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through inhibition of mevalonate pathway enzyme HMGCS1
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Metformin, an antidiabetic drug, shows some potent anti-
tumor effects. However, the molecular mechanism of metfor-
min in tumor suppression has not been clarified. Here, we
provided evidence using in vitro and in vivo data that metfor-
min inhibited mevalonate pathway by downregulation of
3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1), a key
enzyme in this pathway. Our results further demonstrated that
metformin downregulated HMGCS1 expression through inhi-
bition of transcription factor nuclear factor E2–related factor 2.
In addition, we determined that HMGCS1 was highly expressed
in human liver and lung cancer tissues and associated with
lower survival rates. In summary, our study indicated that
metformin suppresses tumorigenesis through inhibition of the
nuclear factor E2–related factor 2–HMGCS1 axis, which might
be a potential target in cancer prevention and treatment.

Tumor growth and metastases need a constant and exces-
sive supply of nutrients as building bricks, fuels, and signals so
that altered nutrient metabolism is widely accepted to be
added to the list of hallmarks of cancer (1). Among those
nutrient sources, mevalonate pathway intermediates have been
reported significantly accumulated in multiple tumors (2).
Recent studies reported that mevalonate pathway and its key
enzyme 3-hydroxy-3-methylglutaryl-CoA receptor (HMGCR)
had additional potent tumor-supportive effects besides sterol
biosynthesis. Driven by oncogenes, such as mutant p53 (3, 4)
and MYC (5), the mevalonate flux plays a favorable role in
several types of cancers. Several studies focus on the mevalo-
nate flux’s role in the misfolded state and stability of tumor-
suppressor gene p53 (6, 7), thus forming a positive feedback
loop in tumor formation. The mevalonate pathway provides
several intermediate products that are important to tumor
growth, for example, ubiquinone to adjust redox control and
mitochondrial activity during nutrient restriction, and squa-
lene for prevention of oxidative cell death, bile acid (8)
signaling, and its crosstalk with microbiota, let alone
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cholesterol, which is important for cell membrane formation
and signal transduction in cancer cells (9).

Metformin, an oral hypoglycemic agent mainly prescribed
to patients with type 2 diabetes, is known for its pleiotropic
functions and safety. Besides the antidiabetic effects, metfor-
min also shows the latent capacity to prevent and improve the
prognosis of multiple cancer such as breast cancer (10) and
prostate cancer (11). According to ClinicalTrials.gov (https://
clinicaltrials.gov/), 393 clinical trials are registered using
metformin in the treatment of cancer till February 2022.
Diabetes Prevention Program Outcomes Study demonstrated
that metformin was associated with a 12% lower risk of cancer
in a 22-year follow-up (12). After adjusting for age, gender,
viral hepatitis, and other variables, metformin still reduced the
incidence of hepatocellular carcinoma (HCC) (13). Since liver
is a key organ for cholesterol homeostasis and bile production,
it would be of interest to explore the effect of metformin on
mevalonate pathway and HCC development. HCC accounts
for nearly 90% of all liver cancers, casting heavy burden on
public health and global economy (14, 15). Therefore, there is
an urgent need to identify the critical signaling pathways and
molecular targets in the HCC for the prevention of progression
and metastasis.

To date, there is no report about metformin-induced sup-
pression of tumorigenesis through inhibition of mevalonate
pathway. Nuclear factor E2–related factor 2 (NRF2) is a tran-
scription factor in oxidative stress response. NRF2 activation is
reported to be associated with poor survival and tumor invasion
of HCC (16). In this study, we investigated the role of mevalo-
nate pathway enzyme 3-hydroxy-3-methylglutaryl-CoA syn-
thase 1 (HMGCS1) in tumorigenesis and hypothesized that
metformin functioned through inhibition of the NRF2–
HMGCS1 axis to diminish tumor proliferation.

