
sensors

Article

Improving Attitude Estimation Using
Gaussian-Process-Regression-Based Magnetic Field Maps

Prince E. Kuevor 1,* , James W. Cutler 2 and Ella M. Atkins 2

����������
�������

Citation: Kuevor, P.E.; Cutler, J.W.;

Atkins, E.M. Improving Attitude

Estimation Using

Gaussian-Process-Regression-Based

Magnetic Field Maps. Sensors 2021,

21, 6351. https://doi.org/

10.3390/s21196351

Academic Editor: Giovanni Leucci

Received: 14 August 2021

Accepted: 20 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Robotics Institute, University of Michigan, Ann Arbor, MI 48109, USA
2 Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA; jwcutler@umich.edu (J.W.C.);

ematkins@umich.edu (E.M.A.)
* Correspondence: kuevpr@umich.edu

Abstract: Magnetometers measure the local magnetic field and are present in most modern inertial
measurement units (IMUs). Readings from magnetometers are used to identify Earth’s Magnetic
North outdoors, but are often ignored during indoor experiments since the magnetic field does
not behave how most expect. This paper presents methods to create, validate, and visualize three-
dimensional magnetic field maps to expand the use of magnetic fields as a sensing modality for
navigation. The utility of these maps is measured in their ability to accurately represent the magnetic
field and to enable dynamic attitude estimation. In experiments with motion capture truth data, a
small multicopter with three-axis inertial measurements, including magnetometer, traversed five
flight profiles distinctly exciting roll, pitch, and yaw motion to provide interesting trajectories for
attitude estimation. Indoor experimental results were compared to those outdoors to emphasize
how spatial variation in the magnetic field drives the need for our mapping techniques. Our work
presents a new way of visualizing 3D magnetic fields, which allows users to better reason about
the magnetic field in their workspace. Next, we show that magnetic field maps generated from
coverage patterns are generally more accurate, but training such maps using observations from
desired flight paths is sufficient in the vicinity of these paths. All training sets were interpolated using
Gaussian process regression (GPR), which yielded maps with <1 µT of error when interpolating
between and extrapolating outside of observed locations. Finally, we validated the utility of our
GPR-based maps in enabling attitude estimates in regions of high magnetic field spatial variation
with experimental data.

Keywords: Gaussian processes; magnetic field mapping; Kalman filter; attitude estimation;
unmanned aerial vehicle (UAV)

1. Introduction

Unmanned aerial vehicles (UAVs) are being used for a number of different mission
designs including surveillance and package delivery. Such tasks are more tractable on
vehicles with some degree of autonomy that can handle navigation and control on their
own. For applications outside of buildings and urban canyons, vehicles can use the Global
Positioning System (GPS) for positioning and leverage maps of Earth’s magnetic field such
as the World Magnetic Model (WMM) to observe vehicle heading and estimate attitude.
However, indoor environments have no such magnetic field maps to help with attitude
estimation and lose the ability to use GPS for their position.

Several sensor modalities such as vision and wireless ranging can be leveraged for
indoor navigation [1–3]. However, these modalities can be sensitive to changes in lighting
conditions and signal reflectively in a given workspace, respectively. Meanwhile, the
magnetic field inside buildings is often overlooked as a modality of indoor navigation. The
result is that readings from magnetometers, which are present on most modern inertial
measurements units (IMUs), are simply ignored in lieu of sensing modalities that are closer
to how we perceive the world.
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This paper presents a pipeline to generate and validate 3D magnetic field maps,
interpret the spatial variation of such maps via a new visual representation, and extract
the value of magnetic field maps by leveraging them for three-degree-of-freedom (3DOF)
attitude estimation. The maps utilize Gaussian process regression (GPR) to represent the
magnetic field based on observations gathered during training flights. The GPR-based
maps can then interpolate to provide estimates of the magnetic field at locations that were
not directly sampled in the training set. These interpolated estimates of the field serve as a
source of magnetic field reference vectors to estimate the attitude of a flight vehicle.

An important aim of this work was to provide a means of leveraging magnetic fields
that already exist in every building and improve the indoor navigation of robots. There are
two opposing methods of using indoor magnetic fields in the literature. When the goal is to
estimate attitude or heading using an indoor magnetic field, some works aim to remove or
mitigate anomalies in the magnetic field [4–6] or reduce the impact of the magnetometer’s
effect on attitude estimates if disturbances are detected [7–11]. In this paradigm, Earth’s
magnetic field is seen as the signal, while any disturbances or anomalies are treated as
noisy perturbations to be rejected. This methodology assumes that large perturbations
are temporary and can have increased estimation errors if disturbances exist for long
durations [4]. However, when performing position localization or full-pose (position and
attitude) estimation [12–20], these “disturbances” become a signal whose spatial variation
is needed to distinguish one location from another.

This paper performs attitude estimation by mapping and leveraging magnetic field
disturbances as a complement to works that use magnetic fields for position localization.
Other works have shown that using magnetometers for attitude estimation indoors requires
more care than outdoor spaces. Here, we investigated if creating magnetic field maps can
solve this problem. To test this, we conducted a set of flight experiments both indoors and
outdoors to compare the spatial variation of their respective magnetic fields and show how
this spatial variation drives the need for mapping. In this paper, the utility of a magnetic
field map was measured by its accuracy in representing the local magnetic field and its
ability to enable accurate 3DOF attitude estimates. As such, five distinct flight trajectories
were flown to analyze the value of both indoor and outdoor magnetic field maps under
different flight conditions that excite the roll, pitch, and yaw of a flight vehicle. The outline
of our work is summarized in Figure 1.

1) Creating and Validating GPR map

Scanning Coverage 
Flight Profiles

Scan-𝛼
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Figure 1. Outline of the main methods of this paper. Several flight profile (FP) trajectories are used to
train, validate, and utilize a Gaussian process regression (GPR)-based map.

The contributions of this work are as follows. First, we propose a new way of visualiz-
ing 3D magnetic fields that utilizes the interpolative power of GPR-based maps to show the
planar direction and downward magnitude of the magnetic field at various altitudes. Next,
we present different flight patterns and demonstrate how they can be used to train, validate,
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and utilize 3D magnetic field maps. Although this work uses GPRs as the interpolative
tool of the magnetic field maps, other interpolation methods might still find value in these
flight patterns and our training, validation, and utilization techniques. Finally, to our
knowledge, no other work has analyzed the accuracy of 3DOF attitude estimation using
a single gyroscope, accelerometer, and magnetometer in an environment with the type
of spatial variation in the magnetic field in which we tested. With an accurate magnetic
field map, one can attain accurate 3DOF attitude estimates in locations with the spatial
variation needed to perform magnetic field position localization. We understand that this
last contribution comes with many qualifiers, and we will further discuss similar works
in the literature and how our work is distinct from theirs in the Related Works Section
(Section 2).

The remainder of this paper is structured as follows. Section 2 of this paper outlines
related work before mathematical preliminaries are introduced in Section 3. The experi-
mental setup and testing procedure are explained in Section 4. Finally, Section 5 presents
results and discussion followed by a conclusion in Section 6.

2. Related Work

Previous publications have shown that modalities such as vision [1,2] and wireless
technologies [3] can be used for indoor navigation with demonstrations of these methods on
UAVs [21–23]. However, these modalities add equipment to the test vehicle and sometimes
require changes to the workspace (e.g., fiducial markers, ultra-wideband transmitters, etc.)
for them to work effectively. Meanwhile, most modern IMUs have magnetometers that
can leverage the magnetic fields already present in every building on Earth. Learning to
extract value from indoor magnetic fields can improve the indoor navigation capabilities
without additional equipment on or off the test vehicle.

Using magnetic fields as a modality is not without its own problems. Previous
works have shown that the movement of doors, elevators [19], tool chests [24], and even
whiteboards [11] can distort the magnetic field. However, these distortions have been
shown to be very localized, while the remainder of the indoor magnetic field has been
shown to vary slowly in time [18,19]. Additionally, creating magnetic field maps of large
volumes can be computationally expensive [16] if the user is not careful in modeling the
magnetic field [24]. Despite this, several previous publications have leveraged the magnetic
field of indoor spaces to improve position and attitude estimates for mobile robots such
as [17,19] with one dimension of translation, [13–15,18,20,25] in planar motion and [12,16]
for three dimensions of translation. These works showed that with a magnetic field map of
a workspace, it is possible to localize the position of a robot within the given magnetic field
map. For localization to work, however, there must be sufficient spatial variation in the
magnetic field for any algorithm to distinguish any one location from another.

To our knowledge, there is not yet a consistent method of defining spatial variation
in the magnetic field. Reference [4] quantified the change in the magnetic field norm;
Reference [18] discussed changes in each component of the magnetic field; Reference [25]
used the mean and standard deviation of the change in the magnetic field norm as position
changes. By contrast, Vallivaara et al. discussed spatial variation in a binary sense, by
assessing if there was sufficient variation to localize or perform SLAM, which can depend
on the parameters in the estimation algorithm [13,14]. References [26,27] were works on
outdoor magnetic field navigation for fishing vessels and red-spotted newts, respectively.
These works described the spatial variation as a gradient of change in the magnetic field
strength or direction over some distance. Our work presents a method to visualize the
spatial variance of the magnetic field in a workspace and qualitatively compared the spatial
variance in different areas.

