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ABSTRACT: Around two-thirds of chronic human disease can
not be explained by genetics alone. The Lancet Commission on
Pollution and Health estimates that 16% of global premature deaths
are linked to pollution. Additionally, it is now thought that
humankind has surpassed the safe planetary operating space for
introducing human-made chemicals into the Earth System. Direct
and indirect exposure to a myriad of chemicals, known and
unknown, poses a significant threat to biodiversity and human
health, from vaccine efficacy to the rise of antimicrobial resistance
as well as autoimmune diseases and mental health disorders. The
exposome chemical space remains largely uncharted due to the
sheer number of possible chemical structures, estimated at over
1060 unique forms. Conventional methods have cataloged only a
fraction of the exposome, overlooking transformation products and often yielding uncertain results. In this Perspective, we have
reviewed the latest efforts in mapping the exposome chemical space and its subspaces. We also provide our view on how the
integration of data-driven approaches might be able to bridge the identified gaps.
KEYWORDS: Chemical space, Exposome, Data-driven, Measurability, NTA, Retrospective analysis, Structural elucidation

■ INTRODUCTION
The number of chemical structures known to us is expanding
exponentially; for example, the number of entries to the
Chemical Abstracts Service (CAS) registry has crossed the
threshold of 100 million substances in 2015 and continues to
grow.1−7 A similar trend is observed for other chemical families
and databases.8−13 For example, PubChem currently includes
more than 115 million unique structures, and this number is
growing. Even though these numbers may seem large,
compared to the true size of the chemical space, more than
1060 for organic structures smaller than 500 Da, these lists
cover less than 0.001% of the possible chemical space.13−16

Furthermore, even for known structures, <1% of them have
been experimentally evaluated for their environmental and
biological activity (e.g., toxicity), due to the cost and
complexities associated with such measurements.3−5 In fact,
according to Persson et al., around 80% of the chemicals
defined as in use according to REACH have yet to be assessed,
even though the data may be available.13 Several studies have
shown the negative impact of exposure to chemicals with long-
term adverse health outcomes.17−22 For example, exposure to
per- and polyfluoroalkyl substances (PFAS) has shown to
correlate with the symptoms of autoimmune disease as well as
mental health issues.18,23

Our current chemical management strategy is mainly based
on manual chemical registration and/or experimental measure-
ments of those chemicals in environmental and biological
samples.1,3,4,24 Both approaches are extremely challenging,
costly, and inherently passive or, at best, reactive. Chemical
registration, with regulatory focus, takes place only for
chemicals with large production volumes at the national or
international level (e.g., REACH Regulation).3,8,9,25,26 With
digitalization, these chemical registries and patents as well as
scientific publications have been mined to gain an approximate
idea about the current exposome chemical space (i.e., all the
organic chemicals that humans are exposed to during their
lifetime).27−29 For example, databases such as PubChem or
US-EPA CompTox dashboard are constantly updated with
new chemicals coming from these mining exercises.9,27 This
process, even though sophisticated and powerful, is mainly
centered toward human-made chemicals, thus having limited
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coverage of structures produced via abiotic and biotic
transformation and limited consideration for any future
chemicals.
Chemical transformations can take place in the environment

(e.g., photo- or biological degradation) or within human-made
infrastructures, such as wastewater treatment plants.30−33

Depending on the type of reactions and the structure of the
parent compound, there may be more than 100 new chemicals
formed at even the first level of the transformation tree.31,34,35

Considering the costs and complexity associated with perform-
ing transformation experiments, the expansion of such
methods to the exposome chemical space is impossible, Figure
1. An alternative to this experimentally driven approach has
been the predictive models where a combination of machine
learning and heuristic methods are used.30,31,35 However, these
methods are very uncertain, opaque, are limited to a few
reaction pathways while stopping at shallow levels (e.g., first or
second levels) in the transformation tree.4,36 This implies that
our current estimates of the coverage of the exposome
chemical space are orders of magnitude smaller than its true
size, given the number of possible reactions.
Thus far, measuring/monitoring chemicals in, across, and

between different media (e.g., water, soil, air, or biological
material) has been the main strategy to map the exposome
chemical space. This strategy is reliant on three comple-
mentary approaches, namely, targeted, suspect, and non-
targeted analysis (NTA).39−41 Targeted analysis could be
quantitative and focused on a limited number of preselected
structures; for example, less than a few hundred chemicals are
actively and routinely monitored in different matrices. Suspect
screening/analysis, on the other hand, has been employed to
identify chemicals based on user curated lists of preselected
compounds and/or presence in databases/libraries using full-
scan high-resolution mass spectrometry (HRMS) data.40,41

Finally, NTA is considered the most agnostic approach for
chemical measurement and identification in samples, where the
collected signals are translated into candidate structures and
confirmed via target analysis.40,41 Both suspect and nontarget
analysis are reliant on full scan data generated via HRMS
coupled to a separation technique such as gas or liquid
chromatography (GC/LC-HRMS). For a structurally un-

known chemical to be identified via suspect or NTA, it must
be measurable with our current analytical strategies (i.e.,
separation and detection).16,40,42 What is measurable/analyz-
able with our current analytical technologies is unknown.42 We
are aware of only the identified fraction of the measurable
chemical space (see the description below). Therefore, there
may be chemicals highly relevant to the exposome that are not
measurable with routine methods and may require the
development of specific methods for their analysis (e.g.,
PFOS or glyphosate).23,43,44

Currently less than 10% of the signals acquired for suspect
and NTA assays are successfully identified/annotated.40,41,45,46

For example, even for a single surface water sample, the
preprocessing reveals thousands of chemical signals to be
identified. The existing identification workflows, at best, can
confirm less than a few hundred chemicals in complex samples.
Therefore, the signal of the unidentified chemicals in those
samples remains unused.38,40,47 These unidentified signals may
be of high enough quality to be identified using updated
preprocessing strategies or expanded spectral libraries (i.e.,
retrospective analysis).48,49 In fact, the retrospective analysis of
combined data from multiple human cohorts resulted in
additional inferences on the connection of chemicals and
health outcomes.49

In this Perspective, we critically assess the knowledge and
technological gaps in comprehensive characterization/mapping
of the exposome chemical space. We thereby aim at helping to
provide means for future developments toward more proactive
chemical management.

