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Objective. Premature ovarian insufficiency (POI) is a female reproductive disorder of unknown etiology with no definite
pathogenesis. Melatonin (MT) is an endogenous hormone synthesized mainly by pineal cells and has strong endogenous effects
in regulating ovarian function. To systematically explore the pharmacological mechanism of MT on POI therapy, a literature
review approach was conducted at the signaling pathways level. Methods. Relevant literatures were searched and downloaded
from databases, including PubMed and China National Knowledge Infrastructure, using the keywords “premature ovarian
insufficiency,” “Hippo signaling pathways,” and “melatonin.” The search criteria were from 2010 to 2022. Text mining was also
performed. Results. MT is involved in the regulation of Hippo signaling pathway in a variety of modes and has been correlated
with ovarian function. Conclusions. The purpose of this review is to summarize the research progress of Hippo signaling
pathways and significance of MT in POI, the potential crosstalk between MT and Hippo signaling pathways, and the
prospective therapy.

1. Introduction

Ovarian aging is a complex physiological process with mul-
tiple factors interacting and gradually accumulating, the
essence of which is the decrease in the number and quality
of follicles in the ovary, which is reflected in the reduction
of reproductive and endocrine functions until they are lost
[1]. However, premature ovarian insufficiency (POI) is a
condition in which ovarian function is reduced or even fails
before the age of 40 years, characterized by increased serum
follicle stimulating hormone (FSH) and luteinizing hormone
(LH) concentrations and decreased estradiol (E2) concentra-
tions [2]. POI can lead to infertility, inadequate production

of estrogen levels. It has a serious impact on women’s phys-
ical and mental health, accelerating the onset of menopause.
However, since POI is typically a heterogeneous disease, it is
mainly treated with hormone replacement therapy. Till now,
there is no clear and effective clinical treatment to restore or
protect ovarian function [3, 4].

The Hippo signaling pathway is currently a hot topic
among researchers. Studies have shown that the Hippo/
Yes-associated protein (YAP) signaling pathway can regulate
ovarian cell aging. For example, human umbilical cord mes-
enchymal stem cell-derived exosomes improve ovarian func-
tion and proliferation of POI by regulating the Hippo
signaling pathway [5]. Even though we lack a complete
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understanding of the Hippo pathway, some studies have
suggested that the Hippo signaling pathway may be involved
in follicular maturation [6]. By manipulating the expression
of key genes in the Hippo pathway in POI patients,
Kawamura and colleagues successfully promoted follicle
growth, recovered mature oocytes, and performed in vitro
fertilization of the resulting oocytes [7]. This translates our
understanding of the Hippo pathway into clinical applica-
tions and allows us to explore other roles that the Hippo
pathway plays in ovarian function and disease.

Melatonin (MT), commonly known as a sleep hormone,
controls physiological processes such as regulation of sleep-
wake rhythms, body temperature, and physiological activity
in circadian rhythms. MT also regulates ovarian function
and is associated with the Hippo signaling pathway [8]. Fur-
thermore, both Hippo signaling and melatonin are key reg-
ulators in neuronal differentiation of neuronal progenitor
cells. Recently, emerging evidences illustrate the possible
interaction between melatonin and Hippo signaling in dif-
ferent cell lines [9].

Despite recent advances in the field of reproductive
endocrinology, the pathogenesis of POI remains unclear,
which limits the development of POI treatment and has
become a hot spot for researchers to gather [10, 11]. What
is the relationship between the Hippo signaling pathway,
MT, and POI, which are closely related to the regulation of
ovarian function? Therefore, the authors reviewed the rele-
vant studies on POI and tried to understand the pathogene-
sis of POI from the perspective of the Hippo signaling
pathway [12, 13]. In addition, the authors also attempted
to use MT to link the Hippo signaling pathway to POI, pro-
viding new ideas for the subsequent development of POI
drugs.

2. Premature Ovarian Insufficiency (POI)

For various reasons, POI is a condition in which ovarian fail-
ure occurs after menarche and before the age of 40 due to
the destruction or depletion of follicles in the ovaries, caus-
ing a range of symptoms such as menstrual disorders and
loss of libido [14]. POI can be diagnosed when a woman
who is younger than 40 years old presents with menopause
or sporadic menstruation for 4 months and has two consec-
utive FSH>25U/L more than 4 weeks apart [15]. POI may
be associated with genetic factors, immune disorders, iatro-
genic factors of radiotherapy and chemotherapy, infection,
and mental, environmental, and idiopathic factors, and its
pathogenesis cannot be explained by a single factor or a cer-
tain gene [16] (Figure 1).

