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Abstract

Background: Enhancers are tissue specific distal regulation elements, playing vital roles in gene regulation and
expression. The prediction and identification of enhancers are important but challenging issues for bioinformatics
studies. Existing computational methods, mostly single classifiers, can only predict the transcriptional coactivator
EP300 based enhancers and show low generalization performance.

Results: We built a hybrid classifier called eRFSVM in this study, using random forests as a base classifier, and
support vector machines as a main classifier. eRFSVM integrated two components as eRFSVM-ENCODE and
eRFSVM-FANTOMS5 with diverse features and labels. The base classifier trained datasets from a single tissue or cell
with random forests. The main classifier made the final decision by support vector machines algorithm, with the
predicting results of base classifiers as inputs. For eRFSVM-ENCODE, we trained datasets from cell lines including
Gm12878, Hep, H1-hesc and Huvec, using ChIP-Seq datasets as features and EP300 based enhancers as labels. We
tested eRFSVM-ENCODE on K562 dataset, and resulted in a predicting precision of 83.69 %, which was much better
than existing classifiers. For eRFSVM-FANTOMS5, with enhancers identified by RNA in FANTOMS project as labels, the
precision, recall, F-score and accuracy were 86.17 %, 36.06 %, 50.84 % and 93.38 % using eRFSVM, increasing 23.24
% (69.92 %), 97.05 % (18.30 %), 76.90 % (28.74 %), 4.69 % (89.20 %) than the existing algorithm, respectively.

Conclusions: All these results demonstrated that eRFSVM was a better classifier in predicting both EP300 based
and FAMTOMS5 RNAs based enhancers.
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Background

Transcription regulation in human genes is a complex
process. Systematic and precise identification of these
regulatory DNA elements, especially enhancers [17] is a
prerequisite to understand gene expression in both
healthy and diseased cells [9]. More and more studies in-
dicate that mutations in enhancers are associated with
human diseases, such as cancers [7, 15], cardiovascular
diseases [21] and immunological diseases [27].

Enhancers increase the transcriptional output in cells
manifesting distinct properties, which are summarized
as follows: (a) enhancers are distal regulatory elements,
which may locate 20kb or further away from transcrip-
tion start sites, (b) they can activate gene transcription
by recruiting transcription factors (TFs) and their com-
plexes, (c) they may be enriched with chromatin modifi-
cations, such as monomethylation of histone H3 lysine 4
(H3K4mel) and the acetylation of histone H3 lysine 27
(H3K27ac), (d) they can initiate RNA polymerase II tran-
scription, producing a new class of non-coding RNAs
called enhancer RNAs (eRNAs) [1], (e) they are tissue
specific and merely conservative functioning in different
spaces and stages. Thus, single experimental validation
of them seems to be a time-consuming and costly task.
Predicting enhancers based on conservation analysis of
genomic sequences also doesn’t work well [23]. With the
development of high-throughput sequencing technolo-
gies, the advanced computational tools make this task
possible in the big data era.

Machine learning algorithms [31] were used to predict
enhancers with chromatin immune precipitation sequen-
cing (ChIP-Seq) datasets [10, 30], such as the chromatin
modification loci and the TF binding sites (TFBs) [24, 31].
Single classifiers used supervised learning algorithms, e.g.,
CSI-ANN [13] introduced an artificial neural network
approach; RFECS [25] identified enhancers with REF;
ChromaGenSVM [12] applied SVMs with a Genetic Al-
gorithm (GA) to optimize the parameters of SVMs;
EnhancerFinder [11] used multi-kernel SVMs to predict
enhancers in the eukaryotic genome; DEEP [18] used
an algorithm combined SVMs with ANN including the
components of DEEP-ENCODE and DEEP-FANTOMS5.

