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Abstract
The	effective	population	size	(Ne)	is	a	fundamental	parameter	in	population	genetics	
that	determines	the	relative	strength	of	selection	and	random	genetic	drift,	the	effect	
of	migration,	levels	of	inbreeding,	and	linkage	disequilibrium.	In	many	cases	where	it	
has	been	estimated	in	animals,	Ne	is	on	the	order	of	10%–20%	of	the	census	size.	In	
this	study,	we	use	12	microsatellite	markers	and	14,888	single	nucleotide	polymor-
phisms	(SNPs)	to	empirically	estimate	Ne in Aedes aegypti,	the	major	vector	of	yellow	
fever,	dengue,	chikungunya,	and	Zika	viruses.	We	used	the	method	of	temporal	sam-
pling	to	estimate	Ne	on	a	global	dataset	made	up	of	46	samples	of	Ae. aegypti	that	in-
cluded	multiple	time	points	from	17	widely	distributed	geographic	localities.	Our	Ne 
estimates	for	Ae. aegypti	fell	within	a	broad	range	(~25–3,000)	and	averaged	between	
400	and	600	across	all	localities	and	time	points	sampled.	Adult	census	size	(Nc)	esti-
mates	 for	 this	 species	 range	between	one	 and	 five	 thousand,	 so	 the	Ne/Nc	 ratio	 is	
about	the	same	as	for	most	animals.	These	Ne	values	are	lower	than	estimates	available	
for	other	 insects	 and	have	 important	 implications	 for	 the	design	of	genetic	 control	
strategies	to	reduce	the	impact	of	this	species	of	mosquito	on	human	health.
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1  | INTRODUCTION

The	effective	population	size	(Ne)	is	a	conceptual,	idealized	parameter,	
almost	always	much	smaller	that	census	size	due	to	a	number	of	de-
mographic	factors	such	as	unequal	sex	ratios,	population	fluctuations,	
and	unequal	contribution	to	reproduction.	Ne	is	a	fundamental	param-
eter	in	population	genetics	because	the	relative	strength	of	selection	
and	random	genetic	drift	in	populations	as	well	as	other	basic	proper-
ties	such	as	the	effect	of	migration	and	levels	of	genetic	variation,	in-
breeding,	and	linkage	disequilibrium	scale	with	changes	in	Ne. In many 
cases	where	it	has	been	estimated,	Ne	is	on	the	order	of	10%–20%	of	

the	census	size	(Luikart,	Ryman,	Tallmon,	Schwartz,	&	Allendorf,	2010;	
Palstra	&	Fraser,	2012).

The	recent	boom	in	the	use	of	genetic	methods	to	control	trans-
mission	 of	vector-	borne	 diseases	 requires	 knowing	 the	Ne	 of	 tar-
get	vectors	 in	 order	 to	design	 the	 interventions	 and	predict	 their	
probability	 of	 success.	 Aedes aegypti,	 the	 major	 vector	 of	 yellow	
fever,	dengue,	chikungunya,	and	Zika	viruses,	has	become	a	model	
for	efforts	of	genetic	control	of	disease	vectors.	Control	programs	
may	 involve	 suppressing	 or	 genetically	 modifying	 populations	 to	
decrease	 their	 efficiency	 at	 transmitting	 pathogens	 (McGraw	 &	
O’Neill,	2013).
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Accounting	 for	Ne	 can	 improve	vector	 control	because	Ne	 is	not	
only	directly	related	to	census	size	and	population	structure,	but	is	also	
a	key	parameter	in	modeling	the	rate	of	evolutionary	change.	A	large	
Ne	generally	provides	a	buffer	from	the	negative	effects	of	inbreeding	
and	allows	for	more	rapid	adaptive	change	by	natural	selection	(Ohta,	
1992;	Olson-	Manning,	Wagner,	&	Mitchell-	Olds,	2012).	On	the	other	
hand,	a	small	Ne	increases	the	negative	effects	of	inbreeding	and	the	
rate	of	fixation	or	loss	of	genetic	variation	by	the	process	of	genetic	
drift	(Ohta,	1992).	Strong	genetic	drift	could	cause	even	selectively	ad-
vantageous	alleles	to	drift	out	of	populations	over	time.	Thus,	account-
ing	 for	 this	 key	 population	 parameter	 in	 Ae. aegypti	 control	 efforts	
can	minimize	risk	of	evolved	resistance	and	maximize	the	spread	and	
maintenance	of	traits	that	are	desirable	for	reducing	impact	of	Ae. ae-
gypti	 on	 human	 health.	 Previous	 estimates	 from	Australia,	Thailand,	
and	Indonesia	using	microsatellites,	and	estimates	from	Thailand	using	
SNPs,	have	indicated	Ne	ranges	from	11	to	5,564,	suggesting	relatively	
small	 breeding	 units	 regardless	 of	 the	 level	 of	 urban	 development	
(Endersby	et	al.,	2011;	Olanratmanee	et	al.,	2013;	Rašić	et	al.,	2015).

