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Abstract: Listeria monocytogenes is a bacterial foodborne pathogen and the causative agent of the
disease listeriosis, which though uncommon can result in severe symptoms such as meningitis,
septicemia, stillbirths, and abortions and has a high case fatality rate. This pathogen can infect
humans and other animals, resulting in massive health and economic impacts in the United States
and globally. Listeriosis is treated with antimicrobials, typically a combination of a beta-lactam
and an aminoglycoside, and L. monocytogenes has remained largely susceptible to the drugs of
choice. However, there are several reports of antimicrobial resistance (AMR) in both L. monocytogenes
and other Listeria species. Given the dire health outcomes associated with listeriosis, the prospect
of antimicrobial-resistant L. monocytogenes is highly problematic for human and animal health.
Developing effective tools for the control and elimination of L. monocytogenes, including strains with
antimicrobial resistance, is of the utmost importance to prevent further dissemination of AMR in this
pathogen. One tool that has shown great promise in combating antibiotic-resistant pathogens is the
use of bacteriophages (phages), which are natural bacterial predators and horizontal gene transfer
agents. Although native phages can be effective at killing antibiotic-resistant pathogens, limited
host ranges and evolved resistance to phages can compromise their use in the efforts to mitigate
the global AMR challenge. However, recent advances can allow the use of CRISPR-Cas (clustered
regularly interspaced short palindromic repeats-CRISPR-associated proteins) to selectively target
pathogens and their AMR determinants. Employment of CRISPR-Cas systems for phage amendment
can overcome previous limitations in using phages as biocontrol and allow for the effective control of
L. monocytogenes and its AMR determinants.
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1. Introduction

Listeria monocytogenes is a facultative intracellular bacterial pathogen that is found
ubiquitously in the environment and is most frequently transmitted via contaminated
food [1–3]. L. monocytogenes is the causative agent of the disease listeriosis in humans
and other animals. Of the 13 known serotypes of L. monocytogenes, three (i.e., 1/2a, 1/2b,
and 4b) are primarily responsible for human listeriosis [4,5]. In susceptible individuals,
listeriosis can result in severe symptoms including septicemia, meningitis, stillbirths, and
abortions, and the case fatality rate remains high [5–7]. L. monocytogenes also exhibits an
array of special environmental survival attributes, such as the capacity to grow at refrigera-
tion temperatures, biofilm formation, and resistance to sanitizers and other antimicrobial
compounds, which enable it to exhibit remarkable persistence in the environment and
equipment of food-processing facilities [1,2]. Its severe disease potential coupled with its
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environmental survival characteristics render L. monocytogenes a major cause for public
health concern.

A beta-lactam and an aminoglycoside [7,8]. L. monocytogenes exhibits innate resistance
to nalidixic acid, oxacillin, and certain third–generation cephalosporins but is not com-
monly resistant to antibiotics employed for treatment [9–11]. However, there are several
reports of resistance to clinically-relevant antibiotics in L. monocytogenes and other Listeria
species [10,12–14]. Thus, antimicrobial resistance (AMR) in this serious human and animal
pathogen is of concern, in agreement with the global trend of growing AMR challenges in
agriculture and the food chain [15,16].

1.1. Bacteriophage as Biocontrol against Listeria monocytogenes and Tool to Mitigate AMR

Novel mitigation strategies are required in response to the growing threat that AMR
poses to public health. Such strategies will be critically needed for L. monocytogenes, as it is
one of the leading causes of death due to foodborne disease in the United States and other
industrialized nations [6,17]. One potential solution to the problem of antibiotic-resistant
L. monocytogenes involves the native predators and horizontal gene transfer agents of this
pathogen, namely Listeria-specific bacteriophages (listeriaphages). These viruses have
been extensively studied and approved for use against L. monocytogenes in foods and food-
production facilities [18–20]. Listeriaphages have been shown to be effective at reducing
L. monocytogenes populations in food matrices as well as in biofilms in food-processing
plants and equipment [21–24]. While the potential for phages to control L. monocytogenes
has been known for some time, they are still not widely employed. Some of the primary
barriers to the more widespread adoption of phages for biocontrol include the limited
host ranges of phages and the immunity of L. monocytogenes to phages [22]. With time,
and repeated exposure, L. monocytogenes can develop resistance to phages, and strains
from food-processing plants, especially those of serotypes 1/2a, 1/2b, and 1/2c, frequently
exhibit resistance to phages [22,25–28].

