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ABSTRACT Here, we report 11 bacterial strains isolated from commercial corn-
based poultry feed to determine their potential as hygienic indicator microorganisms
through a comparison of genome sizes and distribution patterns of unique genes. These
isolates belonged to the genera Klebsiella, Kosakonia, Pantoea, Stenotrophomonas, and
Enterococcus.

The microbial composition of poultry feed could be a critical factor for the devel-
opment and growth of broilers and the establishment of their gastrointestinal tract

(GIT) microbiome, particularly for those given feeds treated with antimicrobials, such as
formaldehyde (1). Poultry feed harbors a wide array of microorganisms, including some
potential pathogens (2). However, little is known about the taxonomy of nonpatho-
genic bacteria associated with commercial feeds. Since the presence of pathogens is
relatively infrequent, it is important to gain a better understanding of the distribution
and prevalence of nonpathogens (1, 2). Hygienic indicator organisms, represented by
total aerobic colony count and coliform count, as well as Enterobacteriaceae, function
in a way similar to that of particular foodborne pathogens and thus offer a permanent
method for assessing and predicting the efficiency of sanitization agents against
consequent pathogens that are difficult to detect (2).

Based on previous findings, next-generation sequencing based on 16S rRNA gene
amplification has been proposed for use in characterizing microbial populations in
poultry feeds (2, 3). Therefore, application of whole-genome sequencing (WGS) has
been widely accepted for predicting possible microbial threat or preventing pre-
mature product spoilage under the food safety purview (4). WGS analysis performed
on nonpathogenic and potentially pathogenic poultry feed isolates in this study will
facilitate understanding of the distribution of candidate genes encoding proteins/
enzymes related to virulence, toxins, stress, antimicrobial resistance, porins, monoox-
ygenases, oxidoreductases, dioxygenases, and catabolism of heavy metals (lead, arse-
nic), among others, and will eventually determine the most suitable hygienic indicator
bacteria in the poultry processing pipeline.

Bacterial isolates from corn-based chicken feed were recovered on aerobic plate
count (APC) agar (5). Initially, 10 g of feed was shaken in 100 ml tryptic soy broth (TSB)
(BD Difco, Franklin Lakes, NJ) for 2 minutes; the mixtures were serially diluted and
plated onto APC agar. Isolates were grown overnight at 37°C in an incubator. Unique
colonies were isolated and purified repeatedly (3 times). Finally, 11 morphologically
different colonies were selected for WGS analysis. Genomic DNA was extracted from
pure cultures grown overnight in TSB at 37°C in an incubator using a DNase blood and
tissue kit for bacteria (Sigma-Aldrich Corporation, Natick, MA) following the man-
ufacturer’s protocol (http://www.bea.ki.se/documents/EN-DNeasy%20handbook.
pdf). A Nanodrop lite (Thermo Fisher Scientific, Waltham, MA) analysis was per-
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formed on each isolated DNA sample for quantification purposes and to ensure
sample purity (5).

WGS was performed at the Hubbard Center for Genome Studies (University of New
Hampshire, Durham, NH). A paired-end library was constructed using a Nextera DNA
library preparation kit (Illumina, San Diego, CA) and sequenced with an Illumina HiSeq
2500 instrument to produce 250-bp paired-end reads. The total number of reads for
each of the 11 strains is listed in Table 1. Fastq files were trimmed for Nextera adapters
and low-quality bases using Trimmomatic version 0.32 (6). For read trimming, trailing
and leading bases were removed if the quality score was below 3. In addition, the reads
were scanned using a 4-base sliding window and trimmed if the average quality
dropped below 15. Trimmed sequencing reads were then assembled using the SPAdes
pipeline version 3.5 (7) with default settings. QUAST version 4.6.0 (8) was used to assess
the contiguity of the assemblies, and coverage statistics were calculated by mapping
fastq reads to the assembled contigs with BWA-MEM (default settings) (9). The assem-
bled genomes were annotated via the NCBI Prokaryotic Genome Annotation Pipeline
(PGAP) (10). The taxonomic identity of each isolate was further confirmed by
performing a BLASTn (11) search on 16S rRNA (�1,500 bp) and translation initiation
factor 2 (IF-2; �2,750 bp) gene sequences against the NCBI nucleotide database. For
all isolates, the species identities ranged between 99% and 100%. The assembly
metrics and annotated features are given in Table 1.

Data availability. Draft genome sequences and raw sequencing reads have been
deposited at DDBJ/ENA/GenBank under the BioProject accession number PRJNA543860,
and the described accession numbers in this publication are listed in Table 1.
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G�C
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No. of
ncRNAsb
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Enterococcus sp. PF-3 VFLT00000000 SRS4994583 1,003 29 15,261,978 3,667,758 516,576 43.74 3,351 8 51 4
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Stenotrophomonas

maltophilia
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Stenotrophomonas
maltophilia
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a SRA, Sequence Read Archive.
b ncRNAs, noncoding RNAs.
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