During	our	ongoing	worldwide	survey	of	genetic	variation	in	Ae. ae-
gypti	 (Brown	 et	al.,	 2011;	 Evans	 et	al.,	 2015;	 Gloria-	Soria,	 Brown,	
Kramer,	Yoshimizu,	&	Powell,	2014;	Gloria-	Soria,	Ayala,	et	al.,	2016), we 
have	obtained	temporal	genetic	data	(microsatellites	and	SNPs)	on	sam-
ples	from	the	same	population	separated	by	one	to	7	years.	Elsewhere,	
we	reported	on	the	genetic	stability	of	populations	over	time	relative	
to	geographic	differentiation	 (Gloria-	Soria,	Kellner,	et	al.,	2016).	Here,	
we	use	these	data	to	estimate	Ne in 17 Ae. aegypti	populations	occupy-
ing	a	wide	range	of	ecological	settings	from	around	the	world.	Ne can 
be	estimated	in	various	ways	(Anderson,	2005;	Jorde	&	Ryman,	2007;	
Krimbas	&	Tsakas,	1971;	Luikart	et	al.,	2010),	and	we	have	used	several	
appropriate	to	our	data	(microsatellite	allele	frequencies	and	SNPs),	life	
history	(overlapping	generations),	and	age	of	populations	(young).

2  | MATERIALS AND METHODS

2.1 | Mosquito collections and DNA extraction

Aedes aegypti	adults,	larvae,	or	eggs	were	received	from	17	localities	
worldwide	 (Table	1,	Figure	1).	When	necessary,	we	completed	addi-
tional	laboratory	work	and	scored	microsatellite	alleles	and	SNP-	chip	
genotypes	following	the	same	standards	as	for	previous	work	reported	
from	 our	 lab.	New	 samples	 arrived	 as	 either	 eggs	 from	 oviposition	
traps	or	as	larvae/adults	in	70%–100%	ethanol	from	multiple	traps	or	
larval	breeding	sites	to	avoid	sampling	siblings.	Eggs	were	hatched	at	
the	Yale	School	of	Epidemiology	and	Public	Health	insectary,	reared	
to	adults,	and	stored	in	100%	ethanol	at	−20°C	until	DNA	extraction.	
Genomic	DNA	was	extracted	using	the	DNeasy	Blood	and	Tissue	kit	
(Qiagen,	Hilden,	Germany),	with	a	preliminary	homogenization	step	in	
a	TissueLyser	II	bead	beater	(Qiagen)	and	RNAse	A	(Qiagen).

2.2 | Genotyping 12 microsatellites and 14,888 SNPs

For	the	microsatellite	genotyping,	we	used	the	protocol	described	in	
(Brown	et	al.,	2011)	for	12	loci;	A1,	B2,	B3,	A9,	AC2,	CT2,	AG2,	AC4,	

AC1,	 AC5,	 AG1,	 and	 AG4.	 Briefly,	 amplifications	 were	 performed	
using	 standard	PCR	protocol	 (35	 cycles	 at	 54°C)	with	 fluorescently	
labeled	M13	primers	 (6-	FAM	and	HEX)	 in	10.0	μl	 reaction	 volumes	
using	 the	 Type-	it	Microsatellite	 PCR	Master	Mix	 (Qiagen),	 then	 di-
luted,	multiplexed,	and	submitted	for	fragment	analysis	with	GS	500	
ROX	internal	size	standard	(Applied	Biosystems,	Foster	City,	CA,	USA)	
on	an	Applied	Biosystems	3730xl	DNA	Genetic	Analyzer	at	the	DNA	
Analysis	 Facility	 on	 Science	 Hill	 at	 Yale.	 Alleles	 were	 scored	 using	
GeneMapper	v4.0	(Applied	Biosystems).

For	 the	 SNP-	chip	 genotyping,	 167	 samples	 were	 analyzed	 on	
the	Axiom_aegypti1	 SNP-	chip	 (Evans	 et	al.,	 2015)	 at	 the	 Functional	
Genomics	 Core	 at	 University	 of	 North	 Carolina,	 Chapel	 Hill,	 using	
manufacturer	 protocols.	 Raw	 data	 were	 processed	 and	 converted	
into	 genotype	 calls	 following	 Evans	 et	al.	 (2015)	 using	 Genotyping 
Console v4.2	 (Affymetrix,	 Santa	Clara,	CA,	USA)	 and	SNPolisher v1.4 
(Affymetrix)	in	the	R	environment	with	the	call	threshold	set	to	95%.	
SNPs	were	pruned	to	remove	any	linked	SNPs	in	PLINK v1.7	(Purcell	
et	al.,	2007)	with	the	command	‘–indep	100	10	2′,	which	recursively	
removed	SNPs	within	a	sliding	window	of	100	SNPs	wide,	shifting	10	
SNPs	per	step,	with	a	variance	inflation	factor	(i.e.,	VIF)	threshold	of	2.

2.3 | Assessment of temporal stability and sibling 
relationships

Previous	work	has	shown	that	some	Ae. aegypti	populations	have	un-
dergone	 temporal	 shifts	 in	 allele	 frequencies	 (Gloria-	Soria,	 Kellner,	
et	al.,	2016).	To	identify	any	regions	in	this	larger	dataset	where	whole	
populations	might	have	 received	an	 influx	of	migrants	or	otherwise	
been	disrupted	 in	 a	way	 that	would	make	 temporal	methods	 of	Ne 
estimation	difficult	to	apply	(Luikart	et	al.,	2010),	we	estimated	popu-
lation	structure	among	and	between	multiple	time	points	using	prin-
cipal	 components	 analysis	 (PCA),	 and	neighbor-	joining	phylogenetic	
analysis.	We	subjected	all	microsatellite	data	to	principal	components	
analysis	(PCA)	with	the	‘adegenet’	package	v	1.4-	2	(Jombart,	2008)	in	
the	R v3.0.2	environment	(R	Development	Core	Team,	2013),	and	vis-
ualized	using	JMP v11.0	(SAS	Institute	Inc.,	Cary,	NC,	USA).	We	then	
estimated	the	optimal	neighbor-	joining	(NJ)	tree	(Saitou	&	Nei,	1987)	
of	 genetic	 distances	 (Cavalli-	Sforza	&	Edwards,	 1967)	with	 support	
values	 based	on	1000	bootstrap	 replicates	 using	NEIGHBOR	 imple-
mented	in	PHYLIP v3.69	(Felsenstein,	1989,	2005).