Results

Metformin inhibits mevalonate pathway enzyme HMGCS1
expression in cancer cells

Some pieces of research showed that metformin improved
survival rate in patients with HCC (17, 18) through pleiotropic
effects including the influence of cholesterol biosynthesis in
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Metformin suppresses tumorigenesis via inhibition of HMGCS1
cancer cells. We postulated that metformin may achieve this
effect through the regulation of mevalonate pathway.

We first checked the enzymes in the mevalonate pathway for
their mRNA levels in HepG2 cells treated with metformin and
verified that HMGCS1, rather than ACAT, HMGCR,
HMGCS2, was the mere enzyme that underwent an expression
change (Fig. 1, A and D). HepG2 cells treated with 20 mmol/l
metformin for 48 h showed a time-dependent reduction
(Fig. 1A) in mRNA level of HMGCS1 and was significantly
reduced from 5 mmol/l to 20 mmol/l of metformin (Fig. 1B).
There was a sharp decrease in the protein level of HMGCS1
while treated with 20 mmol/l metformin for 48 h (Fig. 1C). We
used the ultraperformance liquid chromatography (UPLC)–MS
to measure the contents of metabolites in the mevalonate
pathway in hepG2 cell after metformin treatment (Fig. 1E). The
concentrations of β-hydroxy β-methylglutaryl-CoA (HMG-
CoA) and mevalonic acid showed a significant decrease,
whereas there was no significance change in acetyl-CoA and
Figure 1. Metformin downregulates mevalonate pathway enzyme HMGCS
metformin-treated HepG2 cells. Shown are mean ± SD (n = 3). Cells were treat
mRNA expression of HMGCS1 in metformin-treated HepG2 cells. Shown are m
metformin. C, the levels of expression of HMGCS1 proteins in HepG2 cells, afte
time PCR comparing expression of ACAT1, HMGCR, and HMGCS2 in metformin
metabolites in the mevalonate pathway. Cells were treated by 20 mmol/l met
3-hydroxy-3-methylglutaryl-CoA synthase; UPLC, ultraperformance liquid chro
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acetoacetyl-CoA concentrations. We then put emphasis on
HMGCS1, the enzyme for HMG-CoA production. The inhi-
bition of HMGCS1 expression by metformin was also observed
in lung cancer cells A549 (Fig. S1A) and H1299 (Fig. S1B).
These results show that metformin inhibits HMGCS1 expres-
sion in both mRNA and protein levels in liver cancer and lung
cancer cell lines.
Metformin regulates HMGCS1 expression through NRF2

To determine whether metformin regulates the expression of
HMGCS1 through transcription factors, we conducted luciferase
promoter assays in hepG2 cells and human embryonic kidney
293T (HEK293T) cells under the treatment of metformin (Fig. 2,
A andB).We shortened the promoter activity region ofHMGCS1
and narrowed down the binding sites of metformin on HMGCS1
to -267 to -838 (Fig. 2C). With the help of the PROMO website
(19), we found out several transcription factors that may work on
1 in liver cancer cells. A, time-dependent mRNA expression of HMGCS1 in
ed by 20 mmol/l metformin for 0, 12, 24, 36, and 48 h. B, dose-independent
ean ± SD (n = 3). Cells were treated for 48 h by 0, 5, 10, and 20 mmol/l

r 20 mmol/l metformin treatment for 48 h, normalized with GAPDH. D, real-
-treated HepG2 cells. Shown are mean ± SD (n = 3). E, UPLC/MS analysis of
formin for 48 h. HMGCR, 3-hydroxy-3-methylglutaryl-CoA receptor; HMGCS,
matography.