Some classifiers mentioned above, such as CSI-ANN,
ChromaGenSVM, REFCS and EnhancerFinder used ChIP-
Seq datasets as features, and were strongly relied on
EP300, which was a transcriptional coactivator and could
activate gene transcription by combining with TFs, consid-
ering EP300 binding sites as enhancers. However, EP300
binding sites are very possible enhancer sites, but not the
100 % real ones [19]. DEEP used the same datasets in pre-
dicting EP300 based enhancers as the classifiers mentioned
above. It firstly used FANTOMS5 datasets as training en-
hancers, which were reconstructed from enhancer RNAs
(eRNAs) datasets using Cap Analysis of Gene Expression
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(CAGE) [14]. However, it used DNA sequence features as
features not ChIP-Seq datasets in DEEP-FANTOMS5. It
used SVMs as base classifiers to train datasets from single
tissues or cell lines and it used ANN as a main classifier to
make the final decision combining the results of the base
classifiers. It has been proved that getting the global
optimum of ANN is a NP-hard problem. The simple
implementing algorithm, back-propagation algorithm, is a
heuristic algorithm, which is easy to trap in local optimal
solution [26]. Thus, the weakness of DEEP was obvious. In
the layer of algorithm, the predicting result was not the
global optimumy; in the layer of datasets, it didn’t use effect-
ive features in predicting eRNAs based enhancers.

In this study, we built a hybrid classifier eRESVM in-
cluding eRFSVM-ENCODE and eRFSVM-FANTOMS.
We used RF as base classifiers [3, 4], which was a fast
and easy- paralleled algorithm good at dealing with un-
balanced datasets. For eRESVM, we could get the global
optimum when making the final decision for both RF
and SVMs algorithms were P problems [29].

In the process of data pre-processing, to reduce unbal-
anced ratio, we used a sub-sampling algorithm, and com-
bined it with the k-means method, comprehensively
considering the running time for the program and the loss
of information in samples. The base classifiers trained
datasets from single tissues or cell lines with the RF algo-
rithm, which used 60 % of the datasets for training and
the remaining 40 % for testing. With the testing results
of base classifiers, we built the main classifier with
SVMs. For eRESVM-ENCODE, we trained datasets of
cell lines like Gm12878, Hep, H1-hesc and Huvec, and
then tested datasets of Hela and K562 cell lines, with
enhancers identified by transcriptional coactivator
EP300 binding sets as labels. For eRESVM-FANTOMS5,
we trained on datasets of blood, lung, liver, kidney,
and then tested on the datasets of adipose, with
eRNAs based enhancers as labels.

Methods

The ENCODE datasets

The National Human Genome Research Institute (NHGRI)
launched a public research consortium named ENCODE,
the Encyclopedia of DNA Elements [6], in September 2003,
to carry out a project to identify all functional elements in
the human genome sequence. The datasets generated by
next-generation sequencing technologies or software pre-
diction in the project were available at https://genome.ucs-
c.edu/ENCODE/, including raw data, alignment data and
peak calling data in different kinds of formats. The datasets
were used for the studies, such as TF binding sites, histone
modifications. In this study, we used the datasets for train-
ing and testing in the classifier of eRESVM-ENCODE from
ChIP-Seq experiments of different cell lines. The peak
calling datasets of ChIP-Seq experiments from Gm12878,


https://genome.ucsc.edu/ENCODE/
https://genome.ucsc.edu/ENCODE/

Huang et al. Hereditas (2016) 153:6

Hep, H1-hesc, Huvec, Hela and K562 in the form of
broadpeak were used as features including eleven histone
modifications, H2AFZ (Variant of H2A), H3K27ac (Detects
of acetylation), H3K27me3 (Detects of trimethylation in
Lysine 27), H3K36me3 (Marks of actively transcribed
regions), H3K4mel (Associated with enhancers), H3K4me2
(Marks of promoters and enhancers), H3K4me3 (Asso-
ciated with active promoters), H3K79me2 (Marks of
transcriptional transition regions), H3K9ac (Marks of
promoters in chromatin regions), H3K9me3 (Associated
with silenced chromatin) and H4K20mel (Associated with
active and accessible regions). Gm12878, Hep, H1-hesc,
Huvec, Hela and K562 were cell lines from blood, liver,
embryonic stem cell, blood vessel, cervical cancer and
blood, respectively. The EP300 datasets were used as labels
for the classifiers. The human genome sequences were
downloaded from Ensembl (Homo_sapiens. GRCh38.dna).