■ CHEMICAL SPACE
The concept of the chemical space was initially introduced
within the field of drug discovery, where the central role was
the exploration of drug-like structures.50,51 Those efforts were
based on using brute force and known organic chemistry rules
to generate all possible structures within set boundaries, for
example, the number and the type of elements.15,50−52 This
approach resulted in an extremely large number of possible
structures ranging between 1020 and 1060 for molecules
containing 30 atoms or less. Chemical databases such as
GDB-20 or Zinc are generated using this strategy, and they

Figure 1. (a) A conceptual figure showing different chemical subspaces (i.e., “relevant chemical space” to exposome), including unknown chemical
space (gray), exposome chemical space (orange), measurable chemical space (blue), measured chemical space (magenta), and identified/
characterized chemical space (light blue) whereas (b) shows the chemicals in US-EPA CompTox with 800 k unique structures. The Principal
Component (PC) plot was generated using six elemental mass defects and monoisotopic mass of the chemicals in US-EPA CompTox (details of
these calculations and the scripts are provided elsewhere37,38). It should be noted that the size of subspaces in panel (a) are meant only for
visualization purposes and are not representative of the true size of these spaces. The empty spots in the PC space (panel b) suggest that the
exposome chemical space may not be a smooth and continuous space, mainly due to the organic chemistry rules.
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also contain a few estimated molecular descriptors such as logP
(i.e., partitioning coefficient between water and an organic
phase).14,53,54 The main objective of such databases is to be
able to query them for structural similarity and/or a specific
functional group.54 Given the approach used for generating
such databases, they consist of structures that go beyond drug-
like chemicals.55

The chemical space contains a myriad of structures that may
or may not be relevant to a specific application case.16,56 For
example, ozonation degradation products of a natural product,
although highly relevant to exposomics, may not be relevant to
drug discovery. These selected subspaces of the chemical space
are defined as “relevant chemical space” (Figure 1), which are
field/question dependent, in the case of exposome it is
“exposome chemical space”.51,57 Another chemical subspace is
the “measurable chemical space” (Figure 1). This subspace
represents the chemicals within the chemical space that can be
measured using current analytical techniques. The measurable

chemical space focuses only on whether a chemical can be
separated and ionized via one of the existing mass
spectrometry ionization technologies. The measured chemical
space is the chemical subspace where all the structures have
been previously measured (Figure 2). Being part of the
measured chemical space does not imply that these chemicals
have been identified (i.e., structurally confirmed). As an
example, features in chromatograms that are not identified
during NTA assays are part of the measured chemical space.
The most well-known chemical subspace is the structurally
confirmed/identified chemical space. This is composed of
chemicals that are well-known and studied, for example,
pharmaceuticals and pesticides. Except for the identified
chemical space, other subspaces are mostly unexplored and
thus unknown. The relevant and measurable subspaces may
overlap depending on the field. For example, in the field of
exposomics, the relevant chemical space may be larger than the

Figure 2. Depicts all the criteria for a chemical to be measured and identified. Each step results in the size of accessible chemical space.
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measurable one, while in drug discovery this may not hold
true.
Exploration of Chemical Space

To explore such a vast chemical space, several cheminformatics
tools have been built.51,52,54,58,59 These techniques range from
simple nearest neighbor search to generative models based on
large language models.52,58,60−63 These tools are mainly built
either to focus on a very specific subspace of the total chemical
space (e.g., drugs) or to explore the chemical space as a whole,
as a visualization strategy. Recent developments in graph-based
methods such as molecular networks have provided the means
of a more detailed exploration of the chemical space.15,62−64

However, the application of these tools has been limited to
mostly visualizing the chemical space and to the drug discovery
area, due to the sheer size and the diversity of the chemical
space.
Within the exposomics community, the concept of

exploration of the chemical space has been focused on
building large chemical databases (e.g., PubChem).9,10,16,25

Additionally, recent works have used text mining approaches to
further enrich these lists and thus expand the known chemical
space, including chemical classification based on either
repeating units or the presence of specific functional groups.
These tools have also enabled the classification of chemicals
based on their functional groups or repeating units.9,29 The
ultimate goal of these efforts has been detailed characterization
of the exposome chemical space. However, they are inherently
limited to the registered or identified chemicals.

■ EXPOSOME CHEMICAL SPACE
The exposome chemical space is the chemical subspace which
humans are exposed to from conception to death.4,5 The
exposome chemical space is mostly unknown and may include
human-made and natural chemicals, as well as their trans-
formation products. The efforts to explore/map the exposome
chemical space have been divided into computational and
experimental.27,40 The computational approaches focus on
building chemical databases of mainly human-made chemicals
and then ranking (i.e., chemical prioritization) those structures
based on the available metadata (e.g., volume of produc-
tion).3,9,10 As for the experimental strategies, the focus has
been on actively measuring the chemicals in different
environmental compartments, including the transformation
products.40,41

Computational Approaches for Database Building

The main strategy to add human-made chemicals to the list of
chemicals associated with the exposome chemical space has
been the mining of national and international chemical
registries as well as the mining of patents and scientific
publications. One of the earliest efforts to keep track of human-
made chemicals has been Chemical Abstract Services (CAS).
Formed in 1904, CAS collects structural information for
chemicals synthesized as early as 1800 (source: Chemical
Abstract Services). The main source of CAS is the scientific
literature, where newly reported chemicals are registered and
given an identification number (i.e., CAS number). Other
similarly formed databases such as PubChem,9 ChemSpider,65

NORMAN SusDat, and US-EPA CompTox act as hubs where
the data from different chemical registries is gathered, curated,
and made available for public use. While these larger databases
are more generic and tend to have different chemical families,

there are also more specialized chemical databases such as drug
bank,66 human metabolome database,67 and FORIDENT.68

In addition to the literature-based chemical databases, there
are also national and international chemical registries with
mainly regulatory focus. For example, the European Chemical
Agency (ECHA) formed in 2007 is the registry of chemicals
used, imported, and/or exported into the European Union as
well as the Organization for Economic Co-operation and
Development (OECD) and/or eChemportal. As these
chemical databases are meant for regulatory purposes, they
also include information regarding the volume of production/
use as well as biological activity (e.g., toxicity) and
physiochemical properties. However, these databases may
have different volumes of production/use registration thresh-
olds.8,69 Furthermore, these databases rarely include the
transformation products of human-made chemicals unless
they are being actively produced and used for other purposes.
However, these databases are limited to human-made
chemicals, and their size is increasing by around 1500 new
structures a year.3