The incidence of POI in the general population of
women is approximately 1-2% and a Swedish survey shows
an increasing trend in the prevalence of POI in recent years
[17]. The large population base of China has been seen a
dramatic increase in the group of menopausal women,
which was only 0.7 billion in 1982 and is expected to exceed
280 million in 2030 [18]. In addition, radiotherapy and che-
motherapy can cause ovarian insufficiency and the incidence
of POI increases year by year with the improvement of the
survival rate of cancer patients [19].

Patients with POI can suffer from a range of symptoms
due to low estrogen, such as menstrual cycle disorders or
even amenorrhea; hot flashes; and night sweats, irritability,
and low libido, as well as symptoms of perimenopausal syn-
drome such as osteoporosis, and reduced fertility or even
infertility which happened to some patients [20, 21]. Also,
the long-term effects of losing ovarian function too early
include a higher risk of weak bones, heart disease, and prob-
lems with thinking and memory. This can even lead to met-
abolic dysfunction and a higher risk of death in women [12].

Follicles are the structural units of the ovary, comprising
a single oocyte surrounded by supporting somatic cells.
Folliculogenesis starts in fetal life with primordial follicle
development, the majority of which will remain dormant.
Folliculogenesis is a complex phenomenon that starts with
the initial recruitment and activation of a primordial
follicle. After activation, primordial follicles grow and
mature into primary, secondary, and finally antral folli-
cles. The mechanism underlying the developmental progres-
sion of human primordial follicles is unclear. However, the
initial recruitment has been linked to protein kinase B
(Akt) and mammalian target of rapamycin (mTOR) signal-
ing pathways [6, 22].

Folliculogenesis and ovulation in normal ovary differ
from that in POI ovary (impaired folliculogenesis). Under
the regulation of intraovarian factors and gonadotropins,
primary follicles develop into pre-antral and early antral fol-
licles, which are the most susceptible to atresia, or follicle
death. Then, they become preovulatory follicles, resulting
in oocyte release and corpora lutea formation. Defects in fol-
liculogenesis (e.g., decrease in primordial follicles, increase
in atresia, and altered follicular maturation) cause POI
[23]. Most of antral follicles in patients with POI are histol-
ogically abnormal [24].

Anti-Müllerian hormone (AMH) belongs to transform-
ing growth factor beta superfamily. AMH expressed by
pre-antral and small follicles granolosa cell is suggested by
recent studies the best biomarker of ovarian reserve cur-
rently available [25]. With increasing age and size of follicle,
the concentration of AMH has diminished. The most impor-
tant role of this is prevention of further recruitment of other
follicles during follicular development [26, 27]. For effective
evaluation of the ovarian reserve, assessment of AMH is a
good and helpful test [28, 29]. Its level in circulation is sig-
nificantly correlated with the number of primordial follicles
in healthy women [30].

The detectability of serum AMH in POI patients could
be remarkably related to the presence of 15 or more follicles
in their ovaries [24, 31, 32]. Although the number of cases in
each group was not statistically sufficient, the mean serum
AMH level was 2.16 ng/ml in women with 15 or more folli-
cles and 0.42 and 0.33 ng/ml in women without follicles and
those with five or fewer follicles, respectively. Although ovar-
ian follicles are not visible on ultrasonography, assessing
serum AMH could screen POI patients who are more likely
to possess follicles that can eventually grow [31, 32].

The main mechanisms of POI pathogenesis like oxidative
stress and inflammation are related to phosphatidylinositol
3-kinase (PI3K)/Akt pathway. Necrosis and necroptosis are
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involved in germ cell depletion from the mammalian ovar-
ian cohort [33]. Oxidative stress and cytokines induce
necrosis and necroptosis in the mammalian oocyte. Also,
high levels of cytokines and oxidative stress induce necro-
sis and necroptosis in granulosa cells, resulting in follicular
atresia. In granulosa cells, necrosis, as well as apoptosis,
increases with the progression of follicular atresia [34].
Follicular rupture is considered an inflammatory response,
and IL-1 and TNF-α are the major cytokines involved in
this process [35, 36].

In the PI3K/Akt signaling pathway, once Akt is acti-
vated, it causes further cascades in the signaling pathway.
Phosphorylated Akt phosphorylates a range of downstream
target proteins, including forkhead box O 3 (FOXO3, anti-
proliferative and apoptotic), Bcl-2-associated death pro-
moter (BAD, a pro-regulatory member of the Bcl-2 family
involved in the mitochondrial pathway), mTOR (controls
protein biosynthesis and regulates cell growth), and p27
(maintains primary follicular stores) [37–39]. However,
research in signaling pathways has identified the roles of
Hippo signaling disruption and Akt stimulation of ovarian
follicles for infertility treatment [7]. Inhibition of mitogen-
activated protein kinases (MAPK) and PI3K/Akt signaling
pathways can have a striking therapeutic effect on
resection-induced POI in rats [40]. Furthermore, Hedgehog
(Hh) signaling induces the Hippo pathway effector Yorkie
(Yki) to promote the proliferation and maintenance of
somatic follicular stem cells. Hedgehog and Yorkie path-
ways are coupled to regulate somatic stem cells (FSCs)
proliferation but they act independently in escort cells
(ECs), adjacent quiescent FSC derivatives, to limit bone
morphogenetic protein (BMP) production and permit
germline cell differentiation [41]. Huang’s work demon-
strates that an FSC lacking Yki or Hh pathway activity
has reduced proliferation and is rapidly lost, whereas an
FSC with excessive Yki or Hh pathway activity has an

increased proliferation rate, extended longevity, and fre-
quently duplicates and outcompetes wild-type FSCs in the
same germarium [42].