Figure 2. Metformin regulates HMGCS1 through NRF2. A, luciferase results for HMGCS1 promoter activity in HepG2 cells when treated with different
concentrations of metformin for 48 h. Shown are mean ± SD (n = 3). B, luciferase results for HMGCS1 promoter activity in HEK293T cells treated with
different concentrations of metformin for 48 h. Shown are mean ± SD (n = 3). C, luciferase results for HMGCS1 promoter activity in HEK293T cells in
promoter deletion analysis of HMGCS1 when transfected with pcDH-NRF2 plasmid or its control plasmid for 48 h, with or without 20 mmol/l metformin.
Shown are mean ± SD (n = 3). D, luciferase results for HMGCS1 promoter activity in HEK293T cells overexpressing each of these transcription factors (YY1, C/
EBPalpha, C/EBPbeta, and GR) predicted by PROMO. Shown are mean ± SD (n = 3). E, luciferase results for HMGCS1 promoter activity in HEK293T cells
overexpressing NRF2. Shown are mean ± SD (n = 3). F, luciferase results for HMGCS1 promoter activity in HEK293T cells with mutations in one, two binding
sites, and control. Shown are mean ± SD (n = 3) (above). A schematic graph about the mutation strategy of the NRF2 core binding site (TCAG) on Hmgcs1
promoter (below). G, relative enrichment of ChIP obtained with NRF2 antibody over the IgG control in HEK293T cells with 20 mmol/l metformin treatment
for 72 h. H, real-time PCR comparing expression of NRF2 in 20 mmol/l metformin-treated HepG2 cells. Shown are mean ± SD (n = 3). I, the levels of
expression of phospho-NRF2 and NRF2 proteins in the cytosol and nuclear of SNU182 cells, after 20 mmol/l metformin treatment, normalized with tubulin
and histone H3. *p < 0.05, **p < 0.005, and ***p < 0.0005. ChIP, chromatin immunoprecipitation; HEK293T, human embryonic kidney 293T cell line;
HMGCS1, 3-hydroxy-3-methylglutaryl-CoA synthase 1; IgG, immunoglobulin G; NRF2, nuclear factor E2–related factor 2.
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the binding sites, including YY1, C/EBPalpha, C/EBPbeta, GR,
andNRF2. Byoverexpressing eachof these transcription factors in
HEK293T cells, we found out only NRF2 upregulated the lucif-
erase promoter assay of HMGCS1 (Fig. 2,D and E). Mutations of
the two binding sites of NRF2 ceased its inhibition of HMGCS1
promoter by metformin (Fig. 2F). Chomatin immunoprecipita-
tion (ChIP) provided further evidence between metformin treat-
ment and the reduction in NRF2 and HMGCS1 combination
(Fig. 2G). Since metformin did not change the mRNA expression
of NRF2 (Fig. 2H), we examined the phosphorylation level of
NRF2 to investigate the mechanism through which metformin
inhibits NRF2. After treatment of metformin, phosphorylation
levels of NRF2 were reduced in nuclear and cytosolic extracts of
HepG2 cells, especially in the nucleus (Fig. 2I).

We established NRF2-overexpressed A549 cells (Fig. S2A)
and witnessed an increase in HMGCS1 mRNA levels
(Fig. S2B). To elucidate whether NRF2 regulates the expres-
sion of endogenous HMGCS1, we used NRF2 activator olti-
praz or NRF2 inhibitor ML385 (Fig. S2, C–E) in cancer cell
lines. Oltipraz upregulated the expression of NRF2 down-
stream genes Npnt, Bmpr1a, and Igf1 as well as HMGCS1
(Fig. S2C), whereas ML385 led to the opposite trend, causing
downregulation of Npnt and Igf1 together with HMGCS1
(Fig. S2D). Protein levels of endogenous HMGCS1 expression
also changed synchronously with NRF2 (Fig. S2E). These
results are consistent with the former data that oltipraz (20)
and ML385 (21), although known as activator and inhibitor of
NRF2, which could also change the protein expression of
NRF2.