Not all human-made chemicals, registered or not, are part of
the exposome chemical space due to their total volume of
production, physiochemical properties, and use type. For
example, the potential of exposure to a chemical with a very
small volume of production may be very low, as this chemical
once released into the environment is infinitely diluted.
Between 2010 and 2012, Howard and Muir published three
very influential manuscripts in which they reported lists of high
priority chemicals to be further studied.8,69,70 In those studies,
the authors investigated all the existing North American
chemical databases and selected the chemicals with a volume
of production larger than 1 ton a year. This threshold was set
to ensure the environmental detection of these chemicals.
Additional filtering (i.e., chemical prioritization) based on
physiochemical properties and expert knowledge were
employed to narrow down these chemicals to those pertinent
to the environmental and human exposome. Similar efforts
have been carried out globally for mapping the exposome
relevant chemical space (e.g., SusDat).71,72 It should be noted
that these chemical prioritization approaches are designed to
direct the monitoring programs given the costs and difficulties
associated with them. Consequently, these databases cover
only a small portion of the exposome chemical space.
Experimental Approaches for Exposome Assessment

Detection, identification, and quantification of chemicals in
exposure media and biological samples are additional
approaches for mapping the exposome chemical space (Figure
2).40,41 Typically, a combination of target, suspect, and NTA
using HRMS is employed for the structural elucidation of the
chemicals in the exposome chemical space.39,56,73 Each of these
approaches has its advantages and limitations, and they are
usually combined together to maximize their coverage of the
exposome chemical space.
Targeted analysis is a top-down approach where all of the

necessary information for the unequivocal identification and
potential quantification of a chemical in a sample is available to
the analyst prior to the analysis. Targeted analysis is the main
strategy for routine monitoring of chemicals in environmental
and biological samples.39,40,47,74,75 On the other hand, suspect
and NTA are less certain and also tend to be only
qualitative,40,47,76 even though there have been several new
developments in semiquantification of known and unknown

JACS Au pubs.acs.org/jacsau Perspective

https://doi.org/10.1021/jacsau.4c00220
JACS Au 2024, 4, 2412−2425

2415

pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


chemicals.77 For suspect analysis/screening, a list of suspect
analytes with as much information as possible (e.g., predicted
retention behavior, fragmentation spectra) is compiled,
implying that suspect analysis, similar to the target analysis,
is a top-down approach. The generated suspect list is used in a
later stage for the detection and tentative identification of the
chemicals in the analyzed samples. NTA is the most
comprehensive but uncertain approach for the identification
of chemicals in environmental and biological samples. NTA is
a bottom up approach where minimum or no prior knowledge
about the structure of the chemicals in samples is used during
the identification process. The ultimate goal of most NTA
workflows within the exposomics area is the unequivocal
identification of all chemicals present in a sample. However,
this process is extremely difficult, time-consuming, and
uncertain,40,41 especially when applied across multiple environ-
mental compartments (e.g., air, water, soil, biological fluids,
etc.) and spatiotemporally. Consequently, when looking at the
number of new structures discovered in environmental samples
using NTA strategies in the past five years, those studies
resulted in less than 2% of a database such as Norman
SusDat.38

Transformation Products

Transformation products, natural or based on human-made
processes, theoretically constitute a large portion of the
exposome chemical space. Each human-made chemical could
potentially have a large number of different transformation
products, depending on the reaction pathways and the
environmental conditions (e.g., biotic or abiotic).30,31,35,78,79

Some of these transformation products may be more persistent
than their parent compounds and hence be even more relevant
for the exposome chemical space. However, most of these
structures remain unknown, even though their importance to
environmental and human health has been previously
demonstrated (e.g., DDT and its metabolites DDE and
DDD or disinfection byproducts).80−82

A combination of experimental and in silico approaches is
typically employed for the structural elucidation of the
transformation products of chemicals.30,31,34−36 This task is
carried out for one chemical and one reaction type at a time
due to the complexity of such systems (e.g., photodegradation
of pharmaceuticals). To elucidate the generated transformation
products, a combination of NTA/suspect analysis and in silico
prediction tools is used.83−86 The currently available in silico
tools are able to estimate the structure of a potential
transformation product based on the parent structure and
the reaction type.85 These transformation product structures
are used either for the generation of suspect lists or as potential
candidate structures during the NTA workflows. Additionally,
the generated transformation product structures may not have
their chemical standard available or may not have been
measured before, increasing the complexity and uncertainty of
this task. Additionally, due to the uncertainties associated with
the in silico transformation product structure estimation tools
and the NTA workflows, the addition of the transformation
products to the list of chemicals in the exposome chemical
space has been an extremely slow process. In fact, most of the
chemicals present in the databases such as PubChem or
Norman SusDat consist of the parent structures rather than
transformation products,36 indicating the need for their
expansion with transformation products.

■ MEASURABLE EXPOSOME CHEMICAL SPACE
The measurable exposome chemical space is the subspace of
chemicals that can be measured via existing analytical
strategies, in particular, GC and/or LC-HRMS. A recent
review by Manz et al. highlighted that the majority of human
exposome-related studies that employed HRMS-based NTA
used LC-MS only (51%), followed then by GC-MS only
(32%), ≈16% used both techniques together, and 1% used
direct injection-HRMS without any separation.87 Of 76
HRMS-based studies reviewed in total, there was no
consistency in application of different analytical platforms
across chemical classes or the environmental compartment
studied. The majority of applications lay in the food and
consumer products space (n = 19 studies), followed by air (n =
15), soil/sediment (n = 13), dust and human samples (each, n
= 10), and then water (n = 9). Fundamentally therefore, it
seems that researchers have assumed that, at exposome
relevant concentrations, a large component of chemicals can
be separated via a chromatographic approach and be ionized/
fragmented via HRMS technology. It should be noted that
slight deviation from the optimal experimental conditions may
have extreme impact on the measurable subspace explored by
the used method.16,40,41,87,88 There are several such examples
where more generic methods fail to cover highly relevant
chemicals in the exposome chemical space (e.g., PFOS or
glyphosate).
The separation space is dominated by reversed-phased liquid

chromatography (RPLC) and gas chromatography. For RPLC
in particular, there is often a linearity assumption between the
hydrophobicity and the size of a chemical and its retention
within the set experimental setup.89,90 There are several
reversed-phase liquid chromatography studies where the
retention times of the internal standards are correlated to
their octanol/water partitioning coefficient.89,91,92 These linear
models are then extrapolated to infer which portion of the
chemical space is covered. This linearity assumption has been
challenged by different studies focusing on retention time
modeling.93−95 A recent study has shown that chemicals with
similar retention behavior in RPLC may have up to 6 orders of
magnitude variance in their predicted partition coefficients. In
the same study, a data-driven approach showed that 20,000
chemicals present in Norman SusDat (around 100 k unique
structures) are not analyzable with RPLC.95