One of the emerging tools in the fight against antibiotic-resistant bacteria that may
also prove key to finally enabling the widespread use of listeriaphages for control of L.
monocytogenes, including strains with specific AMR determinants, is the use of clustered
regularly interspaced short palindromic repeats (CRISPRs). While CRISPR systems were
first identified via their native function as a bacterial immune system [29], their targeted
DNA manipulation capabilities have rendered them a leading tool for genome-editing
purposes [30]. These DNA-encoded, RNA-mediated, DNA-targeting bacterial immune
systems function by identifying invading exogenous DNA, and then targeting specific
portions of the invading DNA for degradation by nucleases [31].

Given the intense interest in CRISPRs for genome editing purposes, and the massive
increases in the number of sequenced bacterial genomes, the number and diversity of
known CRISPR–Cas systems have dramatically increased. CRISPR systems are currently
subdivided into two classes, six types, and 33 subtypes [32]. Class 1 systems have effector
modules composed of multiple Cas proteins, whereas class 2 systems are characterized
by a single multidomain protein that performs all functions necessary for interference
(Figure 1). Class 1 systems have Cas6 for pre-CRISPR RNA (crRNA) processing into
mature crRNA. Class 2 systems require trans-acting crRNA, which is usually transcribed
within or near their locus and which functions in conjunction with their large multidomain
proteins for crRNA maturation (Figure 1). In-vivo trials have already shown that these
systems are capable of inactivating targeted pathogens in microbial communities as well
as inactivating specific AMR genes [33,34]. Several studies have established the ability of
CRISPR arrays to inactivate antibiotic-resistant microorganisms as well as specific AMR
genes, in vivo [34–40]. In one such study, Kim et al. (2015) showed that CRISPR-mediated
inactivation of a beta-lactam AMR gene in Escherichia coli rendered the bacteria susceptible
to beta-lactam antibiotics [37]. Additionally, they found that for E. coli strains with multiple
resistance genes harbored on the same plasmid as the beta-lactam resistance gene, double-
stranded DNA breaks caused by the beta-lactam–targeting CRISPR resulted in the loss of
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the entire plasmid, which sensitized the bacteria to multiple antibiotics [37]. In another
instance, the use of a CRISPR-equipped phage was found to be as efficacious as a high-
dose fosfomycin administration in clearing a soft tissue Staphylococcus aureus infection [41].
If the use of CRISPRs can reduce the use of antibiotics, this would also be a means of
decreasing the selection pressures for AMR. Such findings suggest that CRISPR systems
can mitigate the AMR challenge since their employment can reduce the need for antibiotics
and specifically inactivate AMR–conferring elements as well as the bacterial pathogens
that harbor the corresponding elements.

Antibiotics 2021, 10, x FOR PEER REVIEW 3 of 8 
 

loss of the entire plasmid, which sensitized the bacteria to multiple antibiotics [37]. In an-

other instance, the use of a CRISPR-equipped phage was found to be as efficacious as a 

high-dose fosfomycin administration in clearing a soft tissue Staphylococcus aureus infec-

tion [41]. If the use of CRISPRs can reduce the use of antibiotics, this would also be a means 

of decreasing the selection pressures for AMR. Such findings suggest that CRISPR systems 

can mitigate the AMR challenge since their employment can reduce the need for antibiot-

ics and specifically inactivate AMR–conferring elements as well as the bacterial pathogens 

that harbor the corresponding elements. 

 

Figure 1. Composition of Class 1 and Class 2 clustered regularly interspaced short palindromic repeat (CRISPR) systems. 

Cas9 and Cas13 are the same color signifying they both perform multiple functions as indicated by their spanning multiple 

functional blocks. 

