

represent the dynamic of parasite density in blood-stage and the genetic relationship of multi-

ple genotype infections. However, previous studies found that parasite density in blood-stage

can limit a subsequent development of new sporozoites [94, 95]. Nkhoma et al. found multiple

genotype infections with a genetic relationship suggesting a higher probability of single inocu-

lations rather than multiple ones [96]. In general, within-host models can capture better super-

infection and co-inoculation because they consider independent parasite stages and parasite

densities [22]. Still, we used a compartment model to provide information on the human-pop-

ulation level.

Model structure only allows a superinfection of humans with latent parasites through a new

inoculation or activation of present hypnozoites within an activation period. In the case of acti-

vation of present hypnozoites, previous studies offered febrile-systematic episodes as activator

[35, 90]. Co-activation of hypnozoites of different strains can happen after co-inoculation, but

our model does not represent this dynamic because it remains unlikely. Indeed, our model

only considers superinfection in a human with latent parasites mediated by ρsr and ρrs. This

kind of dynamics captures the superinfection of newly inoculated parasites or activation of

latent hypnozoites, either sensitive or resistant. Sensitivity analysis revealed that the parameter

given by the probability ρsr of an individual with latent parasites of the resistant strain to

develop a sensitive infection by inoculation from an infected mosquito with sensitive strain

delays drug resistance. By contrast, the probability ρrs of a human with latent parasites of sensi-

tive strain to develop resistant infection by mosquito bite with resistant strain accelerates resis-

tance. This result agrees with the study by Klein et al. that shows within-host competition as a

factor to delay drug resistance [35]. The present models permit to compare risk factors such as

hypnozoite-activation or superinfection of humans in latent state and their implications in

drug resistance, despite the limited capacity to deal with multiple-genotype infections.

In summary, our results suggest that P. vivax has a set of mechanisms to delay drug resis-

tance that implies difficulties in control and elimination programs: earlier transmission, a

higher proportion of asymptomatic cases, and relapses. However, programs focused only on

symptomatic humans may obtain a weak effect against P. vivax prevalence. This strategy is not

efficient to block early transmission and asymptomatic reservoirs, despite the strong treatment

regimen, longer protective period and an effect killing gametocytes and hypnozoites. Strategies

such as mass drug administration impact asymptomatic humans and also avoid earlier
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transmission, blocking the mechanisms to delay drug resistance of P. vivax, but might increase

the risk of drug-resistance.
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