In the detection space, the ionization efficiency (IE) is the
main determining factor for the measurability of a chemical,
which fundamentally and potentially significantly limits the
measurable space covered.77,96 The IE is a structure-dependent
parameter indicating the magnitude of the generated signal for
a specific chemical. There have been several recent studies that
have successfully predicted the IE of known and unknown
structures. Therefore, the IE could be used as a parameter for
categorizing chemicals as detectable or not detectable based on
their IE. It should be noted that there has been a study
classifying the chemicals to be analyzable via GC-MS vs LC-
MS.42 However, that study did not emphasize the measur-
ability bottleneck and has been trained based on well-known
structures (e.g., simple hydrocarbons and pharmaceuticals).
Instrumental Perspective

In a simplistic sense, our current measurements for the
chemical space rely on getting separated compounds into a
mass spectrometer under conditions that are sufficient for
them to be measured. This has heavily relied on the ability to
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easily introduce the chemicals into liquid (mainly RPLC) and
gas chromatography and separation based on interactions
between the chemicals, a solid phase, and a mobile
phase.38,87,97 This implies that the compounds are already in
a liquid or gaseous solution and hence already exclude
particles, low solubility chemicals, and nonvolatiles. Mass
spectrometry requires chemicals to be in a gaseous ionized
state, and ionization has largely focused on soft ionization for
LC (mainly electrospray (ESI) and atmospheric pressure
chemical ionization (APCI)) to produce pseudo/molecular
ions (precursor ions) and hard ionization (electron impact
(EI))) for GC which typically fragments the molecules. As
such, chemicals with poor ionization efficiency will likely not
be introduced to the mass spectrometer, and those that have
very high ionization efficiency may fragment too much to
provide sufficient identification of the parent compound. Even
those that do ionize may be unstable or rearrange. Beyond
ionization, precursors are typically fragmented using collision-
induced dissociation, also known as collisionally activated
dissociation, and then measured via tandem mass spectrom-
etry. Only recently have we seen the introduction of electron-
activated dissociation (EAD) into commercial mass spectrom-
eters,98 and as such, new libraries need to be developed to
identify chemicals based off the spectrum produced through
EAD.
Rarely in the NTA space have we seen the application of

other separation (e.g., electrophoresis) and ionization
techniques such as inductively coupled plasma mass spectrom-
etry (ICPMS) and matrix-assisted laser desorption/ionization
(MALDI). For identification of chemicals that may impact
humans through surface contact or inhalation of particles,
other ambient ionization techniques have emerged including
direct-analysis in real-time (DART) and desorption electro-
spray ionization (DESI).99,100 These platforms have been used
heavily in forensic science for the identification of bulk drug or
explosive materials or diagnostic markers in contact evidence,
such as illicit drug metabolites in fingermarks.40,87 Other more
recent developments include rapid evaporative ionization
(REIMS) or laser desorption ionization (LDI) which have
both been integrated within surgical blades to rapidly classify
biological materials in real-time through identification of
discriminating biomolecules.101 While other ionization sources
exist, these are rarely used in parallel or tandem configurations
with the conventional sources. Even the application of
positive/negative switching ionizations remains limited. Be-
sides instrumental ionization techniques, chemical ionization
such as derivatization can be conducted offline or even online
and in some cases may even lead to better chromatographic
separation.102

■ MEASURED CHEMICAL SPACE
Within the measured subspace of the exposome chemical
space, a large portion of the detected chemicals remain
unidentified. This implies that a large portion of the collected
analytical signals, even though of high quality, remain
unidentified. An example of these cases is the C6 to C16
PFAS chemicals in lipidomics studies, as both studies use a
very similar experimental setup. Recent studies have indicated
that the retrospective analysis can be employed to further
annotate/identify the unknowns in the archive data
sets.48,103−105 The retrospective analysis of the archived data,
even though it has shown great potential, has not been widely
applied for the exploration of the measured chemical space.

This shortcoming mainly has been due to inadequate data
processing tools, limited chemical and spectral databases, the
hypothesis-driven approaches used in NTA experiments, and
limited computational power available to different research
groups.
The data processing strategies used for the retrospective

analysis of the archived data mainly consist of typical NTA
workflows.40,48 There have been several extensive reviews on
such workflows and all the included steps.40,45,106−108 Once
these data are processed and further annotated, the identified
signals are aligned over multiple data sets for trend analysis
and/or inference.109−111 However, the confidence levels
associated with that identification may not be the same across
different samples.48,104,106 Depending on the quality of the
generated data (e.g., signal-to-noise ratio), those identifications
may be less reliable than others.46 In addition to that, the
unidentified signals cannot be aligned unless generated under
the same experimental conditions.46 These challenges have
resulted in several attempts in assessing the data quality as well
as the chromatogram alignment.40,89,92