CRISPR-Cas systems are widely disseminated and are encountered in roughly 40% 

of bacterial genomes [31]. Interestingly, while the use of endogenous CRISPR-Cas systems 

can yield superior results in genome editing [30,42], there have been relatively few studies 

utilizing native endogenous CRISPR systems. The available findings from these studies 

indicate that native systems are extremely effective for genome editing, and can alleviate 

the problems associated with exogenous systems, such as codon usage and the potential 

toxicity of exogenous Cas genes, while also being more efficient [30,42–44]. Appropriate 

CRISPR-Cas system selection and modification for inactivation of a target antibiotic-re-

sistant pathogen is key for the success of utilizing CRISPR-Cas systems to mitigate AMR.  

1.2. CRISPR Systems in Listeria 

Many earlier studies successfully detected CRISPR repeats in L. monocytogenes ge-

nomes [4,45–47]. These studies typically included relatively small numbers of genomes, 

making it difficult to ascertain the extent to which the findings might apply to L. mono-

cytogenes as a species. A more recent survey of 128 L. monocytogenes genomes, comprised 

of 38 closed genomes from the National Center for Biotechnology Information (NCBI) and 

90 genomes of isolates from food in North China, identified CRISPR arrays and corre-

sponding Cas genes in 41.4% of the genomes. The CRISPR-Cas systems were exclusively 

type IB and IIA [48], in agreement with a previous work that primarily detected type IB 

or IIA systems in L. monocytogenes [49] (Figure 2). Type VI systems (Figure 2), though de-

tected in Listeria species, have only been detected thus far in L. seeligeri, a species that is 

non-pathogenic to humans [50]. Several pieces of evidence suggest that at least some of 

the CRISPR-Cas systems detected in L. monocytogenes are functional. Specifically, many of 

the CRISPR arrays are sizable and with distinct spacer content from one another, and they 

harbor spacers that exactly match sequences of known Listeria phages and plasmids. Fur-

thermore, they harbor complete sets of Cas genes without evidence for deleterious muta-

tions [45–49,51]. Putatively-functional CRISPR-Cas systems have also been detected in 

other Listeria species that are not considered human pathogens, such as L. seeligeri, L. iva-

novii, L. innocua, and L. marthii [47,50,51]. 

Figure 1. Composition of Class 1 and Class 2 clustered regularly interspaced short palindromic repeat (CRISPR) systems.
Cas9 and Cas13 are the same color signifying they both perform multiple functions as indicated by their spanning multiple
functional blocks.

CRISPR-Cas systems are widely disseminated and are encountered in roughly 40% of
bacterial genomes [31]. Interestingly, while the use of endogenous CRISPR-Cas systems can
yield superior results in genome editing [30,42], there have been relatively few studies utiliz-
ing native endogenous CRISPR systems. The available findings from these studies indicate
that native systems are extremely effective for genome editing, and can alleviate the prob-
lems associated with exogenous systems, such as codon usage and the potential toxicity of
exogenous Cas genes, while also being more efficient [30,42–44]. Appropriate CRISPR-Cas
system selection and modification for inactivation of a target antibiotic-resistant pathogen
is key for the success of utilizing CRISPR-Cas systems to mitigate AMR.

1.2. CRISPR Systems in Listeria

Many earlier studies successfully detected CRISPR repeats in L. monocytogenes
genomes [4,45–47]. These studies typically included relatively small numbers of genomes,
making it difficult to ascertain the extent to which the findings might apply to L. monocyto-
genes as a species. A more recent survey of 128 L. monocytogenes genomes, comprised of
38 closed genomes from the National Center for Biotechnology Information (NCBI) and
90 genomes of isolates from food in North China, identified CRISPR arrays and corre-
sponding Cas genes in 41.4% of the genomes. The CRISPR-Cas systems were exclusively
type IB and IIA [48], in agreement with a previous work that primarily detected type IB
or IIA systems in L. monocytogenes [49] (Figure 2). Type VI systems (Figure 2), though
detected in Listeria species, have only been detected thus far in L. seeligeri, a species that
is non-pathogenic to humans [50]. Several pieces of evidence suggest that at least some
of the CRISPR-Cas systems detected in L. monocytogenes are functional. Specifically, many
of the CRISPR arrays are sizable and with distinct spacer content from one another, and
they harbor spacers that exactly match sequences of known Listeria phages and plasmids.
Furthermore, they harbor complete sets of Cas genes without evidence for deleterious
mutations [45–49,51]. Putatively-functional CRISPR-Cas systems have also been detected
in other Listeria species that are not considered human pathogens, such as L. seeligeri, L.
ivanovii, L. innocua, and L. marthii [47,50,51].
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Interestingly, in L. monocytogenes the incidence of CRISPR-Cas systems appears to
be serotype-dependent, as putatively functional CRISPR systems have been detected in
all major serotypes except 4b [46,48]. Even though the underlying mechanisms remain
to be elucidated, the finding is noteworthy, as serotype 4b appears to have enhanced
virulence and includes several hypervirulent clones that have been repeatedly implicated
in outbreaks [52,53].