POI diagnosis and treatment guidelines suggest hor-
mone replacement therapy (HRT) as the main treatment,
as well as stem cell therapy and traditional Chinese medicine
[15]. Comprehensive lifestyle adjustment and health man-
agement are also recommended. The various treatment
strategies described above are effective in relieving symp-
toms, but there are significant limitations among them.
The administration of HRT, for example, has essentially no
therapeutic effect on infertility due to POI and increases
the risk of breast cancer, thrombotic disease. The WHI study
results suggested a breast cancer increase in HRT users
[Hazard ratio (HR) 1.26, Confidence interval (CI) 1.00–
1.59]. This risk, in absolute terms, corresponds to 9 addi-
tional breast cancers per 10,000 women using estrogen-
progestin therapy for five or more years [43, 44]. Stem cell
therapy and traditional Chinese medicine approaches suffer
from uncertainty of efficacy and lack of proven data from
large-scale studies as well. In most cases, MSC therapy
was quite efficient. However, the potential risk of MSC
transplantation should be considered in terms of the long-
lasting observations. Numerous reports both from in vitro
and in vivo provided the evidence about MSC differentia-
tion into certain cell types [45]. Current traditional
Chinese medicine research technology is not designed to
evaluate responses from multidimensional variables, like
the herbal formulations used in TCM. This may be one of
the reasons why the curative effects of TCM have not gotten
approval among Western medicinal practitioners. New
research techniques and methodologies should be developed
to evaluate the curative effects of TCM and to elucidate its
mechanisms [46, 47]. Therefore, understanding the etiology
and pathogenesis of POI, with prevention and intervention
of it, has become an urgent need of the current society.

Genetic factors

Immune disorders

Mental factors

Idiopathic factors Environmental factors

Infection factors

Radiotherapy 

Chemotherapy

Figure 1: A variety of factors can reduce the number and quality of follicles, leading to ovarian dysfunction and ovarian aging, and
ultimately POI [23].
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3. There Is a Strong Connection between
Melatonin (MT) and POI

3.1. MT Participates in the Normal Physiological Function of
the Ovary.MT can delay ovarian aging, regulate ovarian bio-
rhythm, promote follicle formation, and improve oocyte
quality and fertilization rate [48]. As a free radical scavenger
in the ovarian follicles, MT contributes to oocyte matura-
tion, embryo development, and luteinization of granulosa
cells [49, 50]. Besides, MT distinctly reduces the level of
reactive oxygen species in oocytes, improves oxidative stress
in oocytes, reduces early oocyte apoptosis, repairs mitochon-
drial integrity, improves spindle assembly and chromosome
arrangement, and promotes meiotic maturation [51]. More-
over, MT administration delays ovary aging and improves
fertility in mice via melatonin receptor type 1 (MT1)/
AMP-activated protein kinase (AMPK) pathway [52, 53].
AMPK activation has been found to boost overall health
and protect cells from oxidative stress-induced senescence
[54]. A striking upregulation of AMPK and p-AMPK in
the ovary of MT-treated mice was observed. Research has
shown that the administration of melatonin can preserve
ovary function and improve oocytes quantity and quality
resulting in larger litter size compared to naturally aging
mice at 24, 32,40, and 48 weeks old, respectively [52].

What’s more, MT can act on the hypothalamic-
pituitary-ovarian axis (HPO) via hypothalamic gonadotro-
pins or directly bind to ovarian granulosa cells to exert
effects on HPO [55]. Additionally, MT plays a central role
in the reproductive system by upregulating LH receptor
mRNA to suppress gonadotropin-releasing hormone
(GnRH) and GnRH receptor expression as well [56]. As
for the resource, MT in the ovary can be derived from sys-

temic blood circulation or synthesized by granulosa cells,
including the cumulus granulosa cells and oocytes [57–60].
MT1 and melatonin receptor type 2 (MT2) mRNAs can be
detected in human granulosa cells and luteal cells [52].
During follicular development, MT concentrations in large
follicles are significantly higher than those in small follicles.
Before ovulation, MT concentrations in follicles are higher
than those in serum, suggesting that MT plays an impor-
tant role in follicular development and ovulation [61, 62]
(Figure 2).