The quality of the collected data for NTA assays defines
whether the generated signals can be confidently identified or
not.112,113 The quality of the acquired data may be
compromised due to heavy matrix effects, instrumental issues,
and/or the nature of the chemical itself.40,41 For some
chemicals to generate an HRMS signal of acceptable quality,
they must be analyzed using specific conditions.88 These issues
with the data quality can be detected only once the data go
through a complete data processing workflow. A common
approach to approximately assess the quality of the collected
data is to look for the added internal standards in the
samples.45,46,104,106 This approach, even though effective, is
computationally expensive and requires detailed metadata
about the experimental setup (e.g., the separation selectivity,
ionization efficiency, data acquisition conditions). Such
information may or may not be available for a specific study
depending on the objectives. Moreover, depending on the
number and spread of internal standards, they may not be
enough for assessing the quality of the collected data. Some
efforts have been put toward standardizing the NTA data
generation procedures.40,114−116 However, the proposed
procedures are specific to different communities and do not
translate across. As an example, the metabolomics and
exposomics communities use different retention index scales
(alkylamide117 vs University of Athens scale118,119), making
comparison of such data sets extremely difficult. Furthermore,
these measures tend to be overly conservative, resulting in low
levels of implementation within each community.
Another very important challenge to be tackled during the

processing is the signal alignment.40 The aligned signals are
needed for trend analysis and signal (feature) prioritization.
Existing tools are limited to either a single batch or fully
identified structures.89−92 Retention indices using a set of
calibrant chemicals or retention mapping have been widely
utilized for such alignments.89,92,117−119 However, both of
these approaches need the presence of a set of chemicals (i.e.,
calibrants) in all the samples. Such solutions may be very
effective for small scale chromatogram alignment but are not
able to address the challenges associated with the alignment of
archived data, given that these data rarely include the retention
index calibrants or the same set of internal standards.
Additionally, the few added internal standards are meant to
represent all of the chemicals present in those samples. These
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limitations imply that the alignment of data sets acquired on
different instruments using different experimental conditions is
still an open question and requires further development.
The last step of NTA assays consists of the identification

workflows, including spectral matching against the exper-
imental or in silico predicted spectra.40,41 Independently from
the source of the reference spectra, i.e., experimental or
predicted, the quality of the measured spectrum to be
identified is essential.112,113 In the field of exposomics, the
efforts in assessing the quality of the recorded spectra is limited
to a recent study with limited applicability.112 In addition to
the spectral quality, spectral matching algorithms also play an
important role during the identification process. These
algorithms range from simple dot product to spectral entropy
and more data-driven approaches (e.g., deep learn-
ing).106,120−124 For the spectral library, matching the size of
the spectral library and its coverage of the relevant chemical
space is an essential factor. For example, when merging all
open and commercial libraries together, only 40% the
metabolic networks is covered.125 As for in silico fragmentation
tools, access to a large and relevant chemical subspace is
important.25,126−128 These approaches employ the structure of
the different candidates retrieved from the chemical databases
for fragmentation or fingerprint prediction. However, these
approaches, even though powerful, have limitations due to the
limited coverage of the exposome chemical space by current
chemical databases.
In addition to the previously mentioned approaches for the

structural elucidation, recently, there has been a surge of data-
driven tools for facilitation of de novo identification and/or
annotation of the chromatographic signal. Many of these tools
use a combination of machine learning, previously annotated
spectra, and spectral similarity to provide additional inference
into the structure of an unknown signal (e.g., molecular
networking and Spec2LDA).129−131 However, their applica-
tions have been limited to mainly metabolomics studies, and
therefore, they have not been adequately tested for the
exploration of exposome.
Identified Chemical Space

The identified chemical space is the subspace of measured
chemical space, where those structures are fully characterized
(e.g., measured via GC/LC-HRMS and available as analytical
standard). This subspace is extremely small compared to the
size of the exposome chemical space. A recent meta analysis
showed that all NTA studies in the past 5 years have resulted
in around 1600 (i.e., confidence levels one and two) unique
new structures while every year around 700 new structures are
introduced into the US market alone.3,38 It should be noted
that the true number of new structures introduced into the
global market is extremely difficult to estimate. Considering
the number of potential transformation products of these
chemicals, the speed of NTA studies is far too low to be able to
catch up with the rate of expansion of the exposome chemical
space.

■ HOW TO MOVE FORWARD
The main categories of chemicals that are absent from the
current exposome related chemical databases are the trans-
formation products of anthropogenic chemicals. The structure-
based molecular networks (SBMNs), from drug discovery,
combined with synthetic accessibility (computational synthetic
chemistry) can be used to build the transformation tree of a

chemical.62,132,133 The already well-known transformation
products would provide the distance metrics for the SBMNs,
and the synthetic accessibility calculation would enable
pruning of the trees from the structures that are impos-
sible.133−135 Other data-driven approaches, such as generative
models, can also provide the means of building such
transformation trees. Ultimately, the structures in the pruned
trees can be added to existing chemical databases.
In terms of the measurable exposome chemical space, the

combination of the modeled separation (e.g., retention time)
and mass spectral behavior of chemicals can be used. Retention
indices can provide a first glance into the connection between
the structure of a molecule and its behavior in the
chromatographic space. On the other hand, the ionization
efficiency has great potential in connecting the structure of a
chemical to its response in the mass spectrometer. The
combination of these two metrics can provide a valuable
training set to build models where the measurability of a
chemical can be assessed based on its structure. A potential
byproduct of such a strategy is that these models may be able
to suggest the optimized experimental conditions for the
analysis of a certain structure (e.g., reverse phase vs normal
phase). In addition, the development and integration of
models using complementary separation techniques in parallel
to chromatography are needed (e.g., electrical separations such
as capillary electrophoresis (CE) and ion mobility spectrom-
etry).101,136−139 Ultimately, modeling multiple separation
spaces using data from orthogonal techniques may reduce
porosity and extend the boundaries of the measured chemical
space, as well as provide additional confirmation where
overlaps exist (e.g., machine learning-based prediction of
both retention behavior and collision cross section may
increase confidence in prioritization workflows89,140).
To further expand our coverage and understanding of the

chemical space experimentally, harmonization of both
complementary and orthogonal techniques is required, for
example, through application of both GC- and LC-HRMS and
HILIC and RPLC separation to the same samples. We also
need to better understand the boundaries of each technique
and the porosity within. For example, polar analytes typically
have lower ionization efficiency; hence, further development is
required for both separation and ionization techniques.
Integration of ion chromatography (IC) and CE coupled
with both HRMS and ICP-MS techniques needs to be
considered. These instruments provide unique selectivity for
very polar, inorganic, and ionized compounds (e.g., metals/
metalloids, low molecular weight PFAS, and disinfection
byproducts); hence, for NTA of drinking water, this is a
particular knowledge gap where these platforms represent
excellent solutions.88 IC and CE separation techniques are
orthogonal and inherently complement each other.141