Unlike position localization, attempts to estimate attitude indoors tend towards detect-
ing and rejecting perturbations in Earth’s magnetic field [4–6]. However, the methods from
these works do not easily extend to full 3DOF roll, pitch, and yaw estimation and require
multiple magnetometers. References [7–11] and others mitigated the effect of disturbances
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by adjusting the credibility of the magnetometer’s or accelerometer’s measurements when
distortions in either were detected. Such works proposed different methods of detecting
disturbances, but generally assumed that the disturbance was brief and the magnetic field
would return back to some expected value. Reference [28] relaxed this assumption by
requiring only that the norm of the magnetic field remain constant over small time periods.
However, Reference [28] did not provide 3DOF attitude estimation metrics of their indoor
tests to understand how well this method works for indoor navigation. Reference [11]
compared their disturbance rejection method to that of [28] and other works with brief, yet
large, magnetic field disturbances.

In our work, we performed 3DOF attitude estimation using a gyro, accelerometer, and
a single magnetometer despite magnetic field disturbances from buildings and human-
made structures. Using magnetic field maps, we leveraged the spatial variation of the field
to assist in 3DOF attitude estimation rather than rejecting these features as disturbances.
Such capabilities are important for full pose estimation using magnetometers indoors since
spatial variation in the magnetic field is desirable for position localization. Although we
drew a distinction in our method from the disturbance rejection paradigm, our mapping-
based methods can still be paired with the disturbance rejection methods if a magnetic field
map is locally inconsistent in a region near doors, elevators, or other mobile ferromagnetic
objects. Time-varying magnetic field mapping was addressed in [24], but not in this paper.

Previous works that generated magnetic field maps can be split into two groups. Some
performed simultaneous localization and mapping (SLAM) and were able to construct a
magnetic field map as they estimated the pose of their vehicle [12–14]. Others first had their
robot traverse the workspace to learn the magnetic field and construct a map, then utilized
this map in a separate trial to perform state estimation or localization [15–20,25]. Our work
adopted the philosophy of the latter group by performing a set of training test flights to
construct a magnetic field map followed by a separate set of utilization flights meant to
assess the accuracy of our attitude estimates by leveraging an existing map. We analyzed
the accuracy of our maps by using validation test flights and compared two methods of
training a GPR-based magnetic field map.

There are different methods of representing magnetic field maps with varying com-
plexities depending on the degrees of freedom of the state to estimate. A magnetic field
map with an input of dimension p and output of dimension m is denoted as a p→ m map.
Generally, p depends on how the vehicle can traverse in space (e.g., p = 2 for ground-
based, wheeled robots and p = 3 for flying vehicles or pedestrian localization), while m
depends on how many components of the magnetic field are to be tracked. Typically, m = 1
when the map gives the norm of the magnetic field for each position, and m = 3 when
all three components of the magnetic field are tracked. The methods of representing the
magnetic field tend to differ based on the size of p. Note that the works that tried to detect
and mitigate perturbations in Earth’s magnetic field did not create local magnetic field
maps [4–10].

Reference [17] constructed a 1 → 1 map of the magnetic field’s declination using
least squares to interpolate and create unique signatures at select locations of interest.
Reference [19] constructed a 1→ 1 map of the magnetic field norm via linear interpolation.
Reference [19] preceded [13,14] in using Gaussian processes to create 2→ 3 maps. Refer-
ences [20,29] constructed 2→ 3 and 2→ 2 maps respectively using bilinear interpolation
of the four nearest observations gathered at evenly spaced locations. Reference [18] com-
pared the position localization accuracy of a 2 → 2 map against a 2 → 3 magnetic field
map by sampling the magnetic field at discrete locations. However, Reference [18] did
not interpolate the magnetic field between observed locations, which made their “map”
differ from other maps cited in this discussion. In [15,16], Akai and Okazi constructed
2→ 3 and 3→ 1 maps, respectively, inside a building to demonstrate the use of Gaussian
processes maps in large volumes. Finally, Reference [12] created a 3→ 3 map also using
Gaussian processes.
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Linear interpolation is intuitive when p = 1 [19], but the bilinear interpolation for p = 2
used in [20,29] requires magnetic field observations to be gathered at points on an evenly
spaced grid throughout the workspace. Such a constraint is restrictive in how magnetic
field map observations are gathered (Section 5.4), is time-consuming for p = 3 [16], and does
not allow for extrapolation of points outside of those found in the training set (Section 5.1).
It is not clear how the p = 1 least-squares-based feature selection in [17] could extend to
p = 2 or p = 3. By contrast, Gaussian processes are a prominent way of representing local
magnetic fields for p = 2 or p = 3 as per [12–16]. Many GPR-based applications appear to
build on the methods of [30]. Gaussian process regression has no hard constraints on the
spatial layout of observations, is able to extrapolate and estimate at locations outside of
those found in the training set, as well as provides uncertainty metrics on the confidence
of a provided magnetic field estimate. However, GPR comes with a high computational
cost as a function of the training set size [16,24]. Due to these listed advantages and their
use in other magnetic field mapping works, our work used three independent Gaussian
processes to represent a 3→ 3 magnetic field map.

Kalman filters are a common way to conduct state estimation of dynamic systems:
particularly when the rate of change of certain states can be measured or modeled well.
Since Kalman filters assume the state and sensor measurements are all Gaussian, particle
filters can outperform Kalman filters if parts of the system are non-Gaussian. However,
particle filters come at an increased computational cost to track multiple hypotheses of the
state, while Kalman filters only work with a single hypothesis. Methods such as TRIAD
and derivatives of Wahba’s problem are for attitude determination and do not incorporate
system dynamics to integrate current estimates forward in time. In this work, we used
a multiplicative extended Kalman filter (MEKF), which uses quaternions to represent
attitude, is more careful to respect the constraints of rotations than a typical extended
Kalman filter, and has been used on many platforms with an IMU [10,31–35]. Here, we
used the MEKF derived from [36,37] to perform attitude estimation with a gyroscope,
accelerometer, and magnetometer.

3. Mathematical Formulation

This section introduces the mathematical preliminaries used throughout the paper.
First, we summarize the multiplicative extended Kalman filter (MEKF) from [36,37] that
we used to perform attitude estimation from the vehicle’s sensors. Next, we show how
the Gaussian processes regression (GPR) method from [30] can be used to generate maps
of the magnetic field in an area of interest. Finally, the magnetometer calibration method
from [38] is introduced with a nine-parameter sensor model.

3.1. Multiplicative Extended Kalman Filter for 3DOF Attitude Estimation

The MEKF is a variation on the extended Kalman filter (EKF) that computes attitude
error as the quaternion product of the true attitude and the estimated attitude [36,37]. As
with the EKF, the MEKF propagates the current attitude forward in time with a prediction
step and uses measurements to correct this prediction in the update step. Estimates of
the gyroscope (gyro) bias are used to correct for gyro drift. The formulation of the MEKF
presented here was from Chapter 7.1 of [36]. A quaternion was used to represent vehicle
global attitude. Instead of updating the four-element quaternion at each step, the MEKF
tracks a three-element parameterization of the attitude error used to adjust the global
attitude quaternion. As recommended by Section 6.2 of [37], gyro measurements were used
for the prediction step instead of a dynamics model of the vehicle. An accelerometer and a
magnetometer were used for the correction step.

The MEKF estimates vehicle attitude relative to a world-fixed frame with a quaternion
q̂k and a gyroscope bias parameter β̂k at discrete time step k. During the prediction step,
the gyro measurement was used to integrate the quaternion estimate to the next discrete
time step q̂−k+1 = Ω(ω̂k, ∆t)q̂+

k where superscript − indicates a value immediately after the
prediction step and + is the value immediately after the update step. During the update



Sensors 2021, 21, 6351 6 of 27

step, the MEKF uses a six-component state vector ∆x̂k =
[
δα̂>k ∆β̂>k

]>, where δα̂k is the
three-component attitude estimate error vector and ∆β̂k = βk − β̂k is a three-component
gyro bias estimate error vector, to correct the prediction. In effect, the update step computes
q̂+

k+1 = q̂−k+1 +
1
2 Ξ(q̂−k+1)δα̂k for the attitude and β̂+

k+1 = β̂−k + ∆β̂−k for the gyro bias.
As with all Kalman filters, the MEKF also keeps track of its estimate uncertainty with

a 6×6 covariance matrix Pk where the six-dimensional estimate is assumed to be drawn
from a Gaussian distribution ∆x̂k ∼ N (∆ ˆ̄xk, Pk).

3.1.1. MEKF Prediction Step

The MEKF prediction step uses gyro data to march the current estimate forward.
Gyroscope values are modeled as:

ω̃k = ωk + ν ν ∼ N (0, Qk) (1)

where ωk is the true angular velocity and Qk is the process noise matrix. The MEKF first
offsets the measured gyro value by current gyro bias estimate ω̂k = ω̃k − β̂k where ω̃k is
the raw gyro measurement and ω̂k was offset by our bias estimate β̂k. We then updated
the quaternion and gyro bias with:

q̂−k+1 = Ω(ω̂k, ∆t)q̂+
k

β̂−k+1 = β̂+
k

(2)

where Ω(ω̂k, ∆t) was defined in Chapter 7.1.2 of [36] and depends only on the bias-adjusted
gyro measurement ω̂k and the amount of time given by discrete time step ∆t. Note the
gyro bias estimate is unchanged during the prediction step.