3.2. MT Delays Ovarian Aging. It has been found that long-
term application of MT can slow down ovarian aging. MT
delays ovarian aging through a variety of mechanisms,
including antioxidation, DNA repair, telomere maintenance,
silent information regulator (SIRT) family activity, ribo-
somal function, and autophagy [61, 63]. SIRT proteins are
a class of proteins that possess nicotinamide adenine dinu-
cleotide- (NAD+-) dependent deacetylase activity or adeno-
sine diphosphate- (ADP-) ribosyltransferase activity. In
mammals, seven SIRT proteins have been identified, from
SIRT1 to SIRT7.

In the ovary, oocytes and somatic cells produce reac-
tive oxygen species (ROS) and reactive nitrogen species
(RNS) in the follicular microenvironment. These oxidants
regulate the molecular and biochemical pathways involved
in follicle formation, thereby destroying oocytes and caus-
ing follicular atresia [57, 60]. Oxidative stress can damage
oocytes, granulosa cells, and mesenchymal cells in the
ovary, thereby accelerating ovarian failure and possibly
leading to malformations in embryonic development [64,
65]. These changes enhance apoptosis during pregnancy
and weaken female fertility. On the other side, MT can

Pituitary gland

Ovary

Hypothalamus

Melatonin

MelatoninThe whole body

Figure 2: Melatonin (MT) secretory pathways and acting organs in the human body. MT can directly act on ovarian granulosa cells or
indirectly act on ovarian granulosa cells through hypothalamic-pituitary-ovarian axis (HPO), thereby reducing the level of reactive
oxygen species in oocytes and improving their oxidative stress state [51].
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reduce oxidative stress in a variety of ways and eliminate
endogenous ROS and RNS, including the superoxide
anions (O2·−), hydroxyl radicals, hydrogen peroxide
(H2O2), nitric oxide (NO·), and peroxy-nitric anion
(ONOO−) [66–68]. Complementarily, MT in human fol-
licular fluid is involved in the protection of granulosa cells
and oocytes by scavenging ROS produced by follicles dur-
ing maturation and ovulation, inducing the synthesis and
activity of antioxidant enzymes and thus preventing the
induction of mitochondrial apoptosis [57, 60].

A growing body of data suggests that MT mediates
reproduction by interacting with MT1 and MT2 in the ovary
[69, 70]. In bovine granulosa cells (GCs), melatonin recep-
tors MT1 and MT2 were differentially located at the cell
membrane, the cytoplasm, and nuclear membranes. Expres-
sion of melatonin receptors (measured by real time-PCR)
behaved differentially at various doses (melatonin) and time
intervals. The MT1 mRNA increased significantly in a
time-dependent manner (48 h), whereas MT2 mRNA was
associated with both time intervals and melatonin dose
[70]. Long-term administration of MT obviously increased
in fetal number, follicular pool, telomere length, and oocyte
quantity and quality [63]. Binding of MT to MT1 and MT2
can decrease reactive oxygen species (ROS) levels, increase
the activities of glutathione S-transferase (GST) and gluta-
thione peroxidase (GPx), and inhibit the level of glutathi-
one (GSH) and plasma selenium [55, 71, 72]. It has been
identified that MT inhibits apoptosis and boosts the expres-
sion of MT2, superoxide dismutase (SOD), and GPx4,
while antagonists of MT1 and MT2 block the protective
effects on follicular atresia and porcine granulosa cells [73].

The ovarian reserve is constituted by the quality and
quantity of the primordial follicles, which both decline with
increasing age [74]. The number of growing follicles
recruited from the primordial follicle pool reflects the num-
ber of primordial follicles. Since there is no serum marker
that can directly measure the number of primordial follicles,
a marker that reflects the number of growing follicles is cur-
rently the best proxy for the quantitative aspect of the ovar-
ian reserve. Since AMH is expressed by growing follicles
prior to FSH-dependent selection and has been shown to be
detectable in circulation, serum AMH has taken momentum
as a marker for ovarian function, particularly in the assess-
ment of the quantitative aspect of the ovarian reserve [75].

The expression of silent information regulator family
(SIRT1, SIRT3, and SIRT6, as well as Sirtuins) in the ovary
is positively correlated with ovarian reserve [76]. These
proteins may be potential markers of ovarian aging and tar-
get molecules for delaying organ aging. MT treatment can
activate SIRT1 and SIRT3 mRNA expression in the ovary.
It was shown that MT-induced upregulation of SIRT1
expression was associated with reduced oxidative stress,
activation of antioxidant enzymes, and anti-apoptotic
effects in mice and humans [77, 78]. Moreover, MT delays
the senescence of mouse oocytes after ovulation through
the SIRT1-MnSOD-dependent pathway [79]. Tamura found
that mRNA expression of Sirtuins longevity genes (SIRT1
and SIRT3) and telomere length were also enhanced in
melatonin-treated mice. MT could protect ovarian cells and

slow down follicular atresia by activating SIRT1 and SIRT3
signaling [80] (Figure 3).