To	 identify	 instances	 where	 the	 presence	 of	 related	 individuals	
could	artificially	increase	the	variance	in	the	estimated	allele	frequen-
cies	and	thus	decrease	the	estimates	of	Ne,	we	identified	full	siblings	
using	COLONY	v2.0.6.3	 (Jones	&	Wang,	2010).	We	then	performed	
estimates	of	Ne	with	siblings	removed	for	comparison	with	our	main	
results.	For	this	dataset,	we	randomly	removed	all	but	two	individuals	
for	each	inferred	full	sibling	group.

2.4 | Estimates of Ne

Ne	was	 estimated	with	 the	 two-	sample	 temporal	methods	 (Waples,	
1989)	 based	 on	 coalescence	 theory	 in	CoNe	 (Anderson,	 2005)	 and	
based	on	F-	statistic	moments	(Jorde	&	Ryman,	2007)	in	NeEstimator v2 
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(Do	et	al.,	2014),	as	well	as	with	the	single-	sample	LD	method	(Waples	
&	Do,	2008),	also	in	NeEstimator v2.	These	estimates	complement	one	
another	because	they	represent	the	three	main	types	of	Ne	estimators	
(coalescence	Ne,	 variance	Ne,	 and	 inbreeding	Ne,	 respectively),	 thus	
having	different	strengths,	weaknesses,	and	known	biases.	For	exam-
ple,	the	two-	sample	coalescence	method	of	Anderson	(2005)	and	the	
F-	statistic	moments	method	of	Jorde	and	Ryman	(2007)	are	robust	in	
the	case	of	overlapping	generations	and	can	deal	with	lower	levels	of	
polymorphisms	(Luikart	et	al.,	2010),	but	they	calculate	a	single	esti-
mate	across	two	time	points	and	so	are	vulnerable	to	gene	flow	and	
fixation	of	rare	alleles	during	the	time	interval	between	samples	(Jorde	
&	Ryman,	2007;	Anderson,	2005),	whereas	the	LD	method	(Waples	&	
Do,	2008)	is	less	vulnerable	to	gene	flow	and	fixation	of	rare	alleles,	
but	runs	the	risk	of	bias	caused	by	overlapping	generations.	Moreover,	
it	does	not	provide	enough	power	to	distinguish	from	infinite	popula-
tion	sizes	in	the	case	of	insufficient	polymorphisms	(Hill,	1981;	Waples	
&	Do,	2008).

We	 estimated	 95%	 confidence	 intervals	 using	 the	 points	where	
the	 log-	likelihood	 dropped	 1.96	 units	 from	 the	 maximum	 in	 CoNe 
(Anderson,	 2005),	 and	 using	 the	 parametric	method	 in	NeEstimator 
v2	(Do	et	al.,	2014).	The	number	of	generations	per	year	used	(Table	
S1)	equaled	the	number	of	months	of	the	year	wherein	monthly	av-
erage	minimum	 temperature	was	 above	 10°C	 in	 2013	 according	 to	
Weather	Underground’s	 (The	Weather	Company,	San	Francisco,	CA,	
USA)	 closest	 station.	This	 estimate	was	 based	 on	 experimental	 evi-
dence	 that	Ae. aegypti	 eggs	 do	 not	 develop	 at	 temperatures	 below	
10°C	(Christophers,	1960).

3  | RESULTS

Estimates	of	effective	population	size	 (Ne)	of	Aedes aegypti	 from	17	
localities	 (Figure	1)	 and	47	 time	points	 (Table	 S1)	 obtained	 through	
multiple	methods	indicate	small	breeding	units	that	ranged	from	25	to	
3610	and	averaged	less	than	600	individuals	(Table	1).	The	Jorde	and	
Ryman	(2007)	method	yielded	estimates	that	averaged	290.3	(Table	1,	
Figure	2),	while	the	Anderson	(2005)	method	yielded	generally	higher	
estimates	(Fig.	S3)	that	averaged	535.1	(Table	1).	These	results	are	in	
line	with	previous	studies	in	Ae. aegypti	conducted	at	local	geographic	
scales	(Endersby	et	al.,	2011;	Olanratmanee	et	al.,	2013;	Rašić	et	al.,	
2015)	and	suggest	localized	breeding	units	even	where	regional	cen-
sus	size	is	large.

3.1 | Assessment of temporal stability and sibling 
relationships

We	found	evidence	of	temporal	disruptions	in	Houston,	Coatzacoalcos,	
Cachoeiro,	Goudiry,	and	Lunyo.	Evidence	included	separation	of	mul-
tiple	 time	points	 along	 the	 first	 four	 axes	of	 the	PCA	 (Fig.	 S1),	 and	
closer	 relationships	 between	 distant	 geographic	 locations	 than	 be-
tween	multiple	time	points	from	the	same	location	in	neighbor-	joining	
phylogenetic	analysis	 (Fig.	S2).	We	compared	 results	with	exclusion	
of	 these	 localities	 that	 have	 a	 heightened	 risk	 of	 violation	 of	 the	

assumptions	to	confirm	consistency	of	results.	Results	from	COLONY	
indicate	the	presence	of	siblings	in	the	samples	at	some	localities	such	
as	Patillas	and	Lunyo	(Table	S1),	but	very	few	siblings	in	many	locali-
ties.	We	 compare	 results	with	 exclusion	 of	 siblings	 to	 confirm	 that	
conclusions	of	the	study	were	not	impacted	and	find	there	is	no	sig-
nificant	difference	(t-	test	p-	value	.4462)	in	mean	estimates	with	and	
without	sibling	removal	(Fig.	S5).