The covariance matrix becomes:

P−k+1 = ΦkP+
k Φ>k + ΥQkΥ> (3)

where Φk = Φk(ω̂k, ∆t) is a state transition matrix that depends on ω̂k and ∆t, while Υ is a
constant matrix. Qk = Qk(σu, σv, ∆t) is a process noise matrix that depends on gyroscope
noise parameters σu and σv and the change in time ∆t. All three of these matrices were
defined in Chapter 7.1.2 of [36].

3.1.2. MEKF Update Step

The update step receives accelerometer z̃k,accl and magnetometer z̃k,mag measurements,
compares these to their respective “reference vectors” in world frame rk,accl and rk,mag, and
uses the difference between the measurement and reference vector to update the estimate.
Reference vectors are effectively what we expected each sensor to measure given the current
vehicle state estimate. It was assumed that the gyro data used in the prediction step be
measured at the same time as the accelerometer and magnetometer data. On our test UAV,
the magnetometer was sampled less frequently than the accelerometer and gyroscope. As
such, we used a sequential update method explained in Chapter 7.1.3 of [36] so that the
matrices used in the update step need not change size depending on the availability of
magnetometer data.

First, we define a rotation matrix A(qk) that transforms a vector represented in the
world frame to the same vector represented in the vehicle body frame. We then define the
Kalman gain:

Kk = P−k H>k
[

HkP−k H>k + σ_ I3×3

]−1
(4)

where I3×3 is the 3×3 identity matrix, and the 3×6 sensitivity matrix Hk is:

Hk =
[[

A(q̂−k )rk,_
]× 03×3

]
=

∂h_

∂(∆x)
= [Hα Hβ]. (5)
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σ_ is a measurement noise parameter that depends on which sensor is being used (i.e., σaccl
or σmag) and rk,_ is the corresponding accelerometer or magnetometer reference vector. Hk
is a Jacobian matrix of the measurement model:

z̃k,mag = hmag(qk) + ηmag

z̃k,accl = haccl(qk) + ηaccl
(6)

where

ηmag ∼ N (0, σmag I3×3)

ηaccl ∼ N (0, σaccl I3×3).
(7)

In general, hmag varies as a function of position if the magnetic field is not constant.
However, this has no effect on the Jacobian Hk =

∂h_
∂(∆x) since position is not part of the state

∆x. The sensor-based subscript (i.e., mag or accl) was omitted from Hk for brevity. Finally,
the operator [a]× takes a vector a = [ax ay az]> as the input and returns a skew-symmetric
cross-product matrix where:

[a]× =

 0 −az ay
az 0 −ax
−ay ax 0

 S.T. a× b = [a]×b. (8)

The estimate error state is then updated with:

εk,_ = z̃k,_ − A(q̂−k )rk,_

∆x̂+k = ∆x̂−k + Kk
[
εk,_ − Hk∆x̂−k

] (9)

where εk,_ is often denoted the “residual” or “innovation” and z̃k,_ is either the accelerome-
ter or magnetometer measurement. ∆x̂+k is used to update the estimate quaternion q̂+

k and
gyro bias estimate β̂+

k as specified in Chapter 7.1.1 of [36]. Finally, the covariance matrix is
updated with:

P+
k = [I6×6 − Kk Hk]P

−
k . (10)

3.2. Gaussian Process Regression

The purpose of the GPR-based map is to take observations around the flight space and
interpolate these measurements to predict the magnetic field at any point in and around
the workspace. When estimating attitude, the GPR-based map is queried at the vehicle’s
location to provide a magnetic field reference vector rk,mag to the MEKF.

Gaussian process regression uses a “training set” of observations to make predictions
of the magnetic field. The predictions tend to only be accurate near positions used in the
training set. Each observation has a 3D position and the three components of the magnetic
field observed at position (B̃x, B̃y, B̃z). For this work, we used three independent Gaussian
processes, each with a 3D input (the position) and a scalar prediction as the output (the x,
y, or z component of the magnetic field). As such, for a training set with n observations,
we defined the design matrix X ∈ R3×n as a collection of the n 3D positions and defined
vectors ỹx, ỹy, ỹz ∈ Rn as the corresponding magnetic field observations for B̃x, B̃y, and B̃z,
respectively.

In [30], Rasmussen and Williams defined a Gaussian process as a distribution over
functions written as:

f (x) ∼ GP
(
0, k(x, x′)

)
(11)

where 0 is the zero mean function, k is a covariance function (or kernel), and x, x′ ∈ R3

are the 3D positions. The covariance function quantifies correlation, or similarity, in obser-
vations based on their spatial proximity. For this work, we used three separate Gaussian
processes GPx, GPy, and GPz that have a zero mean function and a squared exponential
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covariance function. Given a training dataset and a set of hyperparameters, each Gaussian
process can be queried at a 3D location to provide a prediction of a single component
of the magnetic field along with the uncertainty of each prediction. The “map” of the
magnetic field is actually these three Gaussian processes with their corresponding training
sets Dx = (X, ỹx), Dy = (X, ỹy), and Dz = (X, ỹz) and their respective optimized hyper-
parameters.

The hyperparameters are adjustable terms from the covariance function. With a
squared exponential covariance function, the hyperparameters are a length scale and a
signal standard deviation. Each of the three Gaussian processes had distinct hyperpa-
rameters computed by minimizing the negative log marginal likelihood over their corre-
sponding training datasets. Hyperparameter optimization was performed using the gpml-
matlab (gpml-matlab was created by Carl Edward Rasmussen and Hannes Nickisch toolbox
(http://www.gaussianprocess.org/gpml/code/matlab/doc/, accessed on 19 September 2021).

In this paper, we refer to the three Gaussian processes as a single object (e.g., “map”,
“magnetic field map”, “GPR-based map”, “GPR”) since they were used together to predict
the full magnetic field vector at a desired location. These predictions are used by the MEKF
as magnetic field reference vectors rk,mag and to assess the accuracy of the GPR-based maps
via a validation set per Sections 5.1 and 5.4. Finally, the predictions are used to visualize
the magnetic field of our workspaces in Sections 5.2.

3.3. Magnetometer Measurement Model

To calibrate the magnetometer on our flight vehicle, we used the model and procedure
from [38]. Measurements from a three-axis magnetometer can differ from the actual
magnetic field because of noise, sensor bias, nonunit scaling factors, and nonorthogonalities
in the alignment of the magnetometer’s measurement axes. These imperfections are
captured by the following model:

B̃x = aBx + x0 + ηx (12)

B̃y = b(B̃y cos(ρ) + Bx sin(ρ)) + y0 + ηy (13)

B̃z = c(Bx sin(λ) + By sin(φ) cos(λ)

+ Bz cos(φ) cos(λ)) + z0 + ηz
(14)

where (B̃x, B̃y, B̃z) are measured values, (Bx, By, Bz) are the true magnetic field, (a, b, c) are
scaling factors, (x0, y0, z0) are constant bias, (ηx, ηy, ηz) are zero-mean noise, and (ρ, λ, φ)
are angles quantifying the nonorthogonality of the axes (Figure 1 in [38]). The goal is to
estimate α = [a, b, c, x0, y0, z0, ρ, λ, φ]> by minimizing:

∆B = B2
R − B2

= B2
R − (B2

x + B2
y + B2

z)

= B2
R − g(B̃x, B̃y, B̃z, α)

(15)

where BR is the magnitude of the magnetic field reference vector obtained from the GPR-
based map and g() is a nonlinear function obtained by re-arranging Equations (12) through
(14) for (Bx, By, Bz). The estimated α is obtained by iterative nonlinear least squares with
α0 = [1, 1, 1, 0, 0, 0, 0, 0, 0]> as an initial condition.

4. Experimental Setup and Procedure

The purpose of our experiments was to gather sensor data to create magnetic field
maps, assess their accuracy in representing the local magnetic field, and analyze their
ability to enable the 3DOF attitude estimation of a UAV. To this end, we created coverage
flight patterns (Scan-α and Scan-β) to study different ways of gathering observations to
train magnetic field maps and investigate the interpolation and extrapolation capabilities
of GPR-based maps. Then, we flew five different flight profiles (FP-A through FP-E) that

http://www.gaussianprocess.org/gpml/code/matlab/doc/
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distinctly excited the roll, pitch, and yaw of the flight vehicle to provide different test cases
for attitude estimation. These profiles were flown both indoors and outdoors to investigate
how spatial variation in the magnetic field affects the utility of our magnetic field maps.

4.1. Equipment, Facilities, and Setup

Our experimental flight vehicle, shown in Figure 2, is a multirotor equipped with a
gyroscope, accelerometer, and magnetometer. The multirotor used here were introduced
in Section IV of [39] and flies an MPU9250 IMU (gyro, accelerometer, magnetometer) and
BMP280 barometer. Since the work in [39], a second BeagleBone Blue microprocessor, a
PNI RM3100 magnetometer, and a DJI Naza-M V2 GPS unit were added to the vehicle.
In addition, the flight controller was changed to the Robotics Cape autopilot (RC Pilot)
(RC Pilot was created by StrawsonDesign (https://github.com/StrawsonDesign/rc_pilot,
accessed on 19 September 2021)) open-source flight controller.