The native presence of CRISPR-Cas systems in many Listeria genomes suggests their
suitability for biotechnological applications against L. monocytogenes, though correct se-
lection and adaptation of the systems will be crucial. There has been relatively little
experimental work to determine the functionality of these in silico–identified systems in L.
monocytogenes. One study demonstrated that the type II system in L. monocytogenes 10403S
had weak activity against a plasmid harboring one of the spacers found in the native
CRISPR array harbored by this strain [54]. Deletion of the Cas genes belonging to a type II
system in L. ivanovii strain WSLC30167 resulted in the strain becoming highly sensitized to
a phage to which it had previously been resistant [51]. Furthermore, mobilization of a self-
targeting spacer into this strain via a plasmid resulted in massive cell death, indicating a
functional and active CRISPR-Cas system [51]. Another study found the in silico–predicted
type VI systems in L. seeligeri to be functional against invading conjugative plasmids, also
demonstrating the functionality of these systems [50].

One major potential hurdle to the use of CRISPR-Cas systems for targeting Listeria is
the widespread dissemination of anti-CRISPR proteins. These proteins have been shown
to target and inactivate the Cas endonucleases of Listeria type II and type VI systems, and
are highly prevalent on prophages that are widely distributed in Listeria [54,55]. Such
findings suggest that the use of type II and type VI CRISPR systems, though widely used
for such applications in other organisms, may be challenging in Listeria. The majority of
experimental functional studies have involved type II systems and the associated nuclease
Cas9, while more recently certain studies with other Gram-positive bacteria demonstrated
that type I systems can be used as effectively as their more thoroughly-characterized type
II counterparts [43,44,56]. Type I CRISPR systems are the most abundant in bacteria [57]
and have also been extensively detected in L. monocytogenes [48]. In addition, they have
been demonstrated to be effective in reversing AMR in E. coli, as discussed above [34].
However, these systems are seldom used for genome editing and comparatively little
direct experimental work has been done to elucidate their complex function, particularly
in Listeria [30]. Functional investigations of type I systems in Listeria are currently lacking.
Such functional studies would afford a means of being able to employ type I systems as
a potentially powerful tool in Listeria. It is worthy of note that no anti-CRISPR proteins
targeting type I systems have been detected yet in Listeria, even though they have been
identified in other bacteria [58–60].

1.3. Phage-Mediated Delivery of Engineered CRISPR-Cas Systems

While CRISPR-Cas systems have shown promise at combating AMR determinants
and the host organisms in laboratory settings, they have yet to be extensively deployed
in more complex settings. Real-world deployment of these systems shows significant
promise given their extremely targeted nature. However, real-world deployment would
require a delivery system for administering engineered CRISPR systems to antibiotic-
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resistant pathogens, including L. monocytogenes. Phages are an ideal delivery system as
their natural function is to inject DNA into bacteria; they are extremely host-specific; they
are generally considered safe for use in foods; and they have been shown to be stable in
the environment [19,23]. CRISPR-equipped phages have been shown to be effective at
inactivating human pathogens in vitro as well as in vivo [44,61]. AMR-targeting CRISPR
systems have also been shown to effectively inactivate AMR determinants [35,36], and this
is a highly promising means of addressing AMR in pathogens. While directly targeting
the pathogen can potentially select for mutants capable of evading the CRISPR targets,
targeting the resistance elements will render the pathogen antibiotic-sensitive, allowing the
antibiotic to inactivate the pathogen before it can develop resistance to either the CRISPR
system or the phage. The resulting inactivation of the targeted AMR determinants will
minimize their potential to become disseminated via horizontal gene transfer. Furthermore,
if the AMR gene targets are chromosomal, the resulting fragmentation by the Cas nuclease
will also mediate the inactivation of the pathogen itself. Phages have been used to deliver
a type 1 CRISPR-Cas system with synthetic spacers targeting AMR elements to E. coli, and
were shown to be capable of killing the antibiotic-resistant bacteria as well as sensitizing
resistant bacteria to antibiotics [34]. This perfectly demonstrates the efficacy of CRISPR-
equipped phages for preventing the spread of AMR as well as for the targeted inactivation
of antibiotic-resistant bacteria.