3.2 | Estimates of Ne based on microsatellite data

We	estimated	Ne	with	 two	different	 temporal	methods	 that	are	 ro-
bust	 to	 the	 potential	 bias	 introduced	 by	 overlapping	 generations	
(Luikart	et	al.,	2010;	Waples,	1989).	We	combined	datasets	previously	
generated	 in	 our	 laboratory	 at	 Yale	 University	 (Brown	 et	al.,	 2011;	
Gloria-	Soria	et	al.,	2014;	Gloria-	Soria,	Ayala,	et	al.,	2016;	Gloria-	Soria,	
Kellner,	et	al.,	2016;	Monteiro	et	al.,	2014;	Pless	et	al.,	2017	in	review)	
with	 newly	 genotyped	 mosquitos.	 The	 final	 microsatellite	 dataset	
included	12	 loci	 from	an	average	of	46.7	 individuals	per	 time	point	
sampled	 (Table	S1).	Ne	estimates	 from	the	Jorde	and	Ryman	 (2007)	
method	 implemented	 in	NeEstimator v2	 (Do	 et	al.,	 2014)	 averaged	
303.3	(Figure	2)	and	ranged	from	25.0	to	1181.0	with	the	exception	
of	a	single	outlier	of	2662.0	(Ne

1	in	Table	1),	with	narrow	95%	confi-
dence	intervals	that	ranged	from	an	absolute	low	of	14.4	(lower	CI1 
in	Table	1)	 to	 an	absolute	high	of	3714.0	 (upper	CI1 in Table 1). Ne 
estimates	with	the	Anderson	(2005)	method	were	not	significantly	dif-
ferent,	but	were	on	average	1.32	times	higher	(Fig.	S3),	and	averaged	
515.4	and	ranged	from	37.9	to	indistinguishable	from	infinite	(Ne

2 in 
Table	1),	with	95%	confidence	intervals	that	spanned	from	an	abso-
lute	low	of	26.3	(lower	CI2	in	Table	1)	to	a	high	of	infinite	(upper	CI2 in 
Table	1).	As	expected,	localities	with	evidence	of	temporal	disruptions	
had smaller Ne	estimates	than	genetically	stable	localities,	but	removal	
of	these	few	localities	increased	average	Ne	estimates	only	slightly	to	
349.8	and	626.5	(Table	1).

To	determine	whether	variation	in	the	length	of	the	time	interval	
between	collections	and	the	number	of	generations	per	year	used	in	
the	calculations	introduced	bias,	we	conducted	a	t-	test	that	confirmed	
that	 number	of	 generations	per	year	 did	not	 significantly	 impact	Ne 
estimates	 for	either	 temporal	method	 (p-	value	of	 .8892	and	 .2556).	
However,	 the	 length	of	 the	 time	 interval	between	 samples	was	 sig-
nificantly	correlated	with	Ne	(Fig.	S2)	with	an	R

2	value	of	0.23	for	the	
Jorde	and	Ryman	(2007)	method	(p-	value	.0007;	Fig.	S2A),	and	with	
an R2	value	of	0.18	with	the	Anderson	(2005)	method	(p- value .0033; 
Fig.	S2B).	Removing	localities	with	evidence	of	temporal	disruption	did	
not	reduce	significance	of	this	correlation	nor	did	removing	outliers.

3.3 | Estimates of Ne based on SNP data

Estimates	of	Ne	based	on	single	nucleotide	polymorphisms	(SNPs)	were	
completed	with	the	same	two	methods	that	we	used	for	microsatel-
lites;	the	Jorde	and	Ryman	(2007)	and	Anderson	(2005)	methods.	The	
dataset	was	a	combination	of	newly	genotyped	samples	and	previously	
published	 data	 from	 Evans	 et	al.	 (2015)	 and	 included	 14,888	 SNPs	
from	an	average	of	15.9	individuals	per	time	point.	Ne	estimates	with	
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TABLE  1 Two-	sample	Ne	estimates	based	on	12	microsatellites;	locality,	sampled	years	and	sampled	generations	in	parentheses	counting	
from	zero	at	the	first	time	point	sampled,	harmonic	mean	number	of	mosquitos	sampled	(N),	time	interval	spanning	the	two	samples	in	
generations	(I),	Ne	estimates	made	with	the	Jorde	and	Ryman	(2007)	method	in	NeEstimator v2	(Do	et	al.,	2014)	(Ne

1)	with	lower	and	upper	95%	
confidence	intervals	(CI1),	and	Ne	estimates	made	with	the	Anderson	(2005)	method	in	CoNe	(Anderson,	2005)	(Ne

2)	with	lower	and	upper	95%	
confidence	intervals	(CI2)