Figure 3 shows the major components of the experimental setup. The flight vehicle
was equipped with two BeagleBone Blue (BB-Blue) microprocessors both running RC
pilot. The controller BB-Blue uses pregenerated trajectories as guidance and uses a linear
quadratic regulator (LQR) controller to maneuver the vehicle along the desired trajectory.
The controller used in this paper was a modified version of the LQR controller from [40].
For navigation, the MPU9250 IMU has a built-in processor that provides roll and pitch
estimates, while motion capture position and yaw estimates are streamed from the ground
station to the vehicle via wireless XBee radios during each flight.

(a) Vehicle body frame (b) Flight vehicle components

Figure 2. Flight vehicle.

Flight Vehicle Ground Control Station (GCS)

Rotors

GCS Computer
BeagleBone Blue

(Controller)

Mocap System

WiFi DSMX XBee Data

BeagleBone Green

BeagleBone Blue
(Estimator)

NAZA-M V2 GPS

PNI RM3100 
Magnetometer

Motion Capture 
Markers

Figure 3. Diagram of the devices used to the gather experimental data.

The estimator BB-Blue logs data from the NAZA-M V2 GPS, PNI RM3100 magnetome-
ter, MPU9250 IMU (gyro and accelerometer), BMP280 barometer, and Qualisys motion
capture with a timestamp from when each respective value was logged. The MPU9250
IMU and BMP280 barometer are included with each BeagleBone Blue and are thus not
included individually in Figure 3. The IMU was sampled at 200 Hz, the magnetometer at

https://github.com/StrawsonDesign/rc_pilot
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approximately 144 Hz, the barometer at 20 Hz, and the GPS at 4 Hz. The Qualisys (outdoor)
motion capture pose estimates were computed at 100 Hz, while the Optitrack (indoor)
system provides ground truth at 120 Hz. The GPS and barometer data were not used in
this work.

The LQR controller from [40] did not use integrator terms on position, altitude, or
yaw angle. The controller was not tuned rigorously for this work, so there tended to be a
slight, but slow decrease in altitude during each flight. In addition, the guidance method
assumed the processor updates the outputs at 200 Hz consistently, which is not true in
reality. The result is that the desired position, velocity, and attitude fed to the controller is
sometimes behind a location the drone has already passed. This causes some undesirable
motion from a control perspective, but actually presents interesting oscillatory features
for our MEKF to track. For each flight, the vehicle was placed near the motion capture
origin with the +X axis of the vehicle’s body frame roughly aligned with the +X axis
of the motion capture origin. To prevent large, unpredictable motion during takeoff, the
controller’s initial reference XY position and heading were the initial position and heading
of the vehicle before takeoff

The Network Time Protocol (NTP) was used to synchronize all data-gathering pro-
cessors to ensure proper temporal correspondence between sensor data gathered onboard
the vehicle and the ground truth from the motion capture system. There was a ∼40 ms
delay when wirelessly transmitting the motion capture pose from the ground station to the
flight vehicle via Xbee radio. In order to correlate onboard sensor data to motion capture
ground truth values, all BeagleBone processors (the two BB-Blues on the vehicle and the
BB-Green on the ground station per Figure 3) used NTP to synchronize their local clock
with the ground station’s clock during the initial setup. Each BeagleBone then recorded
their NTP clock offset from the ground station clock at the start and end of each flight trial.
These offsets were linearly interpolated for all other points throughout the flight to serve
as a method of synchronization between sensor data captured onboard the vehicle and
motion capture data captured on the ground station before it was sent over the wireless
XBee radio channel and subject to the 40 ms delay.

For the outdoor and indoor flight test sessions, a single gyro and accelerometer
calibration was performed during the initial setup to remove any large offsets in either
sensor. Calibration bias and scaling factors were automatically applied to all raw values
for both sensors as a feature of the MPU9250 IMU. The outdoor dataset used in this paper
was not originally meant for an analysis of magnetic fields. As such, no magnetometer
calibration procedure was performed before the outdoor flight data were gathered. Since
the indoor data were gathered specifically for this paper, we used the calibration method
from [38]. Table 1 shows the scaling factor, bias, and nonorthogonality metrics for the PNI
RM3100 applied to the magnetometer measurements for the indoor flight tests. A perfect
sensor would have scale factors of 1 and bias and nonorthogonalities of 0. Even though
we did not have a calibrated magnetometer for the outdoor readings, Table 1 gives us
confidence that the RM3100 provides good measurements with uncalibrated errors that are
small relative to the 50 µT field at the outdoor flight space.

Table 1. Calibration parameters of RM3100 magnetometer from indoor flight tests.

Scale Factor (-) Bias (µT) Non-Orthogonalities (°)

a b c x0 y0 z0 ρ λ φ

1.01 0.955 0.942 −1.26 −2.46 3.24 0.182 2.28 −0.118

All outdoor tests were conducted at the University of Michigan’s outdoor netted
drone facility, M-Air, equipped with 30 Qualisys motion capture cameras for ground truth
position and attitude. The indoor flight tests were conducted in the Robot Fly Lab in
the Ford Motor Company Robotics Building equipped with 8 Optitrack motion capture
cameras for the ground truth. The outdoor data were collected in a single August 2020
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evening in M-Air. The indoor data were gathered in March 2021 inside the Robot Fly Lab.
The usable volume for the indoor flight lab space is smaller than that of M-Air. As such, the
flight profiles used outdoors (Section 4.2) covered larger areas than their indoor equivalents
(Section 4.3)

For the outdoor flights, the motion capture origin was set at the center of M-Air, which
was surveyed to be 42◦17’39.95257” N, 83◦42’37.59818” W. According to Google Earth, the
center of M-Air has an altitude of 270m above sea level. M-Air has pillars that align with
geographic north–south and east–west. Using these pillars, the +X axis of the motion
capture system was aligned with geographic north (by visual inspection) and the +Z
motion capture axis aligned with the gravity vector using a leveling tool.

For indoor flights, the +X axis of the motion capture origin was aligned with the
long axis of the indoor flight space. There is no special relationship between the indoor fly
lab’s selected origin and Geographic North. To achieve consistency between flights, we
marked the position and orientation of the desired motion capture origin on the ground.
The +X axis of the indoor motion capture origin was aligned with this tape marker via
visual inspection while the +Z axis of the motion capture system was aligned with the
gravity vector using a leveling tool.

Motion capture position and attitude estimates are given with respect to a virtual rigid
body defined from a set of motion capture markers on the vehicle. The body frame for
the virtual vehicle is the centroid of all motion capture markers used to define the rigid
body and does not necessarily coincide with the center of mass of the actual vehicle. For
outdoor data, the orientation of the virtual rigid body was aligned with the physical vehicle
through select placement of motion capture markers, a feature of the Qualisys motion
capture system. The indoor Optitrack motion capture system has no feature to align the
virtual rigid body with the physical vehicle, but our motion capture targets were only
placed once for all indoor flights, so any systematic bias was consistent in all data gathered.
To characterize the performance of our attitude estimator under different flight maneuvers,
each flight test followed a trajectory from one of the flight profiles detailed below.

4.2. Outdoor Flight Profiles

To investigate the value of magnetic field maps for indoor attitude estimation, the
multirotor flew five different flight profiles, each meant to excite roll, pitch, and yaw in
different ways. Flight Profile A (FP-A) is a square trajectory where the vehicle hovers at
each corner of the square. This flight profile offers large translations with constant altitude
and heading. Flight Profiles B and C are level circle trajectories with large, continuous
translations, constant altitude, and a desired heading that is always tangent to the circle.
FP-B has a slower tangential speed than FP-C. Flight Profile D is an inclined circle similar
to B and C, but altitude is no longer constant. Finally, profile E is an angular oscillation
test featuring small translation, but large oscillations in roll and pitch. All trajectories were
flown at an altitude of 1.5 m except FP-D (the inclined circle) with the desired altitude
varied from 0.7 m to 3.3 m. Figure 4 shows the five outdoor flight profiles. All outdoor
flight tests have two-digit identification numbers per Table 2.

FP-A flown outdoors has side length 10 m. The vehicle is commanded to hover at
each corner of the square for 10 s followed by a 10 s cubic spline translation to the next
corner. From the takeoff point, the vehicle moves to the −X,−Y (southwest) corner, then
traces a square by moving +X (north), +Y (east), −X (south), then −Y (west) two times
before returning to the origin to land. Cubic spline velocities start and end at rest while
position constraints change as appropriate to traverse the square resulting in a maximum
commanded speed of 1.5 m/s.
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(a) XY View (b) YZ View

Figure 4. Five outdoor flight profiles.

Circular profiles FP-B and FP-C have turning radius 5 m, while FP-D is inclined
with respect to the horizontal plane by 30° and has turning radius 3 m. FP-B and FP-C
maintain an altitude of 1.5 m, while the inclined circle’s altitude varies from 0.7 m to 3.3 m.
The tangential velocity of Profiles B and D are both “slow” at 1 m/s, while Profile C has
a commanded tangential velocity of 3 m/s. For all three circular trajectories, the UAV
heading is directed to follow a tangent to the circular path.