3.3. MT Regulates Ovarian Biological Rhythm. The biological
clock system plays an essential role in the physiological
activity of the ovary and is involved in the regulation of ovu-
lation, steroid hormone synthesis, and oocyte maturation
[81]. Disturbances in the biological clock can seriously affect
ovarian function [81]. Ovarian granulosa cells and oocytes
can secrete MT. Ovarian granulosa cells have MT receptors
that play roles in the regulation of the ovarian clock. In fact,
MT transmits photoperiodic messages that regulate repro-
ductive activity, improve ovarian functions, and participate
in the follicular development process, including ovulation
[82, 83]. The disruption of circadian rhythms and altered
light exposure due to human night work can negatively
affect female reproduction at the molecular level, triggering
an increase in infertility, menstrual disorders, and miscar-
riages [84]. In Finland, Kauppila observed a 2-hour exten-
sion of MT secretion in winter compared to summer [85].
During the dark season, the mean free testosterone levels
and the free androgen index (FAI) were significantly
decreased during the luteal phase of the cycle when the
estradiol concentration was also decreased. A low estradiol
concentration at the time of ovulation is a sign of diminished
granulosa cell activity and suggests disordered follicular
development. In a previous study from Finland, the
decreased conception rate during the dark months corre-
lated with day length but not temperature [86]. Seasonal
environmental light modifies reproductive competence in
humans, possibly via melatonin secretion [87].

4. Relationship between Hippo Signal Pathway
and MT

As mentioned above, MT can signal through both MT1 and
MT2 G-protein coupled receptors (GPCR). Activation of the
receptors causes dissociation of the heterotrimeric G-
proteins and the resulting Gα subunit and Gβγ complex
interact with various effector molecules involved in cellular
signaling [88]. Recently, GPCR signaling has been indicated
to regulate the Hippo pathway [89] (Figure 4). Components
of the Hippo pathway include membrane-associated pro-
teins that sense cell polarity, cell density, and mechanical
and metabolic signals that in turn activate a range of kinases,
with the ultimate targets of the junctional proteins being the
transcriptional co-activators YAP and PDZ-binding motifs
(TAZ). Studies suggest that MT may promote the activation
of YAP and TAZ through the regulation of the Hippo path-
way [8]. Furthermore, MT attenuates cardiac reperfusion
stress by improving optic atrophy 1- (OPA1-) related mito-
chondrial fusion in a Hippo/YAP pathway-dependent man-
ner [90]. It is proved that there may be some sort of
connection between MT and Hippo signaling pathway.

4.1. Gs Protein (Gαs) May Be a Link between MT Signal and
G-Protein Coupled Receptors (GPCR)/Yes-Associated Protein
(YAP)/PDZ-Binding Motif (TAZ) Signal. YAP and transcrip-
tional co-activators with TAZ are major targets of the Hippo

5Oxidative Medicine and Cellular Longevity



MT

ROS

Oxidative
metabolite

(-) mtPTP
(+) SOD1, Mn-SOD
(+) UCPs
Synthetic mitochondria MT

MT

Apoptosis

High concentration
(–)

(–)Ca2+

SIRT3

SIRT1

ATP

MTTelomere
length

Caspase-3

PKA
GST

GPx

Figure 3: The mechanism of melatonin in resisting oxidative stress and delaying aging in cells. Abbreviations: MT: melatonin; ROS: reactive
oxygen species; mtPTP: mitochondrial permeability transition pore; SOD: superoxide dismutase; Mn-SOD: Mn-superoxide dismutase; Ucp:
uncoupling protein; GPx: glutathione peroxidase; PKA: protein kinase A; SIRT: silent information regulator [51].
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Figure 4: Interaction between melatonin and Yes-associated protein (YAP)/PDZ-binding motif (TAZ) signaling-regulated G-protein
coupled receptor (GPCR) signals. ↑ indicates an increase in protein level or activity; ↓ indicates a decrease in protein level or activity.
Abbreviations: MT1: melatonin receptor type 1; AR: androgen receptor; PKA: protein kinase A; NF-κB: nuclear factor-κB; LATS1/2:
large tumor suppressor 1 and 2 [8].
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signaling pathway and play important roles in the regulation
of development, homeostasis, and regeneration [91–93].
GPCR signaling regulates the YAP/TAZ response to a vari-
ety of biochemical stimuli, and MT has been shown to acti-
vate Gαs proteins associated with MT1 receptors in some
cells and to increase intracellular cyclic adenosine monopho-
sphate (cAMP) through subsequent activation of protein
kinase A (PKA) and protein kinase C (PKC) [94–97]. Thus,
Gαs-mediated activation of PKA and PKC in response to
different stimuli (adrenaline, melatonin, etc.) may inhibit
cell proliferation and invasion through a series of convergent
mechanisms, including large tumor suppressor 1 and 2
(LATS1/2) activation, inhibition of nuclear factor-κB (NF-
κB) transcriptional activity, and suppression of the androgen
receptor (AR) response in AR-positive cells [94, 98, 99]. Fur-
thermore, according to a recent study, the TAZ promoter is
directly targeted and activated by NF-κB, suggesting that
MT may potentially inhibit YAP/TAZ oncogenic function
by increasing LATS1/2 activity (following PKA and PKC
activation) or reducing TAZ transcription (following NF-
κB inhibition) [100].