The FANTOMS5 datasets

The sra or bed format of ChIP-Seq datasets of lung,
blood, liver, kidney and adipose including H3K4mel,
H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3
and H3K36me3 from NIH Epigenome Roadmap [2]
were used as features for training. The ChIP-Seq of the
same tissue were from different kinds of cells and differ-
ent phases of life. Datasets of kidney were from fetal and
adult; datasets of adipose were from mesenchyme and
gland; datasets of lung were from left lung and right
lung in the fetal; datasets of blood were from K562 and
CD4+; datasets of liver were from adult. The FANTOMS5
project [1] examines how our genome encodes the fan-
tastic diversity of cell types that make up a human.
Using Cap Analysis of Gene Expression (CAGE), studies
in FANTOMS5 project had mapped the sets of tran-
scripts, transcription factors, promoters and enhancers
active in the majority of mammalian primary cell types
and a series of cancer cell lines and tissues. Enhancer labels
were obtained from FANTOMS5 consortium publicly avail-
able at http://enhancer.binf.ku.dk/Pre-definedtracks.html.

Data normalization for histone modifications
Firstly, to process datasets from NIH Epigenome Road-
map, we transformed data in the form of sra [16] to fastq
by a software from NCBI. With bwa, we transformed fastq
data to sam data. With samtools, we transformed sam
data to bed data. Secondly, we used MACS [32] for sharp
peak calling and SICER for broad peak calling [22, 28].
ChIP-Seq peaks counted in a 200, 400, 600, 800, 1000-bp
window were output.

The resolution of preprocessed histone modification
data was 200bp. We used the signal value and normal-
ized it in the formula below to train the datasets.
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X;—=Xmin
Xp=
Xmax ~¥min

Reduction of imbalanced data ratio

Unbalanced datasets will lead to machine learning bias
that classification will tend to put a sample prediction
for a majority class sample, which will lead to a lower
recognition rate for minority class samples. According to
the priori data, enhancers accounts for about 2 % of the
genome data as a minority class [19]. So the recognition
of minority class samples is the key point of this issue.
We used sub-sampling combined with the k-means to
get negative samples from the whole genomes and made
the ratio between positive and negative datasets as 1:10
[12] to reduce the imbalanced ratio.

Base classifier algorithm (The random forests algorithm)
RF [3, 4] are ensemble of decision trees, which are based
on information gain, the computation formula are pre-
sented as:

m

info, (D) = —Zpi log, (p;)

=1
gain(A) = info(D)-info, (D)

The step of RF can be represented as:

(a) use bootstrap to extract k samples from the original
training sets with N samples for k times,

(b)establish k decision trees,

(c)vote according to the classification results of all
decision trees, the voting results called confidence-
score can be described as:

treemper (positive)
treemper (total)

confidence—score =

RF overcomes the limitation of over-fitting of decision
trees, with advantage of fast and simple, tolerance to
noise and abnormal value. In this study, we used the sig-
nal values of histone modifications in each sample as
features and computed confidence-score of all decision
trees. The confidence-score was used as a feature for the
main classifier.

Main classifier algorithm (The support vector machines
algorithm)

Recently, the support vector machines (SVMs) [8] is an
algorithm for classification or regression, which aims to
separate the positive data and negative data through a
hyperplane with datasets mapped to high dimensions
with maximal margin. The algorithm tries to minimize
structural risk and is less vulnerable to the over-fitting
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problem. Given training vectors x; € R", i = 1,..., n,
in two classes, and a vector of label y € R™ such that
yi €(-1,1) [20], SVMs solves a quadratic optimization
problem by means of a kernel function like polyno-
mial and radial basis function (RBF). The principle
of SVMs can be described as follows:

1 -
mm§||wH2 + CZSi
i—1

s.t. yi(wT(D(xi) + b)zl—si, £>0

For any testing instance x, the decision function
(predictor) is described as follows:

f(x) = sgn(w” ¢(x) + b)