Flight Profile E follows a sinusoidal desired position in the X and Y axes. The net
result is small linear motion and fast changes in vehicle roll and pitch. The sinusoidal
reference trajectory has a 0.3 m amplitude with a frequency of 3 Hz. In each trial of FP-E, the
vehicle oscillates along the pitch axis (±X direction) first for 90 s followed by oscillations
in the roll axis (±Y direction) for the same duration. The UAV is commanded to maintain
a constant heading throughout the flight and remain stationary for 5 s between roll and
pitch oscillations to decouple motion in each axis.

Two three-minute trials of each flight profile were conducted with all sensors sampled
per Section 4. One trial from each profile was used to create the GPR-based map (training
data), while the other was used to perform attitude estimation with an MEKF (utilization
data). The specific trials used for training and utilization are shown in Table 2. For the
training data, all observations were downsampled to 1 Hz before being fed into the GPR.
In the case of the utilization data, the MEKF was given all sensor data at the respective
sampling rates.

The flight profiles in this work were meant to capture different types of flight methods.
FP-A has short periods of motion with long segments of stationary hover that emulate
surveillance-based applications of multirotors. This trajectory enables the drone to experi-
ence the planar spatial variation of the workspace by covering the span of the workable
area. FP-B was meant to emulate the continuous motion of fixed-winged vehicles, but we
settled on a circular trajectory due to the space constraints of our workspace. In retrospect,
an elongated and beveled rectangular circuit would allow for periods of straight flight
with some banked turns to better represent fixed-winged flight. FP-C is a more aggressive
version of FP-B, while FP-D was designed to capture the vertical spatial variation of the
workspace. Finally, FP-E is a stress test of roll and pitch estimation, but not a typical
maneuver one would expect a flight vehicle to perform.

Our vehicle and its controller are not able to safely execute aggressive maneuvers as
seen in drone racing or in acrobatic drones. Though such cases would be good stress tests
for the attitude estimation portion, they were not achievable with our current setup. As
such, we used FP-C and FP-E as stand-ins for “aggressive” flight maneuvers within the
capabilities of our system.
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4.3. Indoor Flight Profiles

The five flight profiles from the outdoor dataset were repeated inside the Robot Fly
Lab with the following differences. To distinguish between outdoor and indoor trajectories,
let FP-A denote the outdoor level square, while FP-In-A the indoor variant; analogous
notation was adopted for the other four flight profiles. The indoor profiles have smaller
X−Y footprints to fit the indoor flight space, so more laps were traversed to achieve the
desired three-minute flight duration.

FP-In-A is a rectangle with a 4m side length in the X direction and a 3 m side length
in Y; it is otherwise the same as FP-A. FP-In-B (slow level circle) has a 1.5 m radius, but is
otherwise identical to FP-B. FP-In-C (fast level circle) has a 1m radius and a commanded
tangential velocity of 1.5 m/s, but is otherwise identical to FP-C. FP-In-D (slow inclined
circle) has a 1.5m radius and 30° inclination, which bounds its commanded altitude between
0.85 m and 2.15 m. FP-In-E (stationary oscillations) is identical to the outdoor FP-E. Figure 5
shows the five indoor flight profiles. All flight tests conducted indoors have a three-digit
number starting with a “1” per Table 3.

(a) XY View (b) YZ View

Figure 5. Five indoor flight profiles.

Two additional trajectories (Scan-α and Scan-β) were flown indoors to train and
validate the GPR-based magnetic field map. Both are a lawnmower coverage pattern in
the X − Y plane at three different altitudes. Scan-α (training set) was flown at 0.75 m,
1.5 m, and 2.25 m altitudes, while Scan-β (validation set) was flown at 0.5 m, 1.5 m, and
2 m altitudes. The goal was for the validation set to have an altitude that forced the GPR
to extrapolate (0.5 m), interpolate (2 m), and match (1.5 m) the training set altitudes. At
each altitude, the drone flew a lawnmower pattern in the X−Y plane by traversing from
−2 m to +2 m in the X direction, then changing the Y position from −1.5 m to +1.5 m
in 0.5 m increments. Similar coverage patterns have been used in other magnetic field
mapping works [41–43]. Figure 6 shows the desired positions and actual flight position
Scan-α (test_100) and Scan-β (test_102) trajectories. In Figure 6b, the lines show the ground
truth position of the vehicle at 120 Hz, while the dots are downsamples of the position used
to train (downsampled to 1 Hz) and validate (downsampled to 2 Hz) the GPR-based map.

Two trials of each flight profile were conducted with all sensors being sampled at
the aforementioned frequencies (Section 4). For the indoor data, we trained the GPR in
two different ways. One methodology is to train the GPR using the Scan-α lawnmower
pattern, and the alternative is to train the GPR using one trial each of the five indoor flight
profiles (FP-In-A through FP-In-E), as summarized in Table 3. In both cases, we used both
the Scan-β trajectory and separate tests of the FP-In flights to validate the map. Below,
we use these two methods of training the GPR to analyze which yields more accurate
maps (Sections 5.1 and 5.4). In general, training tests were downsampled to 1 Hz, while
validation sets were downsampled to 2 Hz. The one exception is when training with
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FP-In-A, we downsampled to 2 Hz to provide better coverage along the edges of the planar
rectangle. The FP-In-A locations shown in Figure 5 were downsampled to 2 Hz, while all
others were at 1 Hz.

(a) Desired positions of Scan-α (training) and Scan-β
(validation) trajectories.

(b) Actual positions where the magnetic field was sampled during
test_100 and test_102. The dots show the 1 Hz and 2 Hz downsampled
locations, respectively.

Figure 6. Scan-α and Scan-β: coverage patterns to train and validate the magnetic field map for the indoor flights.

4.4. Creating the GPR-Based Magnetic Field Reference Map

To create the GPR-based magnetic field map, we first sampled the magnetic field at
the desired locations to form a training dataset. For this, we split the flight tests into three
sets: GPR training, GPR validation, and MEKF utilization. Table 2 shows which tests were
used in each respective set for the outdoor dataset, while Table 3 shows analogous data
for the indoor dataset. At the IMU 200Hz sampling rate, each 3 min flight generated over
40,000 datasets. However, many of these points are spatially redundant since the vehicle
does not move very far in 1/200 of a second. In order to maintain efficient GPR execution,
all training datasets were downsampled to 1 Hz. The exception is FP-In-A, which was
downsampled to 2 Hz to provide better coverage on the edges of the planar rectangle. The
outdoor GPR map uses 1157 observations from the five outdoor flight profiles. Each point
in Figure 4 is an observation used to create the outdoor map. The indoor map was trained
in two different ways, either using the ∼250 observations from one of the 2 Scan-α tests
(Figure 6b) or using 1298 observations from the indoor flight profiles (Figure 5).

For each map, the observations that made the training set were used to train three
separate Gaussian processes. Each observation has a 3D input (x, y, and z position of the
observation) and a 1D output (a single component of the 3D magnetometer measurement).
Once trained, each Gaussian process can be queried to give the X, Y, or Z component of the
magnetic field at any desired position, including locations that were not directly observed
in the training set. In effect, we used the GPR to interpolate and predict the magnetic
field at unobserved locations in each flight space. Although three independent Gaussian
processes performed regression for each of the X, Y, and Z components of magnetic field,
we refer to the composition of these as a single unit (e.g., “GPR”, “map”, “GPR-based
map”, etc.).
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Table 2. Outdoor flight profiles from Section 4.2 were split into a “training” set (to create the GPR
map) and a “utilization” set (to analyze attitude estimation). Each flight profile contributes a single
training flight and a single utilization flight.

Training (1.0 Hz) Validation Utilization (Max Sensor Frequency)

FP-A test_01 – test_10
FP-B test_03 – test_11
FP-C test_05 – test_12
FP-D test_07 – test_13
FP-E test_09 – test_14

Table 3. The indoor flight profiles from Section 4.3 have dedicated flight trajectories for GPR training
and validation. The indoor experimental profiles match the outdoor versions, but with smaller
footprints to fit in the spatially constrained indoor motion capture arena.

Training (1.0 Hz) Validation (2.0 Hz) Utilization (Max Sensor Frequency)

Scan-α test_100 & test_101 – –
Scan-β – test_102 & test_103 –

FP-In-A test_105 (2Hz) test_115 test_115
FP-In-B test_107 test_116 test_116
FP-In-C test_110 test_117 test_117
FP-In-D test_112 test_119 test_119
FP-In-E test_114 test_120 test_120

The open-source toolbox gpml-matlab (Section 3.2) was used for training and querying
the GPR. A squared exponential covariance function was used with a Gaussian likelihood.
The hyperparameters (i.e., characteristic length scale, signal and noise standard deviations)
for all three Gaussian processes were computed separately by minimizing the log marginal
likelihood. The gpml-matlab toolbox implements the methods from [30].