4.2. The Relationship between YAP/TAZ and MT in
Metabolic Pathways. It has been shown that the Hippo sig-
naling pathway is closely related to the tissue metabolic
pathway and they work together to regulate cell prolifera-
tion, differentiation, and apoptosis [101]. Glucose, fatty
acids, hormones, and other metabolic factors have recently
been illuminated to regulate YAP and TAZ, which also par-

ticipate in metabolic regulation, such as promoting glycoly-
sis, lipogenesis, and glutamine catabolism. YAP is known
for its ability to positively regulate insulin and insulin-like
growth factor-1 (IGF-1) signaling to drive insulin-like
growth factor-2 (IGF-2) expression, activate mTOR signal-
ing and AKT, promote glucose uptake and glycolysis, and
drive growth advantage, metastatic capacity, angiogenesis,
and therapeutic resistance in various model systems. Hence,
it suggests that YAP and TAZ are emerging nodes that coor-
dinate nutrient supply with cell growth and tissue homeosta-
sis, and study on them may contribute to finding metabolic
approaches to treat ovarian diseases [102, 103].

In addition to GPCR signaling, YAP/TAZ is regulated
by intercellular contact, mechanical force, and metabolism.
They affect YAP/TAZ function by inducing specific intra-
cellular signaling through Hippo kinase cascade-dependent
and non-dependent mechanisms. Some of these mecha-
nisms may be cross-linked with MT signaling. In conclu-
sion, these evidences indicate that there may be crosstalk
between MT signal, Hippo signal, and insulin-glucagon
signal [101] (Figure 5).

4.3. Silent Information Regulator (SIRT) and Forkhead Box O
(FOXO): Possible Links between MT Signals and Hippo
Signals. Sirtuins, a family of NAD+-dependent deacetylases,
have recently emerged as key metabolic sensors of body
homeostasis. Together, they respond to metabolism, inflam-
matory signals, or oxidative stress, and have been linked to
aging and longevity [104, 105]. The down-regulation of
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Figure 5: Interaction between melatonin, YAP/TAZ, and metabolic pathways. Abbreviations: IR: insulin receptor; IRS1/2/4: insulin receptor
scaffold 1/2/4 [103].
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SIRT1 is associated with physiological or pathological
reduction of ovarian reserve. SIRT1 has been proved to reg-
ulate the proliferation and apoptosis of granulosa cells,
while there is hint that SIRT3 promotes luteinization [76].
Many transcription factors regulate SIRT1 expression,
including forkhead box (FOXO) and peroxisome prolifera-
tor activated receptor (PPAR) [78].

Studies based on the SIRT1 activator SIRT1720 or res-
veratrol support the idea that targeting SIRT1 as a main fac-
tor in the regulation of follicular dynamics may be a
promising strategy for the prevention of ovarian aging
[106, 107]. The inhibition of Ras signaling by resveratrol
counteracts Ras-PI3K-mediated protein kinase B activation,
leading to increased FOXO3 activity. The fact that SIRT1
controls hemopoietic stem cell (HSC) homeostasis via
FOXO3 further highlights the therapeutic value of SIRT1
activation [108].

SIRT1 coordinates the adaptive response of mouse
oocytes to oxidative stress, possibly by promoting the activ-
ity of FOXO3 and SOD2 [77]. The SIRT1-dependent antiox-
idant response was disrupted in senescent oocytes, where a
lower capacity to regulate SIRT1 expression was detected.
Zhang reported that the SIRT1, 2, and 3 pathways may play
a potential protective role in post-ovulatory oocyte senes-
cence by controlling the production of reactive oxygen spe-
cies [109]. It is pointed out that SIRT1 orchestrates the
stress response of human granulosa cells to oxidative stress
by targeting FOXL2, a transcription factor essential for ovar-
ian function and maintenance [110, 111].