Practically, we need only k(x, x") = ¢(x) p(x "), the ker-
nel function, to train with SVMs. The RBF kernel is used
in our experiments:

k(x,x') = exp(-yllx-«'|*)

With the RBF kernel, there are two parameters to be deter-
mined in the SVMs: C and y. To get the good generalization
ability, we conduct a validation process to decide parameters.
The procedure is described as the following:

(a) consider a grid space of (C, y) with C €
{0,2,4,...,50} and y€{0,2,4,...,200},

(b)for each parameter pair (C, y) in the search space,
conduct 10-fold cross validation (CV) on the training
sets,

(c) choose the parameter pair (C, y) that leads to the
lowest CV balanced error rate,

(d)use the best parameter pair to create a model as the
predictor.

Implementing eRFSVM-ENCODE

Firstly, with the normalized features from Gm12878,
Hep, H1-hesc, Huvec, we built base classifiers with RF
algorithm separately, using 60 % of each datasets for
training and the rest 40 % for testing. RF was not sensi-
tive to input parameters, thus, we just used the default
parameters for each classifier. We calculated the precision,
E-score of each base classifiers. With the results of base
classifiers, we used SVMs to merge the testing results of
the four single classifiers. With the confidence-score
multiplying the F-score of each classifier as features of
main classifier, we used 10-k fold cross-validation. SVMs
was sensitive to the parameters, so we used the Gaussian
kernel as default and searched for the best C and y with
the grid search algorithm. With base classifiers training
on datasets from Gm12878, Hep, H1-hesc, Huvec, we
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tested them on K562 and hela datasets. The time com-
plexities of RF and SVMs are O (Nfeatures*Msamples) [8]
and O (Nfeatures*M::amples) respectively, the whole complex-
ity of eRFSVM is O (Nfeamres*M;D’amples), which means the
running time is proportional to the number of feature and
the third power of sample. The computational time for
base classifier training on specific cell line was 40 min
and training on the four datasets merged with SVMs
for 8 h and testing on K562 for 2 h in a server with 4
CPU cores and 48 GB RAM (Intel Xeon 2.4 GHz). The
program can be downloaded in http://analysis.bio-x.cn/
SHEsisMain.htm.

Implementing eRFSVM-FANTOMS5

We trained the datasets from blood, lung, kidney, liver
and tested them on the adipose as the same framework
(Fig. 1) that eRESVM-ENCODE used. The computational
time for model training on a specific cell line was 10 min
and training on the four datasets merged with SVMs for 1
h and testing on adipose for 5 min.

Performance evaluation of classifiers

The trained classifiers return confidence scores between
0 and 1 for a combined histone modification profiles.
These scores are then transformed to a binary state indi-
cating ‘enhancer’ or ‘not enhancer’ by choosing a cut-
off. For each combination of profiles, the existence of
regulatory element is considered positive (P) or negative
(N) otherwise. True (T) means that the predicted func-
tional states are enhancers, and false (F) implies other-
wise. The notations of TP, FP, TN and FN combined
these labels to return the number of each class. The per-
formance evaluation of classifiers is made according to
the following formulas:

. TP
Precison = ————
TP+ FP
TP
Recall = ———
T TP EN
TN

Speczﬁcity = m

o P
Sensitivity = TP+ EN

2 % ( Precision * Recall)

F-score =
Precision + Recall

TP+ TN
accuracy =
Y = TP+ TP+ FP+EN

The predicted confidence scores are transformed into
binary predictions by using different cut-offs yielding
sensitivity and specificity over the entire score range.
ROC plots can well evaluate the performance of classifiers,
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Fig. 1 The overview of eRFSVM (Different RF classifiers are made as base classifiers and SVMs classifier is made as main classifier)

which display the FP (1-specificity) values on the x-axis,
and the TP (sensitivity) values on the y-axis. ROC plots
show the direct relationship between the FP and TP rates.
The total AUC (area under the curve) for the ROC plot
is used to measure the prediction performance of this
method.