These results suggest that endogenous HMGCS1 can be
transcriptionally regulated by NRF2 in response to metformin
treatment.
J. Biol. Chem. (2022) 298(12) 102678 3
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HMGCS1 overexpression reverses tumor-suppressive effect of
metformin

To determine whether the suppression of tumorigenesis by
metformin depends on the inhibition of HMGCS1, we con-
structed overexpression plasmid of HMGCS1. Cell viability
assessed by Cell Counting Kit-8 (Dojindo) was markedly
restored after overexpressing HMGCS1 in HepG2 cells
(Fig. 3A) and A549 cells (Fig. S3A). The percentage of
apoptotic cells was soared with the treatment of metformin
and returned to the baseline level by add-on of overexpression
of HMGCS1 (Fig. S3, B and C). We further explored the
antitumor activity of metformin in vivo. Transplanted tumor
models in nude mice were established, using HepG2 cells and
A549 cells transfected with HMGCS1 and control vectors, and
treated with metformin (200 mg/kg) or solvent control by
gastric perfusion and sacrificed to measure the volume and
weight of tumors and relative gene expression. The first day of
cell injection was recorded as day 0, and metformin was
introduced from day 9, with a total observation period of
15 days. Tumor growth was suppressed by metformin in liver
cancer (Fig. 3, B, D, and E) and lung cancer (Fig. S3, D–F), and
the tumor-suppressing effect of metformin was reversed by
HMGCS1 overexpression in nude mice xenograft models of
both liver cancer (Fig. 3, C, D, and E) and lung cancer (Fig. S3,
D, E, and G) without changing the weight of the mice (Figs. 3F
and S3H).
Figure 3. HMGCS1 overexpression partially reversed tumor-suppressive ef
CCK-8 in HepG2 cells with or without metformin at 20 mmol/l for 48 h. Shown a
subcutaneously inoculated with HepG2 cells, treated with metformin or vehi
subcutaneously inoculated with HepG2 cells overexpressed HMGCS1, treated w
on the growth of HepG2 cells inoculated into nude mice, with or without met
weights of tumor-forming experiment in nude mice using HepG2 cells, with or
(g) of the four groups inoculated with HepG2 cells, presented as the mean ± SE
8; HMGCS1, 3-hydroxy-3-methylglutaryl-CoA synthase 1.
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Based on these facts, we verify that the tumor-suppressive
effect of metformin is mediated by mevalonate pathway key
enzyme HMGCS1.

RNA interference of HMGCS1 exhibits tumor-suppressive effect

To test the oncogenic role of HMGCS1, we used RNA
interference of HMGCS1 in tumorigenicity assays. HepG2
cells (Fig. 4A) and A549 cells (Fig. S4A) were transfected with
three different siRNA to knock down HMGCS1 for 4 days,
respectively. RNA interference of HMGCS1 in both cell lines
using potent KD2 siRNA demonstrated a marked tumor-
suppressive effect, as shown in cell viability (Figs. 4B and
S4B), bromodeoxyuridine proliferation assay (Figs. 4C and
S4C), and cell cycle (Fig. 4D and S4D). RNA interference also
led to tumor cell apoptosis (Figs. 4E and S4E). These findings
collectively indicate that RNA interference of HMGCS1 imi-
tates the effect of metformin.

Upregulation of HMGCS1 is associated with poor survival of
liver and lung cancer patients

We have investigated the oncogenic role of HMGCS1 in
liver cancer cells and animals. We further explored the role of
HMGCS1 in human liver cancer. In human HCC samples,
expression of HMGCS1 was markedly increased in mRNA
levels (Fig. 5A) and protein levels by immunohistochemistry
fect of metformin. A, effects of HMGCS1 overexpression on cell viability by
re mean ± SD (n = 6). B, tumor volume (mm3) over time (days) in nude mice
cle control (n = 4). C, tumor volume (mm3) over time (days) in nude mice
ith metformin or vehicle control (n = 4). D, effect of HMGCS1 overexpression
formin treatment (n = 4). E, effect of HMGCS1 overexpression on the tumor
without metformin treatment. Shown are mean ± SD (n = 4). F, mice weight
M (n = 4). *p < 0.05, **p < 0.005, and ***p < 0.0005. CCK-8, Cell Counting Kit-