Aging and various age-related diseases are associated
with reduced MT secretion, pro-inflammatory changes in
the immune system, and reduced SIRT1 activity [112–114].
MT, in turn, is strongly associated with SIRT1. MT can act
via stimulating or inhibiting components of the pro-
inflammatory network. SIRT1 enhances the amplitude of
circadian rhythms in the suprachiasmatic nucleus (SCN),
which may affect MT rhythms [115, 116]. MT attenuates
sepsis-induced brain damage through SIRT1 signaling acti-
vation [77, 117]. MT treatment significantly increases SIRT1
expression, leading to deacetylation of FOXO1 and p53.
Melatonin can stimulate the release of pro-inflammatory
cytokines and other mediators, but also, under different con-
ditions, it can suppress inflammation-promoting processes
such as NO release, activation of cyclooxygenase-2, inflam-
masome NLR family pyrin domain containing 3 (NLRP3),
gasdermin D, toll-like receptor-4 and mTOR signaling, and
cytokine release by senescence-associated secretory pheno-
type (SASP), and amyloid-β toxicity. It also activates pro-
cesses in an anti-inflammatory network, in which SIRT1
activation, upregulation of nuclear factor erythroid-2-
related factor 2 (Nrf2), down-regulation of NF-κB, and
release of the anti-inflammatory cytokines IL-4 and IL-10
are involved [118, 119].

The FOXO family of transcription factors (FOXO1, 3, 4,
and 6) regulates the expression of genes associated with inhi-
bition of cell cycle progression, hematopoietic differentia-
tion, and resistance to stress [120]. FOXO3 has long been
thought to play a key role in the molecular basis of longevity
[121]. The ability of FOXOs to protect against oxidative

stress involves increasing the expression of scavengers of
reactive oxygen species (ROS), such as manganese superox-
ide dismutase (SOD2), catalase, and catalase reduction pro-
tein III in mitochondria. However, deacetylation of FOXO
by members of the Sirtuin family 1, 2, and 3 leads to FOXO
activation [122]. FOXOs promote the expression of genes
encoding proteins related to DNA repair and inhibit the
mTOR kinase pathway. Meanwhile, MT can enhance the
activity of SIRT3, activate FoxO3 for nuclear translocation,
and increase the binding of FoxO3 to the SOD2 promoter,
leading to the trans-activation of antioxidant genes, conse-
quently limiting the production of ROS in mitochondria
and inhibiting mitochondrial oxidative damage [123]. In
addition, YAP cooperates with TEA domain transcription
factor (TEAD) to activate the expression of FOXD1, an
age-protective protein. YAP deficiency results in the down-
regulation of FOXD1. FOXO3 is a transcription factor that
regulates the expression of core autophagy signaling genes,
whose activities are strongly associated with the immune
system dysfunction and neurodegeneration [124, 125]. It
was assumed that melatonin abolished lipopolysaccharide
(LPS) effects on autophagy impairment via regulating
FOXO3 signaling [123].

Bonni demonstrated that the core factor Mst1 in the
Hippo pathway can phosphorylate FOXO3 (followed by
FOXO1), mainly Ser207 (Ser212 in FOXO1), which is a con-
served site in the forkhead domain [126]. This phosphoryla-
tion prevents 14-3 binding and promotes FOXO nuclear
retention and transcriptional activity. The positive regula-
tion of FOXO1/3 by Mst1/Mst2 may be a physiological reg-
ulatory event, but the situation that causes Mst1/Mst2 to
phosphorylate FOXO1/3 in vivo is not clear [127].

5. Correlation between Hippo Pathway and POI

Many molecules in the Hippo signaling pathway are in con-
nection with the regulation of oocyte growth, primordial fol-
licle development, and granulosa cell proliferation and
differentiation [128]. Abnormal expression of various signal-
ing molecules in the Hippo pathway may bring about defi-
ciency in primordial follicle survival and development,
resulting in a pathological state of the ovary and causing
POI [129, 130]. Follicle activation can be achieved by
mechanical manipulation of ovarian tissue cut into pieces
[7]. Hippo signal disruption and Akt stimulation of ovarian
follicles can be used in infertility treatment. After fragmenta-
tion of the ovary, the level of phosphorylated YAP was
substantially reduced and the ratio to total YAP was signifi-
cantly lower, indicating that the Hippo signaling pathway
was disrupted. The Hippo signaling pathway plays a role in
the control of follicle growth and oocyte maturation in the
ovary [130].

Apart from follicular activation, the Hippo signaling
pathway in POI has been barely studied, with only a few
reports suggesting that it may be part of the mechanism of
action of herbal or natural products. For example, Xie and
colleagues demonstrated that the Huyang yangkun formula
enhanced ovarian function in POI rats by repairing the dys-
function of the Hippo-JAK2/STAT3 signaling pathway
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[131]. Ai and colleagues found that Tripterygium glycosides
promoted cytotoxicity, senescence, and apoptosis in ovarian
granulosa cells by inducing endogenous miR-15a expression
and inhibiting the Hippo-YAP/TAZ pathway [132].