Results and Discussion

Performance of eRFSVM-ENCODE

With the histone modification datasets and EP300 data-
sets of cultured cell lines in broadpeak format downloaded
from ENCODE, we discretized the positive datasets with
200bp as a unit and used sub-sampling [5] and k-means
algorithms to get the negative datasets (Additional file 1:
Table S1).

For the training steps, the best performed base clas-
sifier was hesc, with precision, recall and F-score of
84.53 %, 83.03 % and 83.78 %, respectively. For eRESVM-
ENCODE, we found that the precision, recall and F-score

were 92.16 %, 90.70 % and 91.43 %, respectively, which
meant that the hybrid classifier fitted better than the base
classifiers (Additional file 1: Table S2).

When using the classifiers to test on K562 datasets
(Table 1), among the base classifiers, GM12878 classifier
showed the highest precision (84.39 %); huvec classifier
showed the highest recall (6.34 %), F-score (11.76 %) and
accuracy (69.79 %). When using classifiers to test on hela
datasets, among the base classifiers, hep classifier showed
the highest precision (30.24 %) and F-score (6.05 %);
GM12878 showed the highest recall (5.47 %) and accuracy
(99.33 %). For the hybrid classifier eRESVM, when testing
on K562 datasets, the precision, recall, F-score and accur-
acy were 83.69 %, 4.92 %, 9.29 % and 69.50 %, respectively,
with precision higher than hep and huvec, recall higher
than GM12878 and hesc, F-score higher than GM12878
and hesc, accuracy higher than GM12878 and hesc.
When testing on hela datasets, the precision, recall and
F-score of eREFSVM-ENCODE were 15.35 %, 0.38 %
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Table 1 Classifiers testing on K562 and hela

Page 6 of 11

Classifiers Precision Recall F-score Accuracy

K562 hela K562 hela K562 hela K562 hela
Gm12878 84.39 % 1322 % 0.88 % 392 % 1.75 % 6.05 % 6847 % 99.18 %
hep 83.00 % 30.24 % 5.04 % 031 % 9.50 % 0.62 % 69.52 % 99.33 %
hesc 84.00 % 473 % 3.66 % 547 % 701 % 5.07 % 69.19 % 9863 %
huvec 81.25% 744 % 6.34 % 035 % 11.76 % 0.66 % 69.79 % 99.30 %
eRFSVM 83.69 % 1535 % 492 % 0.38 % 9.29 % 0.75 % 69.50 % 99.28 %

and 0.75 %, with precision higher than GM12878, hesc
and huvec, recall higher than hep and huvec, F-score
higher than hep and huvec. The ROC curves could
comprehensively evaluate the performance of classifiers
(Figs. 2 and 3), with higher the AUC value, the better
performance of the classifier. The AUC values of
GM12878, hep, hesc, huvec and eRFSVM-ENCODE are
0.6049, 0.5369, 0.5385, 0.5444 and 0.6357 for K562
datasets, respectively; 0.4650, 0.6106, 0.5415, 0.5474

and 0.6165 for hela datasets, respectively. eRESVM-
ENCODE showed the highest AUC value in both K562
and hela datasets, which meant the hybrid classifier was
of better performance.

Performance of eRFSVM-FANTOMS5

The datasets from NIH Epigenome Roadmap were of
different formats. With softwares (see Materials and
Methods), we made the peak datasets of different tissues

ROC curve for classifier test on K562
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Fig. 2 ROC curve for classifier test on K562 (Cross-validation ROC plot of the optimum classifier to predict enhancers in K562 cells)
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ROC curve for classifier test on hela
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Fig. 3 ROC curve for classifier test on hela (Cross-validation ROC plot of the optimum classifier to predict enhancers in hela cells)

(Additional file 1: Table S3), positive and negative data-
sets for training of these classifiers (Additional file 1:
Table S4).

For the training steps, the best performed base classi-
fier was liver. The mean values of precision, recall and
F-score of these base classifiers were 75.42 %, 53.90 %
and 61.79 %, respectively. For eRFSVM, we found that
the precision, recall and F-score were 90.59 %, 48.16 %
and 62.22 %, respectively (Additional file 1: Table S5).
The F-score of eRFSVM was higher than that of blood,
lung and kidney, which meant eRESVM fitted better
than these base classifiers.