4.5. Querying the WMM Magnetic Reference Map

The World Magnetic Model (WMM), built by the British Geological Survey group,
models Earth’s magnetic field [44]. A similar model called the International Geomagnetic
Reference Field (IGRF) gives the same reference field values at M-Air within 0.01 µT.

WMM uses observations of Earth’s magnetic field from Earth-orbiting spacecraft to
construct a model of the magnetic field and how it will change over the course of five
years. The model is most accurate on the year the new version is released, and accuracy
degrades over five years until the next release is available. WMM2020 was released in
December of 2020. Although our outdoor tests were performed in August 2020, we used
WMM2020 rather than its predecessor, WMM2015. For this work, we used WMM to
provide a magnetic reference field value rk,mag that was assumed to be constant at all
locations throughout the workspace since WMM gives the same magnetic field values for
positions within 10m of the outdoor workspace origin. This is why we refer to WMM
as our low-resolution source, while the GPR-based map is our high-resolution source of
magnetic field reference vectors rk,mag.

WMM was not used as a source of reference vectors for the indoor analysis since its
predictions were not accurate for the values measured inside. Instead, to emulate the low
resolution of WMM, we queried the GPR at a single location indoors and assumed the
magnetic field as constant for all points in the workspace.

5. Results and Discussion

In this section, we first assess the accuracy of the GPR-based magnetic field map
by analyzing its error against a validation set. Since the outdoor dataset did not have
a calibrated magnetometer, this accuracy analysis was only performed on the indoor
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Robotic Fly Lab data. Next, we present a novel method of visualizing 3D magnetic fields in
Section 5.2 to highlight the spatial variation differences between the indoor and outdoor
magnetic fields. This analysis was used to explain the trends seen in Section 5.3, where we
demonstrate the value of magnetic field maps on 3DOF attitude estimation in regions with
nonconstant magnetic fields. In Section 5.4, we compare the accuracy of GPR maps trained
on the observations from the Scan-α coverage pattern against the maps trained from the
indoor flight profiles. Finally, Section 5.5 summarizes how magnetometers can assist with
roll and pitch estimates typically reserved for the accelerometer unit to handle.

5.1. Accuracy of GPR-Based Magnetic Field Map

This section analyzes the accuracy of the GPR when used to map the magnetic field
inside the Robotic Fly Lab. The GPR-based map is capable of accurately estimating the mag-
netic field even when extrapolating outside of and interpolating between observed regions.

To analyze the accuracy of the magnetic field map, we created a GPR-based map
with observations from a Scan-α flight test and checked its accuracy against validation
data from a Scan-β test (see Section 4.3). Per Section 4.4, the GPR for the indoor map was
created by taking ∼250 observations from the Scan-α flight test_100 or test_101. Figure 7
shows the B̃x, B̃y, and B̃z estimation error at the ∼490 locations observed in the Scan-β
validation flight tests (see Figure 6). The vertical lines in each subplot group the flight into
three constant-altitude sections separated by a few observations during altitude changes.
Observations at 0.5 m are indexed from 10 to 166, 1.5 m from Indices 169 to 309, and 2.0 m
from Indices 312 to 468. The segments from Indices 0 to 10 and 468 onward represent the
takeoff and landing sequences, respectively. The black dots represent the GPR estimation
error, while the gray fill shows two standard deviations (2σ) of the GPR’s uncertainty at
each location. The red percentage in each constant-altitude section quantifies how often
the error is within the gray uncertainty region. Figure 7e,f show estimated and measured
magnetic field values at each location, which were used to compute the errors shown
in Figure 7a,d, respectively. Here, each red cross is a measurement from the validation
set, while the blue line and shading are the GPR prediction and uncertainty, respectively.
Figure 7e,f are qualitatively similar to the other two training/validation pairs.

The GPR for each axis generally had less than 1 µT of error over all validation mea-
surements. The Scan-α training trajectory sampled points at altitudes 0.75 m, 1.5 m, and
2.25 m, while the Scan-β validation set flew at 0.5 m, 1.5 m, and 2.0 m. As such, the GPR
must extrapolate at 0.5 m (Indices 10 to 166) and interpolate at 2.0 m (Indices 312 to 468)
and directly predicts the results at an observed altitude of 1.5 m (Indices 169 to 309).

Since each GPR’s estimate is a Gaussian distribution, we expected their estimation er-
ror to be within two standard deviations 95% of the time. By analyzing the red percentages
in Figure 7, training on test_100 (top row) yielded more reliable error and uncertainty met-
rics than test_101 (middle row). As such, test_100 was used to train the indoor GPR-based
magnetic field map. Once the accuracy of using GPRs to serve as maps of magnetic field
was characterized, the maps were used to analyze the spatial variation of the magnetic
fields in our indoor and outdoor test arenas.
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(a) Training with test_100. Validating with test_102.
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(b) Training with test_100. Validating with test_103.
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(c) Training with test_101. Validating with test_102.
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(d) Training with test_101. Validating with test_103.
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(e) Training with test_100. Validating with test_102.
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(f) Training with test_101. Validating with test_103.

Figure 7. GPR-based magnetic field map error on∼490 validation points from Scan-β. In order, the large segments separated
by vertical bars are at altitudes 0.5 m, 1.5 m, and 2 m, respectively. For Figure 7a–d, the red percentage value shows how
often the error is within the 2σ uncertainty for each altitude segment.
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5.2. Analyzing the Spatial Variation of Magnetic Fields

This section presents a new method to visualize 3D magnetic field maps and compares
the magnetic field inside the Robotics Fly Lab to that of the outdoor M-Air facility. We
show, qualitatively, that the magnetic field indoors has more spatial variation than outside.

Figure 8a shows the GPR prediction of the magnetic field at the outdoor facility for four
different altitudes. Black arrows indicate the horizontal field component, while the color
behind each arrow depicts B̃z at that location. In Figure 8a, the +X direction is Geographic
North. Figure 8b shows the GPR prediction for the indoor lab where Geographic North
is approximately in the −Y direction. The outdoor magnetic field map (Figure 8a) was
generated using 1157 observations of training data from the five outdoor flight profiles
(Table 2), while the indoor map (Figure 8b) was generated using the 245 observations from
test_100 (a Scan-α trajectory). The indoor map was qualitatively similar when trained on
test_101.
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(a) M-Air magnetic field. North is in the +X direction.
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(b) Fly Lab magnetic field when trained on test_100 (Scan-α).
North is approximately in the −Y direction.

Figure 8. Outdoor (a) and indoor (b) magnetic field at four different altitudes. Black arrows show the direction of the
planar (X−Y) component of the magnetic field. The color behind each arrow shows the strength and direction of the Z
component of the magnetic field.

At each location, the black arrow gives the local planar heading (or declination) of
the magnetic field, which is equivalent to the direction a compass would point to at that
location. To most people, this is the most familiar part of the magnetic field, and it is used
to estimate heading. Parsing just the black arrows gives users an idea of how the local
Magnetic “North” changes throughout a workspace and how reliable heading estimates
might be without any magnetic field mapping or disturbance rejection. The color behind
each arrow gives the strength and direction of B̃z. This component of the magnetic field is
often ignored if the magnetometer is used only for estimating heading. However, Figure 8b
depicts features in B̃z that would be valuable for position localization, and in Section 5.5,
we show how using B̃z can assist with roll and pitch estimates.

This method of visualization allowed us to analyze the relative strength of the B̃x and
B̃y and the absolute strength of B̃z. Unfortunately, these figures show no visual indication
of how the horizontal (B̃x−B̃y) magnitude of the field compares to the vertical component
(B̃z). For the indoor flight space, such comparisons can be made using Figure 7e,f. For the
1157 observations in the outdoor training dataset, the range of measured values for each
component of the magnetic field was B̃x ∈ [15, 24]µT, B̃y ∈ [−7, 2]µT, and B̃z ∈ [48, 54]µT.
Finally, there is no visual indication of the uncertainty of the GPR’s estimate in our figures.
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However, as in [12,24], one could use the transparency of the arrows and colors to indicate
regions of lower certainty.

Returning to Figure 8a, note that the magnetic field at M-Air generally points towards
Geographic North and into the ground. These characteristics remain fairly constant as a
function of altitude. The total magnetic field strength varied from 51.6 µT to 57.6 µT for all
points in the outdoor training dataset.

Figure 8b shows that the indoor magnetic field at 0.5 m was generally westward, but
pointed more northwest as altitude increased. Recall that Geographic North is approxi-
mately in the −Y direction in this figure. Figure 7e,f show that B̃z is the largest component
of the magnetic field indoors as well. The total magnetic field strength varied from 43.9 µT
to 73.3 µT for all points in the indoor training dataset.

For the indoor magnetic field, B̃z had a larger range of values as altitude increased
with both the smallest and largest values appearing at an altitude of 2.25 m. At all altitudes,
B̃z had a larger magnitude on the −Y side and a smaller magnitude on the +Y side. The
−Y wall is a movable divider between the Robot Fly Lab and an adjacent lab space. This
divider has reconfigurable panels that run along a metal track about 3 m off the ground.
We believe this metallic track and metallic portions of the panels were responsible for the
strengthened Z field on the −Y side of the indoor flight lab.