The Hippo signaling pathway in granulosa cells plays an
important role in regulating the proliferation and differenti-
ation of granulosa cells induced by gonadotropin and acts as
crucial factor in the growth and maturation of activated fol-
licles [128]. Knockdown of YAP1 in ovarian granulosa cells
driven by the FOXL2 promoter resulted in increased apopto-
sis, reduced number of corpus luteum, reduced ovarian
volume, and reduced fertility in transgenic mice [133].
YAP1-mediated mechanisms can control cell survival and
granulosa cell differentiation during ovulation [134].

For Hippo pathway genes, LATS1 deficiency in mice
causes sterility and ovarian tumourigenesis, while LATS1
regulates the activity of FOXL2, which is a defective gene
in some POI patients [135, 136].

The application of Hippo-specific inhibitors can provide
strong evidence for the study of the correlation between fol-
licular development and Hippo signaling pathway and pro-
vide guidance for the development of POI biological gene
therapy or anti-POI drugs. However, the number and struc-
ture types of Hippo inhibitors reported are quite limited, and
few clinical studies on the treatment of POI are conducted.

6. Conclusions and Perspectives

The pathogenesis of POI is complex and regulated by a com-
bination of multiple factors and components. Numbers of
studies on mammalian MT and Hippo signaling pathways
have made progress in understanding the MT and Hippo
action mechanism on POI (Table 1). There are no effective
methods or proven drugs to prevent it. We attempted to elu-
cidate the potential crosstalk between MT and Hippo signal-
ing pathways, and the possible implications for POI therapy.
Experimental data shows that MT and Hippo signaling
pathways are jointly involved in follicle development, oocyte
maturation, and granulosa cell proliferation and differentia-
tion, which are critical for maintaining normal ovarian
development and physiological functions. Moreover, MT
and Hippo signaling pathways are cross-linked in the regula-
tion of these functions. It means Hippo signaling pathway-
related factors as well as MT signaling pathway-related fac-
tor targeting studies may be an interesting research direction
for the treatment of POI [133] and that MT intervention
therapy for patients may be a promising option. The devel-
opment of POI involves multiple signaling pathways. Can
the application of MT protect against POI by modulating
the Hippo pathway? It remains to be explored how the
Hippo signaling pathway interacts with MT and POI.

Abbreviations

Ac-FoxO1: Acetylated-forkhead box O1
Ac-p53: Acetylated-p53
ADP: Adenosine diphosphate
Akt: Protein kinase B
AMPK: Adenosine monophosphate kinase

AR: Androgen receptor
BMP: Bone morphogenetic protein
cAMP: Cyclic adenosine monophosphate
CAT: Catalase
CI: Confidence interval
E2: Estradiol
FAI: Free androgen index
FOXO: Forkhead box O
FOXO3: Forkhead box O3
FSH: Follicle stimulating hormone
Gαs: Gs protein
GCs: Granulosa cells
GnRH: Gonadotropin-releasing hormone
GPCR: G-protein coupled receptors
GPx: Glutathione peroxidase
GST: Glutathione S-transferase
GSH: Glutathione
GSH-Px: Glutathione peroxidases
Hh: Hedgehog
HPO: Hypothalamic-pituitary-ovarian
HR: Hazard ratio
HRT: Hormone replacement therapy
HSC: Hemopoietic stem cell
hUCMSC-Exos: Human umbilical cord-derived mesenchy-

mal stem cell-derived exosomes
IGF-1: Insulin-like growth factor-1
IGF-2: Insulin-like growth factor-2
IVM: In vitro maturation
LATS1/2: Large tumor suppressor 1 and 2
LH: Luteinizing hormone
LPS: Lipopolysaccharide
MAPK: Mitogen-activated protein kinases
MDA: Malondialdehyde
MnSOD: Manganese superoxide dismutase
mTOR: Mammalian target of rapamycin
MT: Melatonin
MT1: Melatonin receptor type 1
MT2: Melatonin receptor type 2
MVH: Mouse vasa homolo
NF-κB: Nuclear factor-κB
NLRP3: NLR family pyrin domain containing 3
NO: Nitric oxide
Nrf2: Nuclear factor erythroid-2-related factor 2
OCT4: Octamer-binding transcription factor 4
OPA1: Optic atrophy 1
OTs: Ovarian tissues
PI3K: Phosphatidylinositol 3-kinase
PKA: Protein kinase A
PKC: Protein kinase C
POI: Premature ovarian insufficiency
PPAR: Peroxisome proliferator activated receptor
pYAP: Phospho-YAP
RNS: Reactive nitrogen species
ROS: Reactive oxygen species
SIRT1: Silent information regulator 1
SIRT3: Silent information regulator 3
SIRT6: Silent information regulator 6
SOD: Superoxide dismutase
TAZ: PDZ-binding motif
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SCN: Suprachiasmatic nucleus
WHI: Women’s health initiative
YAP: Yes-associated protein
Yki: Yorkie.
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