When using the classifiers to test on adipose datasets
(Table 2), among the base classifiers, lung classifier
showed the highest precision (83.72 %); kidney classifier
showed the highest recall (47.31 %), F-score (57.41 %)
and accuracy (93.55 %). For the hybrid classifier eRESVM,
when testing on adipose datasets, the precision, recall,
F-score and accuracy were 86.17 %, 36.06 %, 50.84 %
and 93.38 %, respectively, with precision higher than all

the base classifiers, recall higher than blood, liver and
lung, F-score higher than blood, liver and lung, accur-
acy higher than blood, liver and lung.

The AUC value of blood, liver, lung, kidney and
eRFSVM-FANTOMS5 are 0.6026, 0.5808, 0.5707,
0.5411 and 0.6344 for adipose datasets, respectively.
eRFSVM-FANTOMS5 showed the highest AUC value
with better performance than base classifiers (Fig. 4).

Table 2 Results testing on adipose with ChIP-Seq datasets

Classifiers Precision Recall F-score Accuracy
blood 55.80 % 31.56 % 40.32 % 91.51 %
liver 80.73 % 27.50 % 41.03 % 92.81 %
lung 83.72 % 11.25 % 19.83 % 91.73 %
kidney 7183 % 4781 % 5741 % 93.55 %
eRFSVM-FANTOMS 86.17 % 36.06 % 50.84 % 93.38 %
SVMs-ANN 65.30 % 28.07 % 39.26 % 92.58 %
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ROC curve for eRFSVM test on adipose
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Fig. 4 ROC curve for eRFSVM test on adipose (Cross-validation ROC plot of the optimum classifier to predict enhancers on adipose)

Performance camparision of eRFSVM-ENCODE with existing
methods

To access the capability of eRESVM-ENCODE to predict
effectively enhancers, we used K562 cell line for testing
in a genome wide manner. We compared it with other
classifiers, such as CSI-ANN, RFECS and DEEP-ENCODE
(Table 3). For K562 cell line, RFECS predicted
130,723,329bp (4.22 %) enhancers; CSI-ANN predicted
34,635,309bp (1.12 %) enhancers; DEEP-ENCODE pre-
dicted 28,238,758bp (0.91 %) enhancers; eRESVM-ENCOE
predicted 120,670,200bp (3.89 %) enhancers. eRFSVM-
ENCODE and DEEP-ENCODE were hybrid classifiers,

having the highest precisions comparing with other
methods. eRVSVM-ENCODE had the highest precision of
83.69 % and DEEP-ENCODE had the second highest pre-
cision of 83.56 %. The recall and F-score of eRFSVM-
ENCODE were both higher than DEEP-ENCODE.

Performance comparison with DEEP-FANTOM5

DEEP-FANTOMS5 used SVMs combined ANN (SVMs-
ANN) algorithms with DNA sequence features. The pre-
cision, recall, F-score and accuracy were 86.17 %, 36.06 %,
50.84 % and 93.38 % using eRFSVM, increasing 23.24 %
(69.92 %), 97.05 % (18.30 %), 76.90 % (28.74 %), 4.69 %

Table 3 Comparative performance analysis of the enhancer predictions in K562

Classifiers Precision Recall F-score Number of predicted enhancer bases (Portion in whole genome)
RFSVM-ENCOE 83.69 % 492 % 9.29 % 120,670,200(3.89 %)

CSI_ANN 67.36 % 9.05 % 15.96 % 34,635,309(1.12 %)

RFECS 69.56 % 10.16 % 1774 % 130,723,329(4.22 %)

DEEP-ENCODE 83.56 % 345 % 6.62 % 28,238,758(0.91 %)
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(89.20 %) using DEEP-FANTOMS, respectively. To com-
pare the features and algorithms in the function of classi-
fiers with eRFSVM-FANTOMS5 separately, we built two
classifiers in the following.