Locality Sampled years (generations) N I Ne
1 Lower CI1 Upper CI1 Ne

2 Lower CI2 Upper CI2

01	Madera,	USA 2013	&	2015	(0	&	12) 51.4 12 287.9 173.5 430.9 551.0 223.9 4860.4

02	Tucson,	USA 2012	&	2013	(0	&	7) 53.5 7 48.5 30.8 70.3 90.2 56.4 149.8

2012	&	2015	(0	&	21) 54.0 21 131.8 85.7 187.6 392.4 243.8 661.2

2013	&	2015	(7	&	21) 53.5 14 1172.8 759.0 1675.2 ∞ ∞ ∞

03	Houston,	USAa 2009	&	2011	(0	&	18) 23.0 18 25.0 14.4 45.3 37.8 26.3 55.0

04	New	Orleans,	USA 2011	&	2012	(0	&	9) 53.2 9 84.0 57.9 115.0 604.6 289.6 2627.5

2011	&	2014	(0	&	27) 50.5 27 493.2 332.8 684.8 2233.4 916.3 ∞

2011	&	2015	(0	&	36) 37.7 36 223.2 148.9 312.2 548.9 327.2 1020.7

2012	&	2014	(9	&	27) 59.3 18 441.1 305.5 601.2 938.4 487.9 2661.2

2012	&	2015	(9	&	36) 42.4 27 269.9 187.5 367.2 401.7 242.9 727.7

2014	&	2015	(27	&	36) 40.7 9 162.6 111.2 223.5 197.7 108.4 454.7

05	Vaca	Keys,	USA 2006	&	2009	(0	&	36) 42.5 36 233.1 152.4 330.9 458.5 287.3 776.3

2006	&	2015	(0	&	84) 45.4 84 1180.5 775.1 1670.1 1796.0 1048.0 3605.4

2009	&	2015	(36	&	84) 44.8 48 253.8 167.4 358.0 570.9 378.7 896.5

06	Key	West,	USA 2009	&	2011	(0	&	24) 30.0 24 187.6 125.7 261.8 315.6 185.7 621.9

2009	&	2013	(0	&	48) 38.8 48 404.2 274.8 558.4 775.7 481.8 1398.4

2009	&	2016	(0	&	84) 38.8 84 2662.0 1783.6 3714.0 2888.6 1382.0 10506

2011	&	2013	(24	&	48) 37.2 24 84.6 56.2 118.6 242.9 163.4 374.2

2011	&	2016	(24	&	84) 37.2 60 314.3 208.2 442.1 750.7 482.5 1242.5

2013	&	2016	(48	&	84) 52.0 36 500.6 331.5 704.1 752.2 457.6 1366.2

07	Amacuzac,	MX 2012	&	2013	(0	&	16) 54.0 16 184.5 113.5 272.5 222.0 132.0 400.4

2012	&	2014	(0	&	24) 53.5 24 260.4 162.4 381.3 250.7 154.8 417.7

2012	&	2016	(0	&	48) 53.0 48 310.5 191.0 458.5 487.2 295.9 831.3

2013	&	2014	(16	&	24) 53.5 8 43.4 26.3 64.6 67.7 43.9 106.3

2013	&	2016	(16	&	48) 53.0 32 174.9 105.4 261.8 258.7 165.7 412.9

2014	&	2016	(24	&	48) 52.5 24 98.0 59.1 146.7 177.6 114.3 281.8

08	Coatzacoalcos,	MXa 2003	&	2008	(0	&	60) 41.2 60 47.3 27.9 71.9 65.7 46.8 91.4

09	Pijijiapan,	MX 2006	&	2008	(0	&	24) 47.5 24 82.0 44.8 130.2 161.0 100.9 257.2

10	Patillas,	PR 2012	&	2014	(0	&	24) 54.0 24 159.3 102.1 229.0 180.3 121.1 272.4

11	Jacobina,	BR 2013	&	2014	(0	&	8) 60.5 8 38.8 27.4 52.2 91.3 60.2 141.9

2013	&	2015	(0	&	14) 59.5 14 114.5 72.7 165.7 281.8 173.2 507.1

2014	&	2015	(8	&	14) 60.0 6 226.2 147.8 321.0 58.0 39.8 85.5

12	Cachoeiro,	BRa 2008	&	2010	(0	&	24) 30.9 24 40.0 25.3 58.1 174.8 118.7 267.9

2008	&	2012	(0	&	48) 30.9 48 240.2 150.7 350.4 696.5 412.1 1403.7

2010	&	2012	(24	&	48) 47.0 24 47.1 30.3 67.5 106.3 76.6 148.6

13	Goudiry,	SEa 2007	&	2012	(0	&	60) 49.7 60 82.4 53.3 117.7 150.4 117.5 191.6

14	Yaounde,	CM 2009	&	2014	(0	&	55) 50.3 55 232.4 168.2 306.9 520.9 394.1 691.7

2009	&	2015	(0	&	69) 50.7 69 485.9 352.4 640.6 1023.0 739.2 1453.3

2014	&	2015	(55	&	69) 54.5 14 72.3 52.3 95.4 178.4 133.1 244.6

15	Lunyo,	UGa 2012	&	2013	(0	&	12) 53.5 12 35.3 24.9 47.6 71.2 54.3 93.5

16	Rabai,	KE 2006	&	2009	(0	&	36) 33.7 36 724.9 543.0 932.7 3549.5 1317.9 ∞

2006	&	2012	(0	&	72) 21.1 72 202.9 148.3 266.0 228.8 161.1 331.6

2009	&	2012	(36	&	72) 22.3 36 109.6 80.4 143.3 121.5 85.0 177.6

(Continues)



     |  1035SAARMAN et Al.

the	 Jorde	 and	Ryman	 (2007)	method	 averaged	166.0	 (Figure	2)	 and	
ranged	from	22.9	to	549.2	(Ne

1	in	Table	2)	with	extremely	narrow	95%	
confidence	intervals	that	ranged	from	an	absolute	low	of	22.4	(lower	
CI1	in	Table	2)	to	an	absolute	high	of	563.3	(upper	CI1 in Table 2). Ne 
estimates	with	the	Anderson	(2005)	method	were	not	significantly	dif-
ferent,	but	were	on	average	2.26	times	higher	(Fig.	S3),	and	averaged	
375.2	and	ranged	from	33.6	to	977.1	(Ne

2	in	Table	2)	with	95%	confi-
dence	intervals	that	spanned	from	an	absolute	low	of	32.0	(lower	CI2 in 
Table	2)	to	an	absolute	high	of	1214.3	(upper	CI2 in Table 2).