Figure 4. RNA interference of HMGCS1 imitated tumor-suppressive effect of metformin. A, the levels of HMGCS1 protein in HepG2 cells transfected
with siRNA for HMGCS1 for 4 days, normalized with GAPDH. B, effects of different incubation time of siRNA for HMGCS1 (1–5 days) on the cell viability by
CCK-8 of HepG2 cells. Shown are mean ± SD (n = 6). C, bromodeoxyuridine (BrdU) incorporation assay in HepG2 cells, 2 and 4 days after transfected with
siRNA for HMGCS1. Shown are mean ± SD (n = 3). D, cell cycle distribution measured by flow cytometry using a BrdU Flow Kit in HepG2 cells transfected
with siRNA for HMGCS1 for 4 days. E, percentage of apoptotic HepG2 cells transfected with siRNA for HMGCS1 for 4 days. Apoptotic cells are labeled with
annexin V–FITC and measured by flow cytometry. Shown are mean ± SD (n = 3). *p < 0.05, **p < 0.005, and ***p < 0.0005. CCK-8, Cell Counting Kit-8;
HMGCS1, 3-hydroxy-3-methylglutaryl-CoA synthase 1.
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staining compared with the paired adjacent noncancerous
tissues (Fig. 5B). Higher HMGCS1 expression in HCC tissues
leads to a poor overall survival rate in HCC patients (Fig. 5C).
Similar results were observed in the patients with lung cancer
(Fig. S5, A–C).

Discussion

Several previous studies revealed the relationship between
mevalonate pathway and tumor formation. In this study, we
shed light on the tumor-suppressive role of metformin medi-
ated by inhibition of mevalonate pathway enzyme HMGCS1.
The mevalonate pathway exists in almost all cell types, so its
oncogenic role and possibility as a drug target are worth
further investigation. HMGCS1, the first key enzyme in
mevalonate pathway, turns acetoacetyl-CoA into HMG-CoA,
which further undergoes the catalysis of HMGCR to
generate mevalonic acid. Jiang et al. (22) reported that
HMGCS1 expression could be suppressed by metformin. Our
results verified that HMGCS1 is an important target to
mediate the antitumor activities of metformin. The expression
levels of HMGCS1 and its downstream metabolite mevalonate
Figure 5. Upregulation of HMGCS1 is associated with poor prognoses of
tocellular carcinoma (HCC) samples and the paired noncancerous adjacent tiss
adjacent noncancerous tissues. C, Kaplan–Meier curve showing the percent su
(p = 0.031). *p < 0.05, **p < 0.005, and ***p < 0.0005. HMGCS1, 3-hydroxy-3
decrease after treatment with metformin (Fig. 1), and this
decrease is synchronizing with the cell viability and tumor
growth (Fig. 3). We also confirm that HMGCS1 is highly
expressed in human liver cancer and lung cancer tissues and
related to poor prognosis and overall survival rate (Fig. 5). It is
possible that increased HMGCS1 expression in tumor tissues
might contribute to cell division, proliferation, and signal
transduction.

The mevalonate pathway contributes to the progression of
several types of cancers through its key enzymes and metab-
olites. Some researches were consistent with our point of view
by pointing out that HMGCS1 is highly expressed in most
cancer types, and it is also related to the poor prognosis and
drug resistance (23). Other studies found out that HMGCR-
driven MYC activation (24) and cholesterol production (25)
supports the growth of liver cancer. Lipid reprogramming
including regulation of HMGCS1 and HMGCR contributes to
epithelial-to-mesenchymal transition in HCC and invasive
phenotype like invadopodia formation. In a mouse xenograft
model of HT29 human colon cancer cell line, mevalonate
replenish experiment reversed the tumor-suppressing effect of
liver cancer. A, real-time PCR analysis of the HMGCS1 expression in hepa-
ues. Shown are mean ± SD (n = 14). B, HMGCS1 immunostaining in HCC and
rvival in HCC patients with high (n = 57) or low (n = 33) HMGCS1 expression
-methylglutaryl-CoA synthase 1.