To compare the effects of different features for classi-
fiers, we used the same algorithm (RF-SVMs) for the
classifiers (Tables 2 and 4). DNA sequence features, such
as the frequencies of di-nucleotide, tri-nucleotide, tetra-
nucleotide, single base were used to make the feature
matrix (Additional file 1: Table S6). For the base classi-
fiers, the mean values of precision, recall, F-score were
73.02 %, 29.53 % and 39.65 %, using ChIP-Seq features,
respectively; increasing 65.84 % (44.03 %), 8.01 % (27.34 %),
30.0 % (30.50 %) comparing with classifiers using DNA se-
quence features, respectively (Additional file 1: Table S7).
For the hybrid classifiers, the precision, F-score and ac-
curacy were 86.17 %, 50.84 % and 93.38 % using ChIP-
Seq features, increasing 2.7 fold (23.61 %), 57.35 %
(32.31 %), 6.68 % (87.53 %) comparing with using DNA
sequence features, respectively.

To compare the effects of different algorithms for clas-
sifiers, we used the same features (ChIP-Seq datasets)
for the classifiers (Tables 2 and 4). The precision, recall,
F-score and accuracy were 86.17 %, 36.06 %, 50.84 % and
93.38 % using RF-SVMs, increasing 31.96 % (65.30 %),
7.09 % (28.07 %), 29.59 % (39.26 %), 0.86 % (92.58 %) using
SVMs-ANN, respectively.

Discussion

Previous studies [29] demonstrated that hybrid algorithms
could well improve the performance of classifiers, which
could be well interpreted in the layer of statistics. A learn-
ing algorithm could be considered to search the best per-
formed parameters in the hypothesis space (H), which was
near to the real whole space (f). However, the training
datasets were not sufficient to the whole real space. Thus,
the optimum found in the hypothesis space was very likely
not the best in the whole space. The algorithms were easy
to trap in local optimum. By combining these hypothesis
using hybrid algorithms, classifiers could average these
results, leading to much more close to the optimum in
the whole real space. In our study, with AUC values to
evaluate the performance of classifiers, when testing on
the K562, hela and adipsoe datasets, the values of

Table 4 Results tesing on adipose with DNA sequence features

Classifiers Precision Recall F-score Accuracy
blood 20.77 % 3375 % 2571 % 8227 %
liver 61.84 % 14.69 % 23.74 % 9142 %
lung 40.07 % 34.06 % 36.82 % 89.38 %
kidney 5342 % 26.87 % 3576 % 91.22 %
RF-SVMs 2361 % 51.25% 3231 % 87.53 %
DEEP-FANTOMS 69.92 % 18.30 % 28.74 % 89.20 %
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hybrid classifier were 0.6357, 0.6165 and 0.6344, higher
than all the base classifiers, verifying that hybrid classi-
fiers were performing better than single classifiers.

The previous methods used EP300 datasets as criteria
of enhancers. For eRESVM-ENCODE, the performance
in predicting K562 was better than that in hela. Hela
was generated from cervical cancers, much more differ-
ent from Gm12878 (blood), Hep (liver), H1l-hesc (em-
bryonic stem cell) and Huvec (blood vessel), but K562
was from blood, of the same tissue of Gm12878. With
more similar cell lines, it would have the better predict-
ing performance. Thus, combining cell lines from much
more kinds of tissues would strengthen the predicting
performance. We found that F-score of these classifiers
was nearly 80 %. However, when testing on other cells,
the average F-score of these algorithms was just about
10 %, indicating that the generalization performance of
the classifiers were poor. EP300 and enhancers were as-
sociated but the relevance was not the same in different
tissues, which was one of the reasons leading to the pre-
vious classifiers with low generalization performance.