3.4 | Estimates of Ne based on single samples

To	 confirm	 that	 estimates	 using	 the	 two-	sample	 temporal	methods	
used	were	not	low-	biased	because	of	undetected	temporal	disruptions	
between	sampling	points,	we	also	used	a	single-	sample	method	based	
on	 linkage	disequilibrium	 (LD)	developed	by	Waples	 and	Do	 (2008)	
in NeEstimator v2	 (Do	et	al.,	2014).	These	Ne	estimates	ranged	from	
1.4	 to	2526.3	with	 the	exception	of	a	single	estimate	 indistinguish-
able	from	infinite,	had	a	mean	of	116.7	and	a	large	variance	with	95%	
confidence	intervals	that	overlapped	with	infinity	in	about	15%	of	the	
estimates	 (Table	S2).	This	 indicates	that	single-	sample	estimates	are	
lower	 than	the	 two-	sample	estimates	and	strengthens	 the	evidence	
that	two-	sample	temporal	methods	used	were	not	low-	biased	due	to	
violation	of	assumptions.

4  | DISCUSSION

Estimates	 of	Ne	 of	 the	Aedes aegypti	mosquito	 ranged	 from	~25	 to	
~3,000	 and	 averaged	 between	 400	 and	 600	 (Table	1,	 Figure	2).	
These	 results	 indicate	 relatively	 small	 breeding	units	 for	Ae. aegypti 

compared	to	most	insects,	including	other	mosquitoes.	For	example,	
both	the	census	size	and	Ne	of	Anopheles gambiae	(s.l.)	in	Africa	have	
been	 estimated	 to	 be	 an	order	 of	magnitude	 greater	 than	 the	 esti-
mates	 for	Ae. aegypti	presented	here	 (Lehmann,	Hawley,	Grebert,	&	
Collins,	1998;	Taylor,	Toure,	Coluzzi,	&	Petrarca,	1993). This has im-
mediate	implications	in	design	of	successful	genetic	control	programs.	
For	 example,	 it	 should	 be	 easier	 to	 genetically	 modify	 populations	
with	smaller	effective	population	sizes	compared	to	 larger	ones,	 re-
gardless	of	the	type	of	modification	use.

Estimating	Ne	in	natural	populations	is	difficult	and	subject	to	er-
rors	for	a	number	of	reasons.	First,	populations	may	experience	consid-
erable	migration	between	sampling	time	points	or	even	replacement.	
Our	PCA	and	phylogenetic	analysis	(Fig.	S1	and	S2)	indicated	that	Ne 
estimates	in	five	of	the	seventeen	localities	may	be	impacted	by	such	
temporal	disruptions.	Indeed,	these	localities	(Houston,	Coatzacoalcos,	
Cachoeiro,	Goudiry,	and	Lunyo)	showed	lower	Ne	estimates	on	average	
(Table	1,	Figure	2).	Low	Ne	 in	 these	 localities	may	have	been	caused	
by	violations	of	the	assumption	that	allele	frequency	changes	are	due	
exclusively	 to	genetic	drift	 rather	 than	migration	or	population	 sub-
divisions.	Nonetheless,	removal	of	localities	with	suspected	temporal	
disruptions	increased	average	Ne	estimates	only	slightly	(Table	1),	 in-
dicating	consistency	of	results.	Ne	estimates	after	removal	of	siblings	
showed	 that	 in	 some	cases,	 the	presence	of	 siblings	 in	 the	 samples	
probably	caused	a	small	reduction	in	the	inferred	Ne	(Table	S4),	as	one	
would	expect	as	the	presence	of	related	individuals	will	 increase	the	
variance	in	the	estimated	allele	frequencies.	However,	in	many	cases	
there	was	almost	no	effect,	and	there	was	no	significant	difference	in	
the	overall	mean	of	estimates	(Table	S4,	Fig.	S5).

Second,	there	was	an	indication	in	our	data	that	there	was	an	ef-
fect	of	length	of	time	interval	between	sampling	points	on	the	Ne es-
timates;	 longer	 intervals	produced	 larger	Ne	estimates	 (Fig.	S4).	This	

F IGURE  1 Sampled	localities:	(1)	
Madera,	USA;	(2)	Tucson,	USA;	(3)	Houston,	
USA;	(4)	New	Orleans,	USA;	(5)	Vaca	Keys,	
USA;	(6)	Key	West,	USA;	(7)	Amacuzac,	
Mexico;	(8)	Coatzacoalcos,	Mexico;	(9)	
Pijijiapan,	Mexico;	(10)	Patillas,	Puerto	
Rico;	(11)	Jacobina,	Brazil;	(12)	Cachoeiro,	
Brazil;	(13)	Goudiry,	Senegal;	(14)	Yaounde,	
Cameroon;	(15)	Lunyo,	Uganda;	(16)	Rabai,	
Kenya;	and	(17)	Cairns,	Australia

Locality Sampled years (generations) N I Ne
1 Lower CI1 Upper CI1 Ne

2 Lower CI2 Upper CI2

17	Cairns,	AU 2009	&	2013	(0	&	48) 49.5 48 292.6 185.7 423.6 618.6 396.4 1006.7

2009	&	2015	(0	&	62) 46.5 62 328.2 203.3 482.6 552.0 358.3 878.5

2009	&	2015	(0	&	62) 47.8 14 305.4 189.2 449.0 193.2 111.3 365.8

aLocality	with	evidence	of	temporal	shifts	determined	by	principal	components	analysis	(Fig.	S1)	and	neighbor-	joining	phylogenetic	analysis	(Fig.	S2).