J. Biol. Chem. (2022) 298(12) 102678 5



Metformin suppresses tumorigenesis via inhibition of HMGCS1
metformin (26). This result is consistent with our HPLC/MS
results (Fig. 1E) and verified our speculation that the presence
of mevalonate is essential in tumor proliferation. Cell viability
restored by mevalonic acid replenishment could be inhibited
by metformin (Fig. S6). All these facts provide reasons why the
inhibitors of the mevalonate pathway are under heated
investigation for their antitumor activities (27, 28).

Studies over the past decade revealed that metformin
functions through inhibition of mammalian target of rapa-
mycin (mTOR) to a great extent (29). It happened that an
observation gave a clue for the metabolite mevalonate’s role
in activation of mTOR (30). Chances are that there is a
convergence of the antitumor role of metformin and the
mevalonate pathway, and mTOR is their shared downstream
target. A study on renal cell carcinoma showed the additive
effect of mevalonate pathway inhibitor statins and mTOR
inhibitor (31).

Our study uncovers that the mevalonate pathway depen-
dence is a common feature in liver cancer and lung cancer.
Between the two lung cancer cell lines we used, A549 cells
have more epithelial characteristics, whereas H1299 cells are
derived from mesenchymal connective tissues. We also used
HCC cell line SNU182 and hepatoblastoma cell line HepG2.
These four tumor cell lines are from different tissues and or-
igins, all demonstrating the same trend that mevalonate
pathway together with cell activity can be inhibited by met-
formin. These results validate our hypothesis that the onco-
genic role of mevalonate pathway and HMGCS1 is universal in
multiple tumors. We speculate that the antitumor effect of
metformin could be reproduced in other tumor cell lines and
even tumors in vivo.

Here, our results showed that HMGCS1 could be tran-
scriptionally upregulated by NRF2. Previous studies reported
NRF2 mutations and NRF2-Keap1 pathway activation
throughout the hepatocarcinogenesis (32). Constitutive NRF2
activation was observed in human cancer tissues (33). The
elevated expression of NRF2 may serve as a compensatory
mechanism to resist ischemia and subsequent hypoxia (34).
We discovered that a large dose of metformin weakened the
transcription activity of NRF2 by reducing its protein phos-
phorylation, leading to a decrease of HMGCS1 expression
and tumor arrest. These observations are consistent with the
established theory that NRF2 inhibitors are effective in
treatment of aggressive tumors that grow rapidly and are
resistant to treatment, whereas NRF2 inducers are used to
protect normal cells from carcinogens through antioxidative
effects (35).

A piece of previous study showed that hmgcs1 gene was
negatively regulated by Nrf2 in mice (36). To our knowledge, it
is the first time to demonstrate that NRF2 regulates HMGCS1
through transcriptional activity in controlling cancer pro-
gression. We postulate that the change of phosphor-NRF2
under the treatment of metformin is probably induced by
PKC λ/ι (37, 38) because we used an antibody specific for Nrf2
phosphorylated at S40. In previous studies, metformin not only
inhibits the phosphorylation levels of Nrf2 (39) but also me-
diates Nrf2 degradation (40).
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To sum up, this present study revealed the key role of the
NRF2–HMGCS1 axis in the antitumor activity of metformin.
Consistent with this notion, we assume that HMGCS1 might
serve as a novel therapeutic target for liver cancer, which adds
another piece to the puzzle of the relationship between met-
formin, cancer, and metabolism.

Limitations of the study

In this research, mice that underwent a high dose of met-
formin remained the same weight, indicating that metformin
suppresses the tumor progression at a safe dose without
disturbance of energy metabolism or aggravation of cachexia.
However, it should be noted that we used metformin with a
dose beyond the physiological amount (41). In this regard,
more investigations are needed to show the potential of met-
formin within the regular dosage for patients. Targeting the
delivery system of metformin to improve its therapeutic effi-
cacy is worth equal attention. The targets we predicted using
the PROMO website may not include all possible scenarios.
Based on the transcriptional regulation role of GATA 1 on
HMGCS1 in the process of erythropoiesis, further in-
vestigations can be made to determine the role of GATA 1 in
regulation of HMGCS1 in the development of solid tumors
(42). Noteworthy, the downstream mechanism of HMGCS1-
mediated tumor promotion function needs further
investigation.