Interpreting enhancers in a variety of angles with
biological meaning was an important clue and basis for
predicting enhancers with compute methods [19].
Therefore, from a biological perspective, looking for la-
bels with stronger relevance with enhancers was im-
portant to build the effective classifiers. FANTOMS5
consortium identified enhancers in different tissues and
organs in transcription levels. DEEP-FANTOMS5 used
FANTOMS5 enhancers as labels to predict new enhancers.
However, DEEP-FANTONS5 only used gene sequence
features, such as CpG islands, G + C content to create
feature matrixes. The average precision of the classifiers
was only about 30 % (Additional file 1: Table S8). In
this study, we used the ChIP-Seq datasets of different
tissues and organs from NIH Epigenome Roadmap as
feature matrixes, the average precision rate was about
70 % (Additional file 1: Table S5), which was 2.1 times
that of DEEP-FANTOMS5. When using eRFSVM-FANTOM5
to predict the adipose datasets, the F-score was 50.84 %,
which was close to the F-scores training in blood, kidney
and lung. These classifiers performed better compared
with classifiers using EP300 datasets as labels.

There are some shortcomings of eRFSVM. Firstly, in
the FANTOMS5 datasets, only part of the tissues and or-
gans had ChIP-Seq datasets in Roadmap database, there-
fore, eRESVM-FANTOM can only predict enhancers in
part of tissues and organs. Classifiers suitable for more
tissues and cell lines with better generalization perform-
ance still need to be developed. Secondly, our knowledge
of eRNAs was limited and not all enhancers generate
eRNA, thus, enhancers not generating eRNAs may be
missed in eREFSVM-FANTOMS5. Thirdly, a web based
user-friendly tool should be developed in the future.
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Conclusion

In this study, we made a new hybrid classifier eRESVM
using RF combined with SVMs (RF-SVMs) to predict
new enhancers in other cell lines or tissues. eRESVM is
more robust than single classifiers with RF with the value
of AUC higher than the single classifiers. By training on
ENCODE datasets, eRESVM-ENCOE made 120,670,200bp
enhancer predictions covering 3.89 % of the genome. Com-
paring with state-of-art programs training on ENCODE
datasets, eRESVM-ENCODE made the highest precision of
83.69 % testing on K562 datasets.

For eRESVM-FANTOMS5, with enhancers identified by
RNA in FANTOMS5 project as labels, we trained datasets
on blood, lung, liver and kidney. The best training result
of classifiers was liver with a precision of 82.73 %, in-
creasing 2.7 fold compared with DEEP-FANTOMS5.

Algorithm RF-SVMs performed better than SVMs-ANN
when we used the same features (ChIP-Seq datasets).
The precision, recall, F-score and accuracy were 86.17 %,
36.06 %, 50.84 % and 93.38 % using RF-SVMs, increasing
31.96 % (65.30 %), 7.09 % (28.07 %), 29.59 % (39.26 %),
0.86 % (92.58 %) using SVMs-ANN, respectively

ChIP-Seq datasets were better features of classifiers in
predicting FANTOMS5 enhancers. When using the the
same algorithm (RF-SVMs), the precision, F-score and
accuracy were 86.17 %, 50.84 % and 93.38 % using
ChIP-Seq features, increasing 2.7 fold (23.61 %), 57.35 %
(32.31 %), 6.68 % (87.53 %) comparing with using DNA
sequence features, respectively.

In conclusion, we provided a better classifier eRESVM
with higher generalization performance both in ENCODE
datasets and FANTOMS5 datasets comparing with
DEEP and other state-of-art classifiers. However, in the
FANTOMS5 datasets, only part of the tissues and organs
had ChIP-Seq datasets in Roadmap, therefore, eRESVM-
FANTOM can only predict enhancers in part of tissues
and organs. Classifiers suitable for more tissues and cell
lines with better generalization performance still need to
be developed.

Additional file

Additional file 1: Table S1. The datasets for training of cell lines from
ENCODE. Table S2. Results training on four cell lines. Table S3. The peaks
of different tissues from Roadmaps. Table S4. The datasets for training of
different tissues from Roadmap. Table S5. Results training on different
tissues with ChIP-Seq datasets. Table S6. Results training on tissues with
DEEP-FANTOMS. Table S7. Results training on tissues with sequence
features. Table S8. Results training on tissues with DEEP-FANTOMS.
(DOCX 20 kb)
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