Recent advances in molecular and synthetic biology have provided new tools for
the modification of listeriaphages. Several studies have demonstrated the relative ease
with which listeriaphages can be equipped with novel genetic content [62,63]. In one
study, listeriaphages were genetically modified to encode an additional heterologous
endolysin derived from an unrelated phage [62]. Upon lysis, the endolysins collectively
attacked neighboring cells which included both phage-susceptible and phage-resistant cells,
thereby circumventing phage resistance, currently a major impediment to using phages
for biocontrol [62]. In another study, different variants of luciferase were incorporated
into genomes of phages with different host ranges, allowing for the creation of fluorescent
reporter phages that could quickly and easily differentiate among different types of L.
monocytogenes in samples with mixed cultures [63].

Adding novel genetic content to phage genomes needs to be designed with caution to
avoid exceeding the capacity of the phage head and creating impaired or non-functional
phages, but correctly-designed modifications can create viable phages with novel func-
tionalities. This is supported by the functional assessments of modified listeriaphages
and other phages [34,62,63] and functional phage assessments combined with electron
microscopy [44]. In addition to the ease with which listeriaphage genomes can now be
modified, another study demonstrated that host ranges of listeriaphages can be expanded
by modification of phage receptor binding proteins (RBPs) and the construction of chimeric
phages harboring multiple RBPs on a single phage, allowing diverse host specificities [64].
Equipping a phage with multiple RBPs would enable CRISPR–equipped listeriaphages to
target an even broader range of hosts. The incorporation of multiple chimeric phages into
a single phage cocktail would further enhance the potential to combat target pathogens
that have acquired resistance to specific phages.

2. Conclusions

While modified phages show great promise for the control of AMR and pathogens
themselves, there are always concerns with the intentional release of any agent into an
ecosystem. As previously mentioned, listeriaphages have been approved for use in foods
since roughly 2006 [20]. Phage have been classified as generally recognized as safe (GRAS),
and given that phages are the most abundant life form on the planet, humans and other
animals are constantly exposed to them [65]. If their use is contained to clinical and food-
processing environments, many of the concerns regarding their impact on the greater
environment would also be reduced, as some CRISPR–equipped phages have already been
used clinically without incident [41]. Additionally, phages are highly host-specific and
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therefore the overall impacts on the general microbial community would be reduced. While
phages are a key driver of bacterial evolution [66], this role is primarily filled by temperate
transducing phages. Lytic phages, particularly those equipped with host-targeting CRISPR
systems, would likely kill their host at such a rate that they would not account for heritable
changes in the bacterial genome. Phages with AMR-targeting CRISPR systems would
indeed result in changes in the microbial genetic landscape, but those would primarily be
the reduction in AMR genes in specific targeted pathogens, which are exactly the sort of
changes needed to combat the global threat of AMR in pathogens. In conclusion, given the
rising AMR threats globally, the dire health outcomes associated with listeriosis, and the
critical roles of antimicrobial treatment in human and animal listeriosis, it is imperative to
address AMR in L. monocytogenes before it becomes widespread in this pathogen. CRISPR-
amended phages represent highly promising tools to address this issue. The employment
of such engineered phages can inactivate AMR determinants in the targeted bacterial
population before AMR can become widespread at the cost of human life, while also
having the potential to inactivate the antibiotic-resistant pathogen itself.
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