Conclusions

In summary, we unveil that metformin suppresses tumor
growth and progression through inhibition of mevalonate
pathway enzyme HMGCS1 (Fig. 6). HMGCS1 also serves as a
predictive biomarker of poor prognosis in patients with liver
cancer and lung cancer.

Experimental procedures

Reagents

Metformin was purchased from Sigma–Aldrich. Nrf2
pathway activator oltipraz and inhibitor ML385 were obtained
from MedChemExpress. Antibody for HMGCS1 was pur-
chased from Abcam (catalog no.: ab194971). The anti-NRF2
antibody was purchased from Proteintech (catalog no.:
16396-1-AP) and Abcam (catalog no.: ab62352). The anti-
phosphor-NRF2 antibody was purchased from Abcam (cata-
log no.: ab76026). The antibodies against GAPDH (catalog no.:
3683; Cell Signaling Technology), tubulin (catalog no.: 5346;
Cell Signaling Technology), and histone H3 (catalog no.:
AH433; Beyotime) served as internal references for Western
blots.

Tumor xenograft model

All animal protocols were reviewed and approved by the
Animal Care Committee of Zhongshan Hospital, Fudan
University. All mice were housed in a temperature-
controlled environment (20–22 �C) with 12:12-h light/dark
cycles with free access to food and drinking water. HepG2



Figure 6. Schematic depiction of metformin’s role in tumor suppression
through mevalonate pathway.
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and A549 cells with HMGCS1 overexpression for 48 h or
vehicle control were transplanted to nude mice. Each mouse
was subcutaneously inoculated with HepG2 or A549 tumor
cells at a volume of 5 × 105/200 μl. In 2 weeks, tumor-
bearing nude mice were allocated to metformin and PBS
control groups, respectively. A 15-day treatment with met-
formin was applied then. Metformin (200 mg/kg) or PBS
control was administrated by gastric perfusion. Four mice
were used in each group. Tumor volume was measured every
3 days according to the diameters. Body weight was assessed
every 3 days.

Cell lines and culture conditions

Cell lines and the origins are listed as follows: HepG2
(HCC), SNU182 (HCC), A549 (lung cancer), H1299 (lung
cancer), and HEK293T.

Cells were cultured in Dulbecco’s modified Eagle’s medium
with 10% fetal bovine serum, 1% penicillin and streptomycin at
37 �C and 5% CO2.

Transfection and agents

siRNA targeted to HMGCS1 and negative control were
purchased from Jima Biotechnology Co, Ltd. Overexpressed
plasmids (HMGCS1, NRF2, YY1, C/EBPα, C/EBPβ, and GR)
were purchased from JiKai Gene Co, Ltd. Cell transfection was
performed on HEK293T cells, HepG2, and A549 using the
Lipofectamine 3000 reagent (Thermo Fisher Scientific)
following the manufacturer’s instructions.

Cell growth and viability assays

Cells were seeded at 5000 per well in 96-well plates and
incubated overnight before drug treatment. About 10 μl Cell
Counting Kit-8 was added to the 90 μl cell culture system, and
cells were incubated for 1 to 4 h at 37 �C and 5% CO2 before
measurement.

Cell cycle analysis

Flow cytometry (Accuri C6 FACS) was used to analyze the
cell cycle through Cell Cycle Analysis kit (BD Biosciences).
The FlowJo software (BD FACSCalibur) was used for data
analysis in flow cytometry.

Reporter gene assays

293T cells were seeded in 24-well plates, cotransfected with
siRNA targeting different active regions of HMGCS1, pcDH-
NRF2 plasmids, or its control plasmids. The luciferase activ-
ity was assessed 24 h after transfection.