TABLE  1  (Continued)
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suggests	bias	in	samples	separated	by	time	intervals	between	10	and	
84	 generations.	This	 bias	 is	 an	 expected	outcome	of	 the	Jorde	 and	
Ryman	(2007)	algorithm	due	to	the	fixation	of	rare	alleles	during	the	

interval	 sampled.	However,	 an	 improvement	 of	 the	 original	method	
(Jorde	&	Ryman,	1995)	made	in	2007	was	meant	to	correct	this	bias	
(Jorde	&	 Ryman,	 2007).	Our	 results	 suggest	 this	 correction	 did	 not	

TABLE  2 Two-	sample	Ne	estimates	based	on	14,888	SNPs;	locality,	sampled	years	and	sampled	generations	in	parentheses	counting	from	
zero	at	the	first	time	point	sampled,	harmonic	mean	number	of	mosquitos	sampled	(N),	time	interval	spanning	the	two	samples	in	generations	
(I),	Ne	estimates	made	with	the	Jorde	and	Ryman	(2007)	method	in	NeEstimator v2	(Do	et	al.,	2014)	(Ne

1)	with	lower	and	upper	95%	confidence	
intervals	(CI1),	and	Ne	estimates	made	with	the	Anderson	(2005)	method	in	CoNe	(Anderson,	2005)	(Ne

2)	with	lower	and	upper	95%	confidence	
intervals	(CI2)

Locality
Sampled years 
(generations) N I Ne

1 Lower CI1 Upper CI1 Ne
2 Lower CI2 Upper CI2

04	New	Orleans 2012	&	2015	(9	&	36) 11.0 27 186.9 182.1 191.7 267.2 247.5 292.5

06	Key	West 2009	&	2016	(0	&	84) 12.0 84 549.2 535.2 563.3 620.2 592.0 645.0

11	Jacobina 2013	&	2014	(0	&	8) 21.3 8 33.6 35.5 33.6 33.6 32.0 35.0

2013	&	2015	(0	&	14) 20.3 14 147.5 144.0 151.1 977.1 700.0 1214.3

2014	&	2015	(8	&	14) 14.5 6 22.9 22.4 23.5 138.4 120.0 145.0

14 Yaounde 2014	&	2015	(55	&	69) 15.5 14 54.8 53.5 56.1 214.6 198.3 233.3

F IGURE  2 Two-	sample	Ne	estimates	
made	with	the	Jorde	and	Ryman	(2007)	
method	in	NeEstimator v2	(Do	et	al.,	2014)	
and	with	the	Anderson	(2005)	method	in	
CoNe	(Anderson,	2005).	Mean	effective	
population	size	estimates	(Ne),	lower	
and	parametric	95%	confidence	interval	
(CI)	are	displayed	by	locality,	colored	
by	the	number	of	generations	spanning	
the	two	samples	used	in	each	estimate	
(generations	spanned).	The	average	Ne 
across	all	estimates	of	each	data	type	
(μsats	in	dashed	and	SNPs	in	dotted)	is	
displayed	as	a	horizontal	line.	Estimates	
from	localities	with	evidence	of	temporal	
shifts	determined	by	principal	components	
analysis	(Fig.	S1)	and	neighbor-	joining	
phylogenetic	analysis	(Fig.	S2)	are	marked	
with	an	asterix	(*)
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completely	remove	the	bias;	however,	they	tested	intervals	up	to	only	
10	generations,	while	our	samples	span	up	to	an	estimated	84	genera-
tions.	On	the	other	hand,	the	Anderson	(2005)	method	should	be	less	
biased	by	fixation	of	alleles	than	a	moment	based	estimator	 like	the	
one	of	Jorde	and	Ryman	(2007)	because	it	does	not	rely	on	an	approx-
imate	 linear	 relationship	between	the	magnitude	of	allele	 frequency	
change	and	genetic	drift.	Our	results	suggest	that	there	may	be	some	
bias	even	with	the	Anderson	(2005)	method	and	indicate	a	need	for	
further	investigation	of	this	issue.

Third,	while	we	 argue	 that	 the	 two-	sample	 temporal	method	 is	
generally	better	than	single-	sample	estimates	of	Ne,	we	did	consider	
these	latter	methods,	and	the	results	were	very	similar.	Although	the	
single-	sample	 Ne	 estimates	 are	 somewhat	 lower	 (Table	 S2),	 this	 is	
added	evidence	that	our	two-	sample	results	indicating	relatively	small	
Ne	are	robust	as	they	are	comparable	across	completely	independent	
estimation	methods.

Although	 lower	than	estimates	 in	most	other	 insects,	our	results	
are	consistent	with	estimates	made	in	previous	studies	of	this	species	
of	mosquito,	Ae. aegypti	(Table	S3).	Work	in	Northern	Australia	based	
on	microsatellites	found	that	Ne	averaged	692	(Endersby	et	al.,	2011).	
Work	in	Indonesia	based	on	microsatellites	and	SNPs	found	that	Ne av-
eraged	467	excluding	one	infinite	estimate	(Rašić	et	al.,	2015).	Finally,	
work	 in	 Thailand	 based	 on	 microsatellites	 and	 EPIC	 found	 that	Ne  
averaged	166	(Olanratmanee	et	al.,	2013).