Mass spectrometry is not the only option available for
identification, and other techniques such as Nucelar Magnetic
Resonance (NMR) can be coupled with LC separation. Proton
NMR in particular should be considered for determining the
structure of organic molecules as it allows the ability to
elucidate the connectivity of the atoms within molecules and
for identifying functional groups.142,143

However, this draws out a larger issue that arguably requires
much more focus in the NTA community moving forward.
Identification frameworks for chemical residues in environ-
mental samples usually fundamentally consider the value
offered by HRMS data first, followed by evaluation of any
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increased confidence provided by supplementary chromato-
graphic data.144 In other fields such as forensic science, the
combination of data generated by a much wider set of
orthogonal/uncorrelated techniques is considered in far more
depth. For example, the Scientific Working Groups for the
Identification of Seized Drugs (SWGDRUG) and Fire and
Explosions (SWGFEX) both categorize techniques broadly
into those providing presumptive, indicative, and confirmatory
evidence. The SWGFEX guidelines for postblast explosive
identification are a particularly relevant example for trace
chemical NTA (recommended guidelines for the forensic
identification of postblast explosive residues). An array of
confirmatory techniques are categorized by their ability to offer
structural or elemental level detail and include Raman, FTIR,
and X-ray diffraction, in addition to LC-MS and GC-MS.
Energetic materials are well-known to be very challenging to
measure by any single method or technique. Gaps in the
measurable space that exist for methods that use confirmatory
techniques are fundamentally considered. This is especially
true for chromatography coupled to mass spectrometry. Given
the potential undesirable outcomes of a “false negative” in this
particular field, the combination of techniques is critical (e.g.,
to identify both inorganic and organic explosives). Even when
using MS, the choice of ionization technique in LC-MS is also
extremely important (e.g., ESI is normally more suitable for
nitrate esters, APCI is better for nitrotoluenes, and neither are
particularly effective for detection of some explosives like
nitroglycerin or hexamethylene triperoxide diamine145). For
the identification of intact/bulk drugs, SWGDRUG also
considers NMR spectroscopy a confirmatory technique
(Scientific Working Group for the Analysis of Seized Drugs
(SWGDRUG) Recommendations, 2019). With regards to
exposomics, NMR has been used for many years for the
identification of biomolecules in exposome research.146

Though less sensitive than MS generally, higher field
instruments, multiple scans, different probes, or hyperpolarisa-
tion used together with sample preconcentration methods may
improve its contribution for identification of new substances at
trace concentrations in complex samples.147

As for the measured exposome chemical space, the main
challenges are the raw data quality assessment, incomplete
preprocessing workflows, and identification workflows. The
data quality assessment must become independent from the
data preprocessing workflows as they may be a major source of
error into final results, for example, low quality MS/MS
spectrum due to the lack of deconvolution algorithms. The
current NTA workflows are set to focus on a single sample or
batch of samples analyzed with one specific method. This
limitation hinders large scale retrospective analysis of archive
data, as most of the signals may remain unidentified. Moreover,
the use of the same set of internal standards may not be
adequate. Therefore, the development of alignment algorithms
that are based on the raw data or the raw feature lists is a must
for being able to fully take advantage of the publicly available
archived data. Finally, when it comes to identification, the
current approaches are based on a set number of matched
fragments and hard set thresholds. This may not be the most
adequate way forward, as different chemicals may need
different parameters for their high confidence identification.
For example, for PFAS chemicals, having two or three
fragments may be enough, while for hormone-like chemicals,
sometimes even 100 fragments are not enough. Moreover,
depending on the levels of background signal and matrix

effects, the mass accuracy of the instrument may be different,
resulting in a better match with incorrect candidates.
From a regulatory point of view, knowledge on what can be

measured or not is essential. Chemicals that cannot be
measured or are very difficult to measure (e.g., very mobile
chemicals) are very difficult to regulate. Thus, for new
chemicals to be introduced, evidence of the ready measur-
ability of the parent and the most abundant transformation
products may be considered as one of the necessary criteria.
The high detection frequency of chemicals in the archived data
can be further integrated as one of the strategies for early
detection of chemicals of emerging concern.
Overall, here, we have highlighted the most immediate

scientific gaps related to mapping the exposome chemical
space. It should be noted that there are many more challenges
that need to be tackled. However, based on our assessment, it
is clear that the current approaches do not provide the means
for a pro-active chemical management. Therefore, the
combination of data-driven approaches with existing strategies
will be a necessary step forward to bridge these knowledge
gaps.

■ POTENTIAL IMPACT
The expanded and mapped chemical space of the exposome,
its predicted physiochemical properties, and biological
activities will unleash new waves of developments in chemical
management, toxicology, and analytical technology develop-
ment. The predicted properties and biological activities will
guide new chemical regulation. The transformation products
added to the exposome chemical space will provide the means
for the replacement of toxic chemicals with safe alternatives
and thus future safe and sustainable-by-design chemicals. The
measurability assessment will identify the portion of the
exposome chemical space that cannot be analyzed with our
current technology, stimulating the development of new
analytical tools to further expand this coverage. The newly
identified chemicals via a retrospective analysis of the archived
data will provide insights into the connection between
chemical exposure and an observed health outcome. These
connections will provide insights into the mechanistic
relationships between exposure and certain health outcomes.
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Quinete, N. S.; Sobus, J.; Sussman, E.; Watson, W.; Wickramasekara,
S.; Williams, A.; Young, T. Exploring chemical space in non-targeted
analysis: a proposed ChemSpace tool. Anal Bioanal Chem. 2023, 415,
35−44.
(17) Brown, J. S. Psychiatric Effects of Organic Chemical Exposure.
In Effects of Persistent and Bioactive Organic Pollutants on Human
Health; John Wiley & Sons, Ltd., 2013; pp 514−531.
(18) Bailey, J. M.; Wang, L.; McDonald, J. M.; Gray, J. S.; Petrie, J.
G.; Martin, E. T.; Savitz, D. A.; Karrer, T. A.; Fisher, K. A.; Geiger, M.
J.; Wasilevich, E. A. Immune response to COVID-19 vaccination in a
population with a history of elevated exposure to per- and