The magnetic field of the indoor workspace had much more spatial variation than the
magnetic field outside. The indoor field also changed noticeably as a function of altitude, a
trend that was recently analyzed in [25]. In the next section, we show how high-resolution
GPR-based magnetic field maps can be used for attitude estimation in regions with spatially
varying magnetic fields.

5.3. Comparison of Magnetic Field References

This section shows that the high-resolution GPR-based magnetic field map is a better
source of reference magnetic field vectors rk,mag when there is high spatial variation in the
magnetic field. If the magnetic field has low spatial variation, the GPR’s reference vectors
yield similar attitude estimate errors assuming the field is constant everywhere.

Table 4 shows the root-mean-squared error (RMSE) in degrees of the MEKF’s attitude
estimator for all five flight profiles of the outdoor dataset. The “training” flight tests used
to create the GPR-based magnetic field map were different from the “utilization” tests used
here to evaluate attitude estimation error (Table 2).

For each flight test, the three table columns correspond to roll, pitch, and yaw RMSE
in degrees. Estimated quaternions were converted to Euler angles using a 3-2-1 (yaw-pitch-
roll) rotation sequence. The first column indicates the source of the magnetic field reference
vectors. The first row labeled “Gyro/Accl Only” excludes magnetometer data; it uses only
the gyro and accelerometer to perform attitude estimation. Yaw RMSE values were omitted
here since heading is not observable with only gyro and accelerometer data. The second
row is for WMM, which has such a low resolution that the reference vector is the same for
all locations in the five flight profiles. The third row queries the GPR-based map at a single
location and uses that single reference magnetic field vector regardless of the vehicle’s
actual location. The position (0, 0,−1.5) m was chosen since all flight profiles were centered
around the origin and most had a fixed 1.5 m desired altitude. The exceptions are FP-D
and FP-In-D, the inclined circle trajectories. This row can be interpreted as using the GPR
with the same low-resolution WMM offers. Finally, the last row, labeled “GPR”, queries
the GPR-based map at each time step to provide a specific magnetic field reference vector
for each vehicle position to leverage the full interpolation capability of the GPR. We refer
to this case as the “high-resolution” map and the other two, constant, reference vector
methods as “low-resolution” alternatives. The bold value in each column corresponds to
the reference vector source that yielded the lowest roll, pitch, or yaw RMSE.

Table 5 shows similar data, but now for the indoor dataset. Again, the “training”
flight tests are different from the “utilization” tests used to evaluate the estimation error
per Table 3. The format of Table 5 is the same as that described above. WMM’s magnetic
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reference vector is not representative of the magnetic field inside the Robot Fly Lab, so
WMM was not considered for indoor analyses.

Table 4. RMSE for each outdoor experimental test using different magnetic field reference sources.
The first row excludes magnetometer data. For each test, the three columns show the RMSE for roll,
pitch, and yaw, respectively, in degrees.

RMSE (◦) FP-A FP-B FP-C FP-D FP-E
Roll|Pitch|Yaw test_10 test_11 test_12 test_13 test_14

Gyro/Accl Only 1.6 2.2 – 2.6 2.0 – 10 4.2 – 3.2 2.2 – 7.8 10 –

WMM 1.6 0.7 2.3 2.3 1.5 2.2 3.2 1.4 4.8 2.5 1.4 2.2 1.8 0.7 1.9
GPR (0, 0, −1.5) m 1.7 0.4 2.6 2.5 1.7 2.4 3.4 1.6 5.1 2.7 1.6 2.5 1.9 0.4 2.2

GPR 1.7 0.7 2.7 1.7 1.9 4.5 2.2 1.8 5.5 1.3 2.5 3.7 1.8 0.5 4.7

Table 5. RMSE for each indoor experimental test using different magnetic field reference sources. The
first row excludes magnetometer data. For each test, the three columns show the RMSE for roll, pitch,
and yaw, respectively, in degrees.

RMSE (◦) FP-In-A FP-In-B FP-In-C FP-In-D FP-In-E
Roll|Pitch|Yaw test_115 test_116 test_117 test_119 test_120

Gyro/Accl Only 1.1 0.8 – 2.5 1.5 – 10 6.7 – 2.2 1.6 – 1.5 1.3 –

GPR (0, 0, −1.5) m 2.6 4.7 9.0 2.5 3.2 11 2.9 3.6 13 4.9 3.8 11 1.1 0.6 5.0
GPR 0.7 0.2 1.7 1.1 0.9 3.7 1.1 1.7 5.0 0.8 0.9 2.7 1.0 0.4 1.9

For each flight test, the same sensor data were played back to the MEKF with the
only difference being the sensors available or the source of magnetic field reference vectors.
The MEKF parameters were tuned by hand, resulting in reasonable, but not “optimal”,
parameter values. The MEKF parameters were held constant across all indoor and outdoor
flight datasets. Because of this, it is possible to have the overall lower RMSE values in
Tables 4 and 5 if the MEKF is tuned more specifically for the indoor or outdoor environment
or specific flight profiles.

For the outdoor dataset in Table 4, the high-resolution map (“GPR” row) yields compa-
rable attitude estimates relative to the low-resolution magnetic field reference sources. The
high-resolution map tended to give lower (but comparable) roll error than the alternatives.
Aside from FP-A and FP-C, the outdoor flight tests had noticeably higher yaw error in
the “GPR” row. We believe this increased yaw error was caused from not calibrating the
RM3100 magnetometer before performing the outdoor flight tests. Since the horizontal
component of the magnetic field is much smaller than B̃z (Section 5.2), small errors due to
lack of calibration would more easily change the measured heading of the magnetic field.
This poses more of a problem to our yaw estimates than roll and pitch [4]. We would expect
such small calibration errors to have less impact on yaw estimates in a more equatorial
part of the world where the horizontal component of the magnetic field is more dominant.

Table 5 shows that when testing indoors, with more spatial variation in the field, the
high-resolution GPR-based map consistently allowed the MEKF to achieve lower errors
in roll, pitch, and yaw estimates. The most significant outlier was observed from test_119
where using the high-resolution map reduced the error in all the Euler angles by at least
one-third. We believe this was because test_119 was a trial of FP-In-D (inclined circle) and
spent more time in regions of the magnetic field that differed significantly than what was
observed at the reference (0, 0,−1.5) m state (see Figure 8b). In fact, similar trends occurred
for test_115 and FP-In-A, the level rectangle that traced the perimeter of the flight space.
In such cases, the constant ambient magnetic field assumption was inconsistent with the
magnetometer’s observations as the vehicle flew.

From Table 4, we see that when the magnetic field of a workspace had a low spatial
variation, having a higher resolution map did not reduce the attitude estimation error in
general, but also did not make attitude estimates generally worse. The exception was with
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yaw estimation: which was consistently worse when we constantly changed the magnetic
reference vector as the vehicle moved. However, the relatively larger yaw error was likely
due to a lack of magnetometer calibration for the outdoor flights in combination with a
small horizontal magnetic field. In contrast, Table 5 shows a promising environment where
the high resolution of the GPR-based maps can be utilized to improve vehicle attitude
estimation. In short, high-resolution GPR-based magnetic field maps can significantly
improve attitude estimation if there is high spatial variance, but do not perform noticeably
better or worse than the low-resolution alternatives when there is low spatial field variation.

It is important to note that the outdoor magnetic field map was trained using the flight
profiles, while the indoor map was trained using Scan-α. In the next section, we show that
both methods of training yielded similar accuracy when validating on the flight profiles.

5.4. Comparison of GPR-Based Map Training Methods

This section analyzes how the locations of the observations used in the training set
affected the accuracy of the GPR-based map by comparing the accuracy of a GPR trained
on Scan-α trajectories against a GPR trained on indoor flight profiles. We show that training
on Scan-α yielded mean absolute errors of 0.28 µT, 0.27 µT, 0.48 µT, while training on the
five indoor flight profiles gave mean absolute errors of 0.30 µT, 0.28 µT, and 0.48 µT for Bx,
By, and Bz, respectively, when validated on the indoor flight profiles. As such, the outdoor
GPR-based map was sufficiently accurate for the analysis conducted in Section 5.3, and the
conclusions drawn from Tables 4 and 5 are sound despite differences in the GPR training
methodologies. Note that these metrics exclude validating on FP-In-A due to a sensor
misalignment during test_105 (FP-In-A training flight).

Figure 9 shows the accuracy of the indoor magnetic field map when trained on five
indoor flight profiles (FP-In) and validated on a Scan-β flight. The left plot is the GPR
estimation error when validated on flight test_102, while the right plot shows the GPR
estimates (blue line) against observations from the validation set (red cross). The results
were qualitatively similar when validating on test_103. The blue and gray shaded regions
depict two standard deviations of GPR uncertainty at each sampled location. The black
vertical lines partition the figure into sections of constant altitude (0.5 m, 1.5 m, and 2 m,
respectively). We used samples from test_105, test_107, test_110, test_112, and test_114 as
shown in Table 3 to train the GPR on the FP-In trajectories. Figure 7 shows similar metrics
for the indoor GPR-based map when trained on the lawnmower coverage pattern Scan-α.
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(a) Training with FP-In flights. Validating with
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Figure 9. Accuracy of the indoor GPR-based magnetic field map when trained on the five indoor
flight profiles (FP-In flights) and validated on test_102 (Scan-β). The large regions separated by the
black vertical lines show areas of constant desired altitude for the Scan-β trajectory.
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Figure 9 shows that the error on the 1.5 m sweep was much lower than for the
other two altitudes. This is because most of the flight profiles in the FP-In training set
were trajectories at an altitude of 1.5 m. As such, the GPR trained on FP-In had a good
understanding of the magnetic field at this altitude, but not at 0.5 m and 2.0 m, the other
Scan-β altitudes. This was expected since Gaussian processes tend to only provide accurate
predictions near data found in their training set.