Estimates	of	census	size	(Nc)	for	adult	Ae. aegypti	using	mark–re-
capture	methods	 range	 from	about	900	 for	villages	 in	Rabai,	Kenya	
(Lounibos,	2003)	 to	5,500	for	a	city	 in	Brazil	 (Carvalho	et	al.,	2015).	
The	most	 intensive	mark–recapture	study	on	Ae. aegypti was carried 
out	by	Sheppard,	Macdonald,	Tonn,	and	Grab	(1969)	who	performed	
23	 releases	over	 a	 full	year	 in	Bangkok,	Thailand.	The	mean	 census	
size	was	2,562	(both	sexes)	with	a	SD	of	1,351	(Sheppard	et	al.,	1969).	
Ae. aegypti	 census	 size	 has	 also	 been	 estimated	 by	 larval	 and	 pupal	
counts,	but	these	are	likely	gross	overestimates	because	they	do	not	
consider	 low	 survival	 rates	 to	 adulthood.	 For	 example,	 Dye	 (1984)	
found	that	 less	than	20%	of	 larvae	survive	to	mid-	pupal	stage	(Dye,	
1984).	Thus,	we	feel	the	studies	cited	above	using	adult	mark–recap-
ture	methods	are	the	best	indicator	of	census	size	of	adult	breeders,	
the	relevant	comparison	to	Ne.	Our	estimates,	and	previous	ones,	of	Ne 
in	the	range	of	100-	700	and	of	Nc	from	one	to	five	thousand,	means	
that	Ne/Nc	for	this	species	is	10%–30%—in	line	with	most	animals.

Interestingly,	as	pointed	out	above,	the	mosquito	An. gambiae has 
been	estimated	 to	have	an	Ne	 about	an	order	of	magnitude	greater	
than	Ae. aegypti,	Nc	for	An. gambiae	has	been	estimated	to	be	nearly	
an	order	of	magnitude	greater	than	these	Nc	estimates	for	Ae. aegypti 
(Touré	et	al.,	1998).	So	despite	the	large	difference	in	absolute	popu-
lation	sizes,	Ne/Nc	for	these	two	mosquitoes	remains	very	similar.	This	
suggests	that	estimates	of	Ne	can	serve	as	reliable	predictors	of	rela-
tive	Nc and vice versa,	factors	relevant	to	planning	and	implementing	
genetic	control	programs.

The	relatively	small	estimates	of	Ne	 reported	here	for	Ae. aegypti 
almost	 certainly	 reflect	 the	 relatively	 short	 range	of	 active	dispersal	
of	this	mosquito	(Harrington	et	al.,	2005;	Maciel-	De-	Freitas,	Codeço,	
&	 Lourenco-	De-	Oliveira,	 2007;	 Muir	 &	 Kay,	 1998;	 Russell,	 Webb,	

Williams,	 &	 Ritchie,	 2005),	 but	 see	 (Reiter,	 2007).	 The	 results	 are	
consistent	 with	 a	 patchy	 metapopulation	 structure,	 sensu	 Harrison	
(1991),	with	 localized	 breeding	 units	 even	when	 quasi-	continuously	
distributed	at	a	larger	scale.	For	example,	our	samples	from	Yaounde,	
Cameroon,	 came	 from	 a	 single	 neighborhood	 and	 the	 estimated	
Ne	 (263	 and	574	 for	 the	 two	methods)	 cannot	 represent	 the	 entire	
180	km2	of	available	habitat	in	this	city	of	2.5	million	people.

5  | CONCLUSION

In	summary,	we	have	shown	that	Ne in Ae. aegypti	 is	relatively	small	
across	our	worldwide	sample	(Figure	2),	suggesting	that	these	mosqui-
tos	form	localized	breeding	units	even	in	large	cities	where	the	regional	
census	size	is	large.	This	is	important	because	Ae. aegypti has become 
a	model	system	in	design	of	control	programs	using	genetic	methods	
that	 aim	 to	 suppress	 or	 genetically	modify	 populations	 to	 decrease	
their	efficiency	at	transmitting	pathogens	(McGraw	&	O’Neill,	2013).	
Methods	of	genetically	modifying	vector	populations	that	rely	on	in-
undation	and	replacement	 (e.g.,	 that	of	Powell	&	Tabachnick,	2014)	
are	 quite	 feasible	with	 such	 small	 populations.	 On	 the	 other	 hand,	
such	small	breeding	units	must	be	quite	spatially	limited.	This	means	
genetic	modification	over	a	larger	area	will	require	many	local	releases	
spatially	separated	across	a	target	area.	Even	those	genetic	modifica-
tions	based	on	gene	drive	would	need	to	be	seeded	in	many	locations	
across	 a	 target	 area.	 The	 very	 slow	 spread	of	 successful	Wolbachia 
replacement	in	local	sites	in	an	Australian	city	is	consistent	with	this	
view	of	Ae. aegypti	population	structure	(Schmidt	et	al.,	2017).

These	estimates	of	Ne	also	indicate	that	genetic	drift	is	quite	strong	
in Ae. aegypti	consistent	with	the	remarkable	population	genetic	dif-
ferentiation	observed	for	neutral	markers	(Brown	et	al.,	2011;	Gloria-	
Soria,	Ayala,	 et	al.,	 2016;	Powell	&	Tabachnick,	 2014).	This	 strength	
of	 drift	 needs	 to	 be	 considered	 in	 genetic	 modification	 programs.	
Even	 selectively	 advantageous	 alleles	 could	 drift	 out	 of	 populations	
over	 time	 in	such	small	populations,	suggesting	a	need	for	 repeated	
releases	and	long-	term	monitoring.
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