JACS Au pubs.acs.org/jacsau Perspective

https://doi.org/10.1021/jacsau.4c00220
JACS Au 2024, 4, 2412−2425

2420

https://orcid.org/0000-0003-1940-9415
https://orcid.org/0000-0003-1940-9415
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Antonia+Praetorius"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0197-0116
https://orcid.org/0000-0003-0197-0116
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kevin+V.+Thomas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2155-100X
https://orcid.org/0000-0002-2155-100X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jake+William+O%E2%80%99Brien"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9336-9656
https://pubs.acs.org/doi/10.1021/jacsau.4c00220?ref=pdf
http://www.emcms.info
https://doi.org/10.1021/acs.est.3c01735?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c01735?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c02765?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c02765?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c09353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c09353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.aay6636
https://doi.org/10.1126/science.aay6636
https://doi.org/10.1126/science.aay3164
https://doi.org/10.1021/acs.est.3c04855?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c04855?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cen-09332-cover4?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es903383a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es903383a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1007/s00216-016-0139-z
https://doi.org/10.1007/s00216-016-0139-z
https://doi.org/10.1007/s00216-016-0139-z
https://doi.org/10.1016/j.envsci.2021.09.007
https://doi.org/10.1016/j.envsci.2021.09.007
https://doi.org/10.1016/j.envint.2015.02.001
https://doi.org/10.1021/acs.est.1c04158?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c04158?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-019-0341-z
https://doi.org/10.1186/s13321-019-0341-z
https://doi.org/10.2533/chimia.2017.661
https://doi.org/10.1007/s00216-022-04434-4
https://doi.org/10.1007/s00216-022-04434-4
https://doi.org/10.1038/s41370-023-00564-8
https://doi.org/10.1038/s41370-023-00564-8
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


polyfluoroalkyl substances (PFAS) through drinking water. J. Expo.
Sci. Environ. Epidemiol. 2023, 33, 725−736.
(19) Chung, E.; Russo, D. P.; Ciallella, H. L.; Wang, Y.-T.; Wu, M.;
Aleksunes, L. M.; Zhu, H. Data-Driven Quantitative Structure−
Activity Relationship Modeling for Human Carcinogenicity by
Chronic Oral Exposure. Environ. Sci. Technol. 2023, 57, 6573.
(20) Goldenman, G.; Fernandes, M.; Holland, M.; Tugran, T.;
Nordin, A.; Schoumacher, C.; McNeill, A. The cost of inaction: A
socioeconomic analysis of environmental and health impacts linked to
exposure to PFAS; Nordisk Ministerrad̊, 2019.
(21) Kwon, D.; Kwak, K.; Baek, K.; Chi, Y.; Na, S.; Park, J.-T.
Association between physical hazardous agent exposure and mental
health in the Korean working population: the 5th Korean Working
Conditions Survey. Annals of Occupational and Environmental Medicine
2021, 33, e33.
(22) Zhang, X.; Xue, L.; Deji, Z.; Wang, X.; Liu, P.; Lu, J.; Zhou, R.;
Huang, Z. Effects of exposure to per- and polyfluoroalkyl substances
on vaccine antibodies: A systematic review and meta-analysis based
on epidemiological studies. Environ. Pollut. 2022, 306, 119442.
(23) Guo, P.; Furnary, T.; Vasiliou, V.; Yan, Q.; Nyhan, K.; Jones, D.
P.; Johnson, C. H.; Liew, Z. Non-targeted metabolomics and
associations with per- and polyfluoroalkyl substances (PFAS)
exposure in humans: A scoping review. Environ. Int. 2022, 162,
107159.
(24) Dulio, V.; Koschorreck, J.; van Bavel, B.; van den Brink, P.;
Hollender, J.; Munthe, J.; Schlabach, M.; Aalizadeh, R.; Agerstrand,
M.; Ahrens, L.; Allan, I.; Alygizakis, N.; Barcelo’, D.; Bohlin-Nizzetto,
P.; Boutroup, S.; Brack, W.; Bressy, A.; Christensen, J. H.; Cirka, L.;
Covaci, A.; Derksen, A.; Deviller, G.; Dingemans, M. M. L.; Engwall,
M.; Fatta-Kassinos, D.; Gago-Ferrero, P.; Hernández, F.; Herzke, D.;
Hilscherová, K.; Hollert, H.; Junghans, M.; Kasprzyk-Hordern, B.;
Keiter, S.; Kools, S. A. E.; Kruve, A.; Lambropoulou, D.; Lamoree, M.;
Leonards, P.; Lopez, B.; López de Alda, M.; Lundy, L.; Makovinská,
J.; Marigómez, I.; Martin, J. W.; McHugh, B.; Mieg̀e, C.; O’Toole, S.;
Perkola, N.; Polesello, S.; Posthuma, L.; Rodriguez-Mozaz, S.;
Roessink, I.; Rostkowski, P.; Ruedel, H.; Samanipour, S.; Schulze,
T.; Schymanski, E. L.; Sengl, M.; Tarábek, P.; Ten Hulscher, D.;
Thomaidis, N.; Togola, A.; Valsecchi, S.; van Leeuwen, S.; von der
Ohe, P.; Vorkamp, K.; Vrana, B.; Slobodnik, J. The NORMAN
Association and the European Partnership for Chemicals Risk
Assessment (PARC): let’s cooperate. Environmental Sciences Europe
2020, 32, 100.
(25) Schymanski, E. L.; Kondic,́ T.; Neumann, S.; Thiessen, P. A.;
Zhang, J.; Bolton, E. E. Empowering large chemical knowledge bases
for exposomics: PubChemLite meets MetFrag. Journal of Chem-
informatics 2021, 13, 19.
(26) van Dijk, J.; Gustavsson, M.; Dekker, S. C.; van Wezel, A. P.
Towards ‘one substance − one assessment’: An analysis of EU
chemical registration and aquatic risk assessment frameworks. Journal
of Environmental Management 2021, 280, 111692.
(27) Schymanski, E. L.; Williams, A. J. Open Science for Identifying
“Known Unknown” Chemicals. Environ. Sci. Technol. 2017, 51, 5357−
5359.
(28) Barnabas, S. J.; Böhme, T.; Boyer, S. K.; Irmer, M.; Ruttkies, C.;
Wetherbee, I.; Kondic,́ T.; Schymanski, E. L.; Weber, L. Extraction of
chemical structures from literature and patent documents using open
access chemistry toolkits: a case study with PFAS. Digital Discovery
2022, 1, 490−501.
(29) Lai, A.; Clark, A. M.; Escher, B. I.; Fernandez, M.; McEwen, L.
R.; Tian, Z.; Wang, Z.; Schymanski, E. L. The Next Frontier of
Environmental Unknowns: Substances of Unknown or Variable
Composition, Complex Reaction Products, or Biological Materials
(UVCBs). Environ. Sci. Technol. 2022, 56, 7448.
(30) Wishart, D. S.; Tian, S.; Allen, D.; Oler, E.; Peters, H.; Lui, V.
W.; Gautam, V.; Djoumbou-Feunang, Y.; Greiner, R.; Metz, T. O.
BioTransformer 3.0�a web server for accurately predicting metabolic
transformation products. Nucleic Acids Res. 2022, 50, W115−W123.
(31) Beretsou, V. G.; Psoma, A. K.; Gago-Ferrero, P.; Aalizadeh, R.;
Fenner, K.; Thomaidis, N. S. Identification of biotransformation