Above, we showed that when validating on Scan-β, training on Scan-α (Figure 7)
yielded better results than training on FP-In trajectories (Figure 9). However, the MEKF
did not use data from the Scan-β trajectories, so it was important to analyze the accuracy
of the two mapping methodologies on FP-In flights as well.

Figure 10 shows the results of validation with the five FP-In validation flights (test_115,
test_116, etc.; see Table 3). The left figure column shows the results when training on Scan-
α, and the right column was trained on the five FP-In training flights. Here, in contrast
to other similar plots, the vertical black lines separate each of the five FP-In validation
flights (in order of FP-In-A to FP-In-E). We can see that when validating on the intended
flight profiles, both training methodologies had a similar error. The exception was the
steady-state error of Bx and Bz when validating on the level rectangle (test_115 of FP-In-A)
in Figure 10b,d.
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(b) Trained and validated on FP-In flights.
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(c) Trained with test_100. Validated with FP-In
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(d) Trained and validated on FP-In flights.

Figure 10. The accuracy of the indoor GPR-based magnetic field map when validated on the five indoor
flight profiles (FP-In flights). The black vertical lines separate each of the five indoor flight profiles.
The steady-state error in Figure 10b was likely caused by a misalignment with the magnetometer in
test_105 (FP-In-A training flight).
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Figure 10d shows that the steady-state shift for FP-In-A was consistent with the mag-
netometer being pitched slightly in the training flight (blue line) relative to the validation
flight (red cross). Although there were no significant crashes during the indoor flight tests,
there were some rough landings that occasionally dislodged some standoffs and screws. It
is possible such a harsh landing misaligned the RM3100 magnetometer relative to the rest of
the rigid body. Since we only saved the data from the successful flights, this misalignment
must have happened on an unsuccessful flight just before test_105, but was fixed before
test_107. Note: this hypothesis also explains the sinusoidal Bx and Bz error trends on the
1.5 m altitude section of Figure 9a where the peaks in errors occurred when the Scan-β
trajectory was on the outer rectangular perimeter of the flight space (i.e., overlapping most
with test_105), and the dips occurred when Scan-β passed through the center region with
the data from the flight tests that had a properly aligned magnetometer. Excluding FP-In-A,
training on Scan-α yielded mean absolute errors of 0.28 µT, 0.27 µT, 0.48 µT while training
on the five indoor flight profiles gave mean absolute errors of 0.30 µT, 0.28 µT, and 0.48 µT
for Bx, By, and Bz, respectively.

As such, Figure 10 shows us that the two training methodologies yielded comparable
results when validating on the FP-In flight profiles and highlights the importance of
accurate IMU sensor alignment for every flight. Due to the issue with test_105 (FP-In-A)
and that querying the GPR was faster when it was trained on fewer data, we used test_100
(Scan-α trajectory) to train the indoor GPR during the analysis of Section 5.3. However, we
showed that training the indoor GPR on the five indoor flight profiles would likely yield
similar results to Table 5.

This brings us to an important point. If the intended route through an indoor
workspace is known a priori, then it is sufficient to construct a magnetic field map by
gathering observations along the path. This kind of mapping methodology is common
with self-driving cars where maps are only generated along roads the vehicle intends to
traverse. However, training magnetic field maps from coverage patterns such as Scan-α
will generally yield more accurate results throughout the workspace.

In summary, we used the indoor flight space to compare two mapping methodologies
and showed that mapping with the Scan-α coverage pattern yielded a uniformly more
accurate map when validating on Scan-β, but had comparable accuracy when validating
on the indoor flight trajectories. Since the outdoor GPR was trained using the five outdoor
flight profiles, we can conclude that our outdoor map is sufficiently accurate near the
locations of the five flight profiles.

5.5. Magnetometer Correction of Accelerometer Roll/Pitch Errors

This section shows that magnetometers can resolve accelerometer roll/pitch errors
observed during maneuvers. For this analysis, we focused on test_117, a FP-In-C trajectory
from the indoor dataset. Recall that all FP-In-C flights followed a level circle with a radius of
1m, a commanded tangential velocity of 1.5 m/s, and a commanded heading that changed
to keep the +X body axis tangent with the circle. As such, in an ideal flight, the vehicle
would experience 2.25 m/s2 of centripetal acceleration along its Y axis.

Figure 11a shows the roll, pitch, and yaw estimates along with their respective errors
when using only the gyroscope and accelerometer. A 20 s into the flight, the vehicle
accelerated from rest to achieve the 1.5 m/s desired tangential velocity. Acceleration was
measured primarily in the body X direction, which causes a transient MEKF pitch error
around the 65 s time mark. As the vehicle reached its maximum speed, the accelerometer
measured centripetal acceleration in the body Y-direction, causing a steady-state roll error
over most of the flight.

This is a common problem for flight vehicles [45–47] and other platforms [7–10] that
use the accelerometers for attitude estimation. Typically, the accelerometer’s measurement
is discarded or de-emphasized when nongravitational accelerations or sensor anomalies
are detected. Here, we circumvented the need to detect nongravitational accelerations by
simply allowing the magnetometer to assist with roll and pitch estimation.
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(a) Gyro and accelerometer only. (b) Gyro, accelerometer, and magnetometer
with full GPR.

Figure 11. Time series plots for roll, pitch, and yaw estimates of test_117 (fast level circle). Linear and
centripetal accelerations caused pitch and roll errors (respectively) in Figure 11a that were corrected
with the magnetometer in Figure 11b.

Figure 11b is the same flight, but now with the magnetometer. Here, we see that both
the transient pitch error and the steady-state roll error were eliminated, demonstrating that
the information from the magnetometer and the GPR-based map was able to improve roll
and pitch estimates. This is important because, in many applications, the magnetic field
is only used to provide yaw (heading) measurements, while roll and pitch are left to the
accelerometer. However, with sufficient information of the magnetic field, magnetometers
can also assist in correcting roll and pitch estimates.

It is important to qualify when magnetometer adjustment of roll and pitch estimates
will be beneficial. Table 5 shows that for FP-In-C, roll and pitch estimates were improved
even with a constant (low-res) magnetic field reference at all points. This improvement
increased when using the high-resolution, full GPR. FP-In-E showed a similar trend since
the magnetometer was able to offset errors in the attitude estimates caused by the ac-
celeration of maneuvering. However, with FP-In-A, where the vehicle was hovering for
much of the flight, the magnetometer with a low-res GPR map actually made roll and
pitch estimates worse. This is because the indoor flight space had spatial variation in the
magnetic field that was not captured by assuming a constant reference source. However,
with the full GPR, we again see the magnetometer able to improve roll and pitch estimates
past initial accelerometer estimates. Finally, such roll and pitch corrections may not be
viable in equatorial parts of the planet where the the horizontal component of the magnetic
field is dominant.

6. Conclusions and Future Work

This paper presented methodologies to train, validate, and visualize 3D GPR-based
magnetic field maps and examined their value for indoor attitude estimation. We presented
a new visualization technique to better understand the spatial variation of 3D magnetic
fields and discussed its advantages and drawbacks. Our visualization technique relies
on some interpolative tool, such as GPR, to estimate the magnetic field at locations not
found in the training set. Next, we showed that in spaces with high spatial variation,
high-resolution GPR maps can improve attitude estimates, but these maps did not yield
significantly better or worse attitude estimates in spaces with low spatial variation. Finally,
we demonstrated two ways of training GPRs and showed that training a GPR-based map
using coverage flight trajectories such as Scan-α was generally better, though constructing
a map using only observations along flight routes of interest was just as accurate in the
vicinity of the flight route. We also provided an illustrative example of how magnetometers
can assist with roll and pitch estimates in a workspace with high magnetic spatial variation.
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In future work, it will be critical to better understand how much spatial variation an
environment needs before it becomes advantageous or necessary to use magnetic field
maps of the workspace. We plan to apply quantitative methods of describing the spatial
variation of a workspace and investigate how workspaces with spatially varying magnetic
fields can be used to improve position estimates. The goal is to perform full 6DOF position
and attitude estimation using GPR-based magnetic field maps [12]. This would require
an analysis of multiple indoor spaces as in [4,25], which is currently difficult due to our
dependence on motion capture cameras to construct our maps. Previous works have found
success with using LiDAR or visual–inertial odometry to construct magnetic field maps
without motion capture [12,15,16,20,25]. These methods are recommended to facilitate
accurate magnetic field mapping in complex regions where nearby structures offer distinct
mapping information for LiDAR and vision sensors. Furthermore, we aim to investigate
how to better address the time-varying nature of magnetic fields [24] to more accurately
represent the magnetic field near large moving ferromagnetic structures such as elevators
and doors [11,19,24].
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