Quantitative real-time PCR analysis

Total RNA was extracted using the TRIzol Reagent (Invi-
trogen) according to the manufacturer’s protocol. Takara
PrimeScript RT reagent kit was used to obtain complementary
DNA (Takara). Primers for quantitative PCR (qPCR) were as
follows: HMGCS1 forward: 50-TGTACACATCTTCAGTA-
TATGGTTCCC-30, reverse: 50-AAGAAAACACTCCAATTC
TCTTCCCT-30, HMGCR forward: 50-TGATTGACCTTTC-
CAGAGCAAG-30, reverse: 50-CTAAAATTGCCATTCCAC-
GAGC-30, ACAT1 forward: 50-AAGGCAGGCAGTATTG
GGTG-30, reverse: 50-ACATCAGTTAGCCCGTCTTTTAC-
30, HMGCS2 forward: 50-GCCCAATATGTGGACCAAACT-
30, reverse: 50-GAAGCCCATACGGGTCTGG-30, NRF2
forward: 50-TCAGCGACGGAAAGAGTATGA-30, reverse: 50-
CCACTGGTTTCTGACTGGATGT-30, NPNT forward: 50-G
TAAGCACAGGTGCATGAACA-30, reverse: 50-GAACCAT
CCGGCATGAGCATA-30, BMPR1A forward: 50-TGAAAT-
CAGACTCCGACCAGA-30, reverse: 50-TGGCAAAGCAA
TGTCCATTAGTT-30, AND IGF1 forward: 50-GCTCTTC
AGTTCGTGTGTGGA-30, reverse: 50-GCCTCCTTAGATC
ACAGCTCC-30. All data were normalized to 36B4, and the
expression levels were calculated by the 2−DDCT method.

Western blot analysis

Total proteins were extracted, separated by 10% SDS-
polyacrylamide gels, and transferred to polyvinylidene
difluoride membranes (Millipore). The membrane was blocked
for 1 h with 5% bovine serum albumin, washed with Tris-
buffered saline with Tween, and incubated overnight at 4 �C
with a primary antibody listed as before. Then the membrane
was incubated with secondary antibodies for 1 h at room
temperature and detected using ECL reagents.
J. Biol. Chem. (2022) 298(12) 102678 7
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ChIP–real-time qPCR

Control immunoglobulin G- and NRF2-ChIPed DNA li-
braries were prepared using MAGnify Chromatin immuno-
precipitation system (Thermo Fisher Scientific). qPCR was
performed using the same procedure described previously in
the qRT–PCR methods.

UPLC–MS/MS for metabolite detection

Cells are seeded in 6-well plates and cultured for 48 h until
the confluence of 80 to 90%. Cells in each well were washed
with 1 ml PBS buffer (precooled at 4 �C) twice and added with
0.4 ml HPLC grade methanol (precooled at −80 �C) containing
1 μg/ml tridecanoic acid (catalog no.: 91988-5G; Sigma–
Aldrich). Cells were harvested by scraping and gently trans-
ferred to Eppendorf tubes. Samples were stored at −80 �C for
late assessment by UPLC–MS/MS.

Histological analysis

Liver cancer and lung cancer specimen and the corre-
sponding adjacent tissues were obtained by surgery. For his-
tological analysis, the tissues were fixed in 4% neutral-buffered
formalin overnight. Paraffin embedding, sectioning, blocking,
incubation, and antigen retrieval were performed according to
the standard protocols. The human study was approved by the
Human Research Ethics Committees of Zhongshan Hospital,
Fudan University. Written informed consent was obtained
from each subject.

Human studies

A total of 90 subjects with liver cancers and lung cancers,
respectively, were recruited for survival analysis. The human
study was approved by the Human Research Ethics Commit-
tees of Zhongshan Hospital, Fudan University. Written
informed consent was obtained from each subject.

Statistical analysis

Data are presented as the mean ± SD. Differences among
groups were analyzed by one-way ANOVA followed by a t test.
A two-sided p < 0.05 was considered significantly different.

Data availability

All data discussed here are presented in the article and
supporting information.
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