products of citalopram formed in activated sludge. Water Res. 2016,
103, 205−214.
(32) Chibwe, L.; Titaley, I. A.; Hoh, E.; Simonich, S. L. M.
Integrated Framework for Identifying Toxic Transformation Products
in Complex Environmental Mixtures. Environ. Sci. Technol. Lett. 2017,
4, 32−43.
(33) Chen, X.; Li, H.-R.; Feng, X.; Wang, H.-T.; Sun, X.-H.
Prediction of *OH-Initiated and *NO3-Initiated Transformation
Products of Polycyclic Aromatic Hydrocarbons by Electronic
Structure Approaches. ACS Omega 2022, 7, 24942−24950.
(34) Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M.
Degradation of Aqueous Pharmaceuticals by Ozonation and
Advanced Oxidation Processes: A Review. Ozone: Science &
Engineering 2006, 28, 353−414.
(35) Satoh, H.; Hafner, J.; Hutter, J.; Fenner, K. Can AI Help
Improve Water Quality? Towards the Prediction of Degradation of
Micropollutants in Wastewater. CHIMIA 2023, 77, 48−48.
(36) Palm, E. H.; Chirsir, P.; Krier, J.; Thiessen, P. A.; Zhang, J.;
Bolton, E. E.; Schymanski, E. L. ShinyTPs: Curating Transformation
Products from Text Mining Results. Environ. Sci. Technol. Lett. 2023,
10, 865−871.
(37) van Herwerden, D.; O’Brien, J. W.; Choi, P. M.; Thomas, K. V.;
Schoenmakers, P. J.; Samanipour, S. Naive Bayes classification model
for isotopologue detection in LC-HRMS data. Chemometrics and
Intelligent Laboratory Systems 2022, 223, 104515.
(38) Hulleman, T.; Turkina, V.; O’Brien, J. W.; Chojnacka, A.;
Thomas, K. V.; Samanipour, S. Critical Assessment of the Chemical
Space Covered by LC−HRMS Non-Targeted Analysis. Environ. Sci.
Technol. 2023, 57, 14101.
(39) Hollender, J.; Schymanski, E. L.; Singer, H. P.; Ferguson, P. L.
Nontarget Screening with High Resolution Mass Spectrometry in the
Environment: Ready to Go? Environ. Sci. Technol. 2017, 51, 11505−
11512.
(40) Hollender, J.; Schymanski, E. L.; Ahrens, L.; Alygizakis, N.;
Béen, F.; Bijlsma, L.; Brunner, A. M.; Celma, A.; Fildier, A.; Fu, Q.;
Gago-Ferrero, P.; Gil-Solsona, R.; Haglund, P.; Hansen, M.; Kaserzon,
S.; Kruve, A.; Lamoree, M.; Margoum, C.; Meijer, J.; Merel, S.;
Rauert, C.; Rostkowski, P.; Samanipour, S.; Schulze, B.; Schulze, T.;
Singh, R. R.; Slobodnik, J.; Steininger-Mairinger, T.; Thomaidis, N. S.;
Togola, A.; Vorkamp, K.; Vulliet, E.; Zhu, L.; Krauss, M. NORMAN
guidance on suspect and non-target screening in environmental
monitoring. Environ. Sci. Eur. 2023, 35, 75.
(41) Schulze, B.; Youngjoon, J.; Sarit, K.; Amy, H. L.; Pradeep, D.;
Jake, O.; Maria Jose, G. R.; Sara, G. G.; Jochen, M. F.; Kevin, T. V.;
Saer, S. An assessment of Quality Assurance/Quality Control Efforts
in High Resolution Mass Spectrometry Non-Target Workflows for
Analysis of Environmental Samples. TrAC Trends in Analytical
Chemistry 2020, 133, 116063.
(42) Alygizakis, N.; Konstantakos, V.; Bouziotopoulos, G.;
Kormentzas, E.; Slobodnik, J.; Thomaidis, N. S. A Multi-Label
Classifier for Predicting the Most Appropriate Instrumental Method
for the Analysis of Contaminants of Emerging Concern. Metabolites
2022, 12, 199.
(43) Kaserzon, S. L.; Vijayasarathy, S.; Bräunig, J.; Mueller, L.;
Hawker, D. W.; Thomas, K. V.; Mueller, J. F. Calibration and
validation of a novel passive sampling device for the time integrative
monitoring of per- and polyfluoroalkyl substances (PFASs) and
precursors in contaminated groundwater. Journal of Hazardous
Materials 2019, 366, 423−431.
(44) Reemtsma, T.; Berger, U.; Arp, H. P. H.; Gallard, H.; Knepper,
T. P.; Neumann, M.; Quintana, J. B.; Voogt, P. d. Mind the Gap:
Persistent and Mobile Organic Compounds�Water Contaminants
That Slip Through. Environ. Sci. Technol. 2016, 50, 10308−10315.
(45) Schymanski, E. L.; Singer, H. P.; Slobodnik, J.; Ipolyi, I. M.;
Oswald, P.; Krauss, M.; Schulze, T.; Haglund, P.; Letzel, T.; Grosse,
S.; Thomaidis, N. S.; Bletsou, A.; Zwiener, C.; Ibáñez, M.